Synthesis of carbon microsphere-assisted snowflake-like ZnO nanomaterials for selective detection of NO2 at room temperature

[Display omitted] •Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates the diffusion and adsorption of gases.•The large specific surface area increased the chemisorbed oxygen content on the ZnO-25 surface.•The int...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 110; pp. 542 - 551
Main Authors Li, Qiaoyan, Cui, Yahan, Lin, Jiasheng, Zhao, Chun, Ding, Lan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.06.2022
한국공업화학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates the diffusion and adsorption of gases.•The large specific surface area increased the chemisorbed oxygen content on the ZnO-25 surface.•The introduction of carbon microspheres improved the response of ZnO for NO2 at room temperature. In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnation and high-temperature calcination with carbon microspheres as the sacrificial template. The effects of ethanol concentration in aqueous solution on the microstructure and sensing properties of ZnO nanomaterials were investigated. The results showed that using 25 % ethanol-containing aqueous solution as impregnation solution, snowflake-like ZnO nanomaterials (ZnO-25) showed excellent sensing performance for NO2 at room temperature. It is mainly attributable to the rich channels and large specific surface area of the snowflake-like ZnO, which facilitates the rapid diffusion of the target gas. A large amount of chemisorbed oxygen can promote the surface reaction. In addition, the unremoved carbon during calcination promotes the electrical properties of ZnO. This strategy will provide a new sight on developing a type of sensitive NO2 gas sensing device working at room temperature.
AbstractList In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnationand high-temperature calcination with carbon microspheres as the sacrificial template. The effects ofethanol concentration in aqueous solution on the microstructure and sensing properties of ZnO nanomaterialswere investigated. The results showed that using 25 % ethanol-containing aqueous solution asimpregnation solution, snowflake-like ZnO nanomaterials (ZnO-25) showed excellent sensing performancefor NO2 at room temperature. It is mainly attributable to the rich channels and large specific surfacearea of the snowflake-like ZnO, which facilitates the rapid diffusion of the target gas. A large amountof chemisorbed oxygen can promote the surface reaction. In addition, the unremoved carbon during calcinationpromotes the electrical properties of ZnO. This strategy will provide a new sight on developing atype of sensitive NO2 gas sensing device working at room temperature. KCI Citation Count: 1
[Display omitted] •Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates the diffusion and adsorption of gases.•The large specific surface area increased the chemisorbed oxygen content on the ZnO-25 surface.•The introduction of carbon microspheres improved the response of ZnO for NO2 at room temperature. In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnation and high-temperature calcination with carbon microspheres as the sacrificial template. The effects of ethanol concentration in aqueous solution on the microstructure and sensing properties of ZnO nanomaterials were investigated. The results showed that using 25 % ethanol-containing aqueous solution as impregnation solution, snowflake-like ZnO nanomaterials (ZnO-25) showed excellent sensing performance for NO2 at room temperature. It is mainly attributable to the rich channels and large specific surface area of the snowflake-like ZnO, which facilitates the rapid diffusion of the target gas. A large amount of chemisorbed oxygen can promote the surface reaction. In addition, the unremoved carbon during calcination promotes the electrical properties of ZnO. This strategy will provide a new sight on developing a type of sensitive NO2 gas sensing device working at room temperature.
Author Cui, Yahan
Lin, Jiasheng
Li, Qiaoyan
Zhao, Chun
Ding, Lan
Author_xml – sequence: 1
  givenname: Qiaoyan
  surname: Li
  fullname: Li, Qiaoyan
  organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
– sequence: 2
  givenname: Yahan
  surname: Cui
  fullname: Cui, Yahan
  organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
– sequence: 3
  givenname: Jiasheng
  surname: Lin
  fullname: Lin, Jiasheng
  organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
– sequence: 4
  givenname: Chun
  surname: Zhao
  fullname: Zhao, Chun
  organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
– sequence: 5
  givenname: Lan
  surname: Ding
  fullname: Ding, Lan
  email: dinglan@jlu.edu.cn
  organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002855939$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMlKBDEURYMoOP6Aq6yFajN0xRS4EXECscEBxE1IpV403VVJk8QWwY83ZbtyITx4D3LPhZxdtOmDB4QOKZlQQsXxfDJ3YCaMMDYhvAzbQDtUnojqpJk-b5abMVERKZ630W5Kc0IE4VLsoK-HT5_fILmEg8VGxzZ4PDgTQ1q-QYRKp_KWocPJhw_b6wVUvVsAfvEz7LUPg84Qne4TtiHiBD2Y7FaAO8jjVdpK792MYZ1xDGHAGYYlRJ3fI-yjLVtIOPjde-jp8uLx_Lq6nV3dnJ_dVoaJOld1DdzwjgGvScsJNKZpWys7LiWxltYgjJGiBtaB1Fx3rG7bBghlNW-bhk75Hjpa9_po1cI4FbT72a9BLaI6u3-8UZQQ2kw5K2G5Do8OUgSrjMt6_EmO2vUlqEblaq5G5WpUrggvM6LsD7qMbtDx83_odA1BMbByEFUyDryBzsViUHXB_Yd_A37qn3Y
CitedBy_id crossref_primary_10_1016_j_mtsust_2024_100764
crossref_primary_10_1002_crat_202300013
crossref_primary_10_1016_j_apsusc_2023_158551
crossref_primary_10_1016_j_jiec_2022_08_035
crossref_primary_10_18596_jotcsa_1389331
crossref_primary_10_1016_j_apsusc_2024_161138
crossref_primary_10_1007_s10854_024_12733_y
crossref_primary_10_1016_j_jiec_2025_01_053
crossref_primary_10_1016_j_cej_2025_160923
crossref_primary_10_1021_acsomega_3c07280
crossref_primary_10_1002_adfm_202311300
crossref_primary_10_1016_j_snb_2022_132964
crossref_primary_10_1016_j_snb_2024_136179
crossref_primary_10_1016_j_snb_2024_135478
Cites_doi 10.1021/acssensors.7b00129
10.1016/j.snb.2019.127481
10.1016/j.snb.2015.04.119
10.1016/j.snb.2018.09.095
10.1016/j.snb.2011.11.027
10.1002/anie.200352386
10.1016/j.ceramint.2018.04.018
10.1039/C8MH01365A
10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
10.1007/s00339-018-2244-7
10.1039/D0TA09706C
10.1016/j.snb.2017.08.203
10.1039/C6MH00500D
10.1016/j.snb.2018.05.005
10.1021/jp909478q
10.1016/j.snb.2017.10.081
10.1007/s10008-018-4062-4
10.1016/j.jhazmat.2020.124093
10.1002/anie.201712959
10.1016/S0925-4005(03)00417-9
10.1016/j.matchemphys.2016.10.007
10.1002/adma.200390108
10.1039/C4RA16632A
10.1016/j.ceramint.2020.04.278
10.1016/j.snb.2016.07.127
10.1186/s11671-016-1740-y
10.1016/j.snb.2017.04.190
10.1016/j.snb.2018.12.089
10.1021/cm052848y
10.1016/j.snb.2015.12.010
10.1016/j.snb.2016.01.077
10.1039/D0QI00119H
10.1039/C2TB00132B
10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
10.1016/j.mssp.2019.104861
10.1002/chem.200500660
10.1021/am400500a
10.1016/j.matlet.2015.10.067
10.1016/j.snb.2018.05.027
10.1016/j.jallcom.2013.03.258
10.1021/acsami.7b02533
10.1016/j.snb.2013.11.034
10.1016/j.snb.2015.06.115
10.1016/j.snb.2018.10.063
10.1016/j.snb.2017.03.149
10.1039/C5CY00879D
10.1016/j.jmmm.2012.09.058
10.1016/j.snb.2018.02.105
10.1063/1.1992666
10.1016/j.powtec.2020.08.014
10.1021/am5057322
ContentType Journal Article
Copyright 2022 The Korean Society of Industrial and Engineering Chemistry
Copyright_xml – notice: 2022 The Korean Society of Industrial and Engineering Chemistry
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2022.03.032
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 551
ExternalDocumentID oai_kci_go_kr_ARTI_10019432
10_1016_j_jiec_2022_03_032
S1226086X22001642
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
EJD
HZ~
MZR
OK1
RIG
SSH
ZY4
ZZE
85H
ABPIF
ABTAH
ACYCR
AJBFU
ID FETCH-LOGICAL-c265t-55e3c3d2e350b30e9c9bbf8d3880ff15e6cc865e2de8a3ad25bb9e01253b99143
IEDL.DBID .~1
ISSN 1226-086X
IngestDate Tue Nov 21 21:43:50 EST 2023
Tue Jul 01 03:34:24 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas sensing
Snowflake-like ZnO
Nitrogen dioxide
Room-temperature
Carbon microsphere
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-55e3c3d2e350b30e9c9bbf8d3880ff15e6cc865e2de8a3ad25bb9e01253b99143
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10019432
crossref_citationtrail_10_1016_j_jiec_2022_03_032
crossref_primary_10_1016_j_jiec_2022_03_032
elsevier_sciencedirect_doi_10_1016_j_jiec_2022_03_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-25
PublicationDateYYYYMMDD 2022-06-25
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-25
  day: 25
PublicationDecade 2020
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2022
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Wang, Yao, Xu, Wu, Lin, Zheng, Feng, Gao (b0275) 2021; 332
Xiong, Lu, Ding, Zhu, Li, Ling, Xue (b0020) 2017; 2
Seekaew, Wisitsoraat, Phokharatkul, Wongchoosuk (b0140) 2019; 279
Caruso (b0300) 2001; 13
Park, An, Mun, Lee (b0090) 2013; 5
Jin, Zhu, Jian, Wei, Gao, Zhang, Zheng (b0205) 2018; 5
Gao, Zhu, Ong, Wang, Ho (b0240) 2015; 5
Saboor, Khodadadi, Mortazavi, Asgaria (b0285) 2017; 238
Kind, Yan, Messer, Law, Yang (b0080) 2002; 14
Tong, Du, Liang, Hu, Wu, Guan, Hu (b0210) 2013; 1
Shima, Hossain, Lee, Son, Hahn (b0195) 2017; 185
Li, He, Bai, Liu, Ikram, Lv, Ullah, Khan, Kan, Shi (b0270) 2020; 7
Zhang, Li (b0220) 2019; 731
Song, Qiao, Sun, Tan, Ma, Kang, Sun, Huang, Wang (b0295) 2018; 256
Vuong, Phuoc, Hien, Chien (b0060) 2020; 107
Cui, Shi, Xie, Wang, Lin (b0265) 2016; 227
Li, Wang (b0180) 2010; 114
Han, Li, Liu, Li, Shao, Ri, Ma, Liu (b0100) 2021; 403
Rai, Yu (b0190) 2012; 161
Gaidi, Salem, Akir, Massoudi, Ghrib, Litaiem, Khirouni (b0185) 2018; 22
Xu, Li, Zhang, Feng, Wang, Liu, Sun, Sun, Lu (b0110) 2015; 5
Sun, Li (b0235) 2004; 43
Zhu, Wang, Duan, Zhang, Li, Liu, Xu, Cai (b0050) 2015; 221
Liu, Li, Zhang, Xiao, Gao, Yang, Wang, Lu (b0155) 2017; 249
Hu, Zou, Su, Li, Ye, Cai, Kong, Yang, Zhang (b0030) 2018; 270
Dutta, Kim, Ide, Kim, Hossain, Bando, Yamauchi, Wu (b0115) 2017; 4
Qian, Yu, Luo, Gong, Fei, Liu (b0160) 2006; 18
Sun, Yu, Dong, Xia, Yang (b0280) 2020; 844
Wang, Men, Zhang, Gu, Han (b0040) 2018; 263
Mishra, Mohapatra, Sharma, Chattarjee, Singh, Varma, Behera, Nayak, Entel (b0200) 2013; 329
Lee, Lee, Hong, Lee, Yoon (b0010) 2018; 255
Chen, Wang, Xiang (b0165) 2018; 270
Choi, Lee, Lee, Lee (b0005) 2018; 124
Sun, Sun, Han, Pan, Liu, Bai, Feng, Luo, Li, Chen (b0070) 2019; 285
Vayssieres (b0075) 2003; 15
Wang, Dai, Li, Bai, Liu, Li, Wang, Liu, Lu (b0255) 2021; 329
Kim, Kwon, Mirzaei, Kang, Choi, Bang, Kim (b0245) 2017; 249
Cheng, Wu, Liu, Zhao, Gao, Li, Zhang, Yan, Geyu (b0055) 2020; 304
Matsagar, Yang, Dutta, Ok, Wu (b0120) 2021; 9
Qu, Wang, Chen, Han, Lin (b0145) 2016; 228
Chen, Yu, Du, Hu, Liu, Ma, Jia, Fan (b0105) 2021; 345
Nundy, Eom, Song, Park, Lee (b0225) 2020; 46
Wei, Wang, Zhang, Zhou (b0260) 2014; 192
Sun, Liu, Li (b0175) 2006; 12
Wang, Shen, Li, Xia, Yang (b0095) 2019; 298
Jin, Ge, Jian, Wei (b0230) 2016; 11
Wang, Xu, Ding, Chang, Zhang, Yamauchi, Wu (b0130) 2018; 57
Li, Zhou, Guo, Wang, Liu, Sun, Liu, Lu (b0170) 2014; 6
Li, Li, Wu, Wang, Luo, Torun, Hu, Yang, Grundmann, Liu, Fu (b0290) 2019; 6
Urso, Leonardi, Neri, Petralia, Conoci, Priolo, Mirabella (b0065) 2020; 305
Huang, Tsai, Lin, Weng, Chang, Chiu, Lin, Lin, Lin, Chen (b0150) 2018; 44
Özgür, Alivov, Liu, Teke, Reshchikov, Doğan, Avrutin, Cho, Morkoç (b0085) 2005; 98
Tamaki, Hayashi, Yamamoto, Matsuoka (b0015) 2003; 95
Konnerth, Matsagar, Chen, Prechtl, Shieh, Wu (b0125) 2020; 416
Gu, Nie, Han, Wang (b0135) 2015; 219
Wang, Na, Zhang, Deng, Huo, Gao (b0250) 2020; 375
Chen, Shen, Zhou, Zhao, Zhong, Li, Han, Wei, Meng (b0025) 2019; 280
Kim, Na, Kwon, Kang, Choi, Bang, Wu, Kim (b0045) 2017; 9
Sanchez, Takimi, Rodembusch, Bergmann (b0215) 2013; 572
Shen, Chen, Wang, Gong, Chen, Liu, Wei, Meng, San (b0035) 2016; 163
Chen (10.1016/j.jiec.2022.03.032_b0105) 2021; 345
Tamaki (10.1016/j.jiec.2022.03.032_b0015) 2003; 95
Hu (10.1016/j.jiec.2022.03.032_b0030) 2018; 270
Sun (10.1016/j.jiec.2022.03.032_b0070) 2019; 285
Vayssieres (10.1016/j.jiec.2022.03.032_b0075) 2003; 15
Kim (10.1016/j.jiec.2022.03.032_b0245) 2017; 249
Rai (10.1016/j.jiec.2022.03.032_b0190) 2012; 161
Urso (10.1016/j.jiec.2022.03.032_b0065) 2020; 305
Li (10.1016/j.jiec.2022.03.032_b0290) 2019; 6
Mishra (10.1016/j.jiec.2022.03.032_b0200) 2013; 329
Zhang (10.1016/j.jiec.2022.03.032_b0220) 2019; 731
Tong (10.1016/j.jiec.2022.03.032_b0210) 2013; 1
Wei (10.1016/j.jiec.2022.03.032_b0260) 2014; 192
Sun (10.1016/j.jiec.2022.03.032_b0175) 2006; 12
Jin (10.1016/j.jiec.2022.03.032_b0205) 2018; 5
Jin (10.1016/j.jiec.2022.03.032_b0230) 2016; 11
Song (10.1016/j.jiec.2022.03.032_b0295) 2018; 256
Qian (10.1016/j.jiec.2022.03.032_b0160) 2006; 18
Wang (10.1016/j.jiec.2022.03.032_b0250) 2020; 375
Huang (10.1016/j.jiec.2022.03.032_b0150) 2018; 44
Park (10.1016/j.jiec.2022.03.032_b0090) 2013; 5
Shima (10.1016/j.jiec.2022.03.032_b0195) 2017; 185
Chen (10.1016/j.jiec.2022.03.032_b0025) 2019; 280
Sun (10.1016/j.jiec.2022.03.032_b0280) 2020; 844
Liu (10.1016/j.jiec.2022.03.032_b0155) 2017; 249
Matsagar (10.1016/j.jiec.2022.03.032_b0120) 2021; 9
Dutta (10.1016/j.jiec.2022.03.032_b0115) 2017; 4
Li (10.1016/j.jiec.2022.03.032_b0170) 2014; 6
Choi (10.1016/j.jiec.2022.03.032_b0005) 2018; 124
Chen (10.1016/j.jiec.2022.03.032_b0165) 2018; 270
Xiong (10.1016/j.jiec.2022.03.032_b0020) 2017; 2
Cheng (10.1016/j.jiec.2022.03.032_b0055) 2020; 304
Wang (10.1016/j.jiec.2022.03.032_b0275) 2021; 332
Sanchez (10.1016/j.jiec.2022.03.032_b0215) 2013; 572
Caruso (10.1016/j.jiec.2022.03.032_b0300) 2001; 13
Xu (10.1016/j.jiec.2022.03.032_b0110) 2015; 5
Qu (10.1016/j.jiec.2022.03.032_b0145) 2016; 228
Saboor (10.1016/j.jiec.2022.03.032_b0285) 2017; 238
Seekaew (10.1016/j.jiec.2022.03.032_b0140) 2019; 279
Wang (10.1016/j.jiec.2022.03.032_b0095) 2019; 298
Sun (10.1016/j.jiec.2022.03.032_b0235) 2004; 43
Zhu (10.1016/j.jiec.2022.03.032_b0050) 2015; 221
Li (10.1016/j.jiec.2022.03.032_b0270) 2020; 7
Vuong (10.1016/j.jiec.2022.03.032_b0060) 2020; 107
Shen (10.1016/j.jiec.2022.03.032_b0035) 2016; 163
Özgür (10.1016/j.jiec.2022.03.032_b0085) 2005; 98
Kind (10.1016/j.jiec.2022.03.032_b0080) 2002; 14
Lee (10.1016/j.jiec.2022.03.032_b0010) 2018; 255
Gaidi (10.1016/j.jiec.2022.03.032_b0185) 2018; 22
Wang (10.1016/j.jiec.2022.03.032_b0255) 2021; 329
Wang (10.1016/j.jiec.2022.03.032_b0130) 2018; 57
Gu (10.1016/j.jiec.2022.03.032_b0135) 2015; 219
Li (10.1016/j.jiec.2022.03.032_b0180) 2010; 114
Konnerth (10.1016/j.jiec.2022.03.032_b0125) 2020; 416
Wang (10.1016/j.jiec.2022.03.032_b0040) 2018; 263
Nundy (10.1016/j.jiec.2022.03.032_b0225) 2020; 46
Cui (10.1016/j.jiec.2022.03.032_b0265) 2016; 227
Kim (10.1016/j.jiec.2022.03.032_b0045) 2017; 9
Han (10.1016/j.jiec.2022.03.032_b0100) 2021; 403
Gao (10.1016/j.jiec.2022.03.032_b0240) 2015; 5
References_xml – volume: 57
  start-page: 2894
  year: 2018
  end-page: 2898
  ident: b0130
  publication-title: Angew. Chem. Int. Ed.
– volume: 279
  start-page: 69
  year: 2019
  end-page: 78
  ident: b0140
  publication-title: Sens. Actuators B- Chem.
– volume: 305
  year: 2020
  ident: b0065
  publication-title: Sens. Actuators B- Chem.
– volume: 22
  start-page: 3631
  year: 2018
  end-page: 3637
  ident: b0185
  publication-title: J. Solid. State. Electr.
– volume: 270
  start-page: 207
  year: 2018
  end-page: 215
  ident: b0165
  publication-title: Sens. Actuators B- Chem.
– volume: 12
  start-page: 2039
  year: 2006
  end-page: 2047
  ident: b0175
  publication-title: Chem.-Eur. J.
– volume: 329
  start-page: 146
  year: 2013
  end-page: 152
  ident: b0200
  publication-title: J. Magn. Magn. Mater.
– volume: 270
  start-page: 119
  year: 2018
  end-page: 129
  ident: b0030
  publication-title: Sens. Actuators B- Chem.
– volume: 345
  year: 2021
  ident: b0105
  publication-title: Sens. Actuators B- Chem.
– volume: 329
  year: 2021
  ident: b0255
  publication-title: Sens. Actuators B- Chem.
– volume: 107
  year: 2020
  ident: b0060
  publication-title: Mat. Sci. Semicon. Proc.
– volume: 416
  start-page: 9790
  year: 2020
  end-page: 9794
  ident: b0125
  article-title: Coordin
  publication-title: Chem. Rev.
– volume: 44
  start-page: 12308
  year: 2018
  end-page: 12314
  ident: b0150
  publication-title: Ceram. Int.
– volume: 731
  year: 2019
  ident: b0220
  publication-title: Chem. Phys. Lett.
– volume: 114
  start-page: 890
  year: 2010
  end-page: 896
  ident: b0180
  publication-title: J. Phys. Chem. C
– volume: 192
  start-page: 480
  year: 2014
  end-page: 487
  ident: b0260
  publication-title: Sens. Actuators B- Chem.
– volume: 219
  start-page: 94
  year: 2015
  end-page: 99
  ident: b0135
  publication-title: Sens. Actuators B- Chem.
– volume: 1
  start-page: 454
  year: 2013
  end-page: 463
  ident: b0210
  publication-title: J. Mater. Chem. B
– volume: 221
  start-page: 350
  year: 2015
  end-page: 356
  ident: b0050
  publication-title: Sens. Actuators B- Chem.
– volume: 227
  start-page: 220
  year: 2016
  end-page: 226
  ident: b0265
  publication-title: Sens. Actuators B- Chem.
– volume: 2
  start-page: 679
  year: 2017
  end-page: 686
  ident: b0020
  publication-title: ACS Sens.
– volume: 332
  year: 2021
  ident: b0275
  publication-title: Sens. Actuators B- Chem.
– volume: 43
  start-page: 597
  year: 2004
  end-page: 601
  ident: b0235
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 526
  year: 2016
  ident: b0230
  publication-title: Nanoscale Res. Lett.
– volume: 5
  start-page: 30297
  year: 2015
  end-page: 30302
  ident: b0110
  publication-title: Rsc Adv.
– volume: 9
  start-page: 3703
  year: 2021
  end-page: 3728
  ident: b0120
  publication-title: J. Mater. Chem. A
– volume: 403
  year: 2021
  ident: b0100
  publication-title: J. Hazard. Mater.
– volume: 46
  start-page: 19354
  year: 2020
  end-page: 19364
  ident: b0225
  publication-title: Ceram. Int.
– volume: 844
  year: 2020
  ident: b0280
  publication-title: J. Alloy. Compd.
– volume: 249
  start-page: 590
  year: 2017
  end-page: 601
  ident: b0245
  publication-title: Sens. Actuators B- Chem.
– volume: 285
  start-page: 68
  year: 2019
  end-page: 75
  ident: b0070
  publication-title: Sens. Actuators B- Chem.
– volume: 124
  start-page: 817
  year: 2018
  ident: b0005
  publication-title: Appl. Phys. a-Mater.
– volume: 15
  start-page: 464
  year: 2003
  end-page: 466
  ident: b0075
  publication-title: Adv. Mater.
– volume: 18
  start-page: 2102
  year: 2006
  end-page: 2108
  ident: b0160
  publication-title: Chem. Mater.
– volume: 238
  start-page: 1070
  year: 2017
  end-page: 1083
  ident: b0285
  publication-title: Sens. Actuators B- Chem.
– volume: 256
  start-page: 374
  year: 2018
  end-page: 382
  ident: b0295
  publication-title: Sens. Actuators B- Chem.
– volume: 6
  start-page: 470
  year: 2019
  end-page: 506
  ident: b0290
  publication-title: Mater. Horiz.
– volume: 163
  start-page: 150
  year: 2016
  end-page: 153
  ident: b0035
  publication-title: Mater. Lett.
– volume: 298
  year: 2019
  ident: b0095
  publication-title: Sens. Actuators B- Chem.
– volume: 95
  start-page: 111
  year: 2003
  end-page: 115
  ident: b0015
  publication-title: Sens. Actuators B- Chem.
– volume: 263
  start-page: 218
  year: 2018
  end-page: 228
  ident: b0040
  publication-title: Sens. Actuators B- Chem.
– volume: 304
  year: 2020
  ident: b0055
  publication-title: Sens. Actuators B- Chem.
– volume: 5
  start-page: 4285
  year: 2013
  end-page: 4292
  ident: b0090
  publication-title: ACS Appl. Mater. Inter.
– volume: 280
  start-page: 151
  year: 2019
  end-page: 161
  ident: b0025
  publication-title: Sens. Actuators B- Chem.
– volume: 13
  start-page: 11
  year: 2001
  end-page: 22
  ident: b0300
  publication-title: Adv. Mater.
– volume: 4
  start-page: 522
  year: 2017
  end-page: 545
  ident: b0115
  publication-title: Mater. Horiz.
– volume: 7
  start-page: 2031
  year: 2020
  end-page: 2042
  ident: b0270
  publication-title: Inorg. Chem. Front.
– volume: 228
  start-page: 595
  year: 2016
  end-page: 604
  ident: b0145
  publication-title: Sens. Actuators B- Chem.
– volume: 572
  start-page: 68
  year: 2013
  end-page: 73
  ident: b0215
  publication-title: J. Alloy. Compd.
– volume: 98
  year: 2005
  ident: b0085
  publication-title: J. Appl. Phys.
– volume: 5
  year: 2018
  ident: b0205
  publication-title: Mater Res. Express.
– volume: 6
  start-page: 18661
  year: 2014
  end-page: 18667
  ident: b0170
  publication-title: ACS Appl. Mater. Inter.
– volume: 375
  start-page: 463
  year: 2020
  end-page: 471
  ident: b0250
  publication-title: Powder Technol.
– volume: 185
  start-page: 73
  year: 2017
  end-page: 82
  ident: b0195
  publication-title: Mater. Chem. Phys.
– volume: 255
  start-page: 1788
  year: 2018
  end-page: 1804
  ident: b0010
  publication-title: Sens. Actuators B- Chem.
– volume: 9
  start-page: 31667
  year: 2017
  end-page: 31682
  ident: b0045
  publication-title: ACS Appl. Mater. Inter.
– volume: 14
  start-page: 158
  year: 2002
  end-page: 160
  ident: b0080
  publication-title: Adv. Mater.
– volume: 161
  start-page: 748
  year: 2012
  end-page: 754
  ident: b0190
  publication-title: Sens. Actuators B- Chem.
– volume: 249
  start-page: 715
  year: 2017
  end-page: 724
  ident: b0155
  publication-title: Sens. Actuators B- Chem.
– volume: 5
  start-page: 4703
  year: 2015
  end-page: 4726
  ident: b0240
  publication-title: Catal. Sci. Technol.
– volume: 2
  start-page: 679
  year: 2017
  ident: 10.1016/j.jiec.2022.03.032_b0020
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00129
– volume: 305
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0065
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2019.127481
– volume: 219
  start-page: 94
  year: 2015
  ident: 10.1016/j.jiec.2022.03.032_b0135
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2015.04.119
– volume: 279
  start-page: 69
  year: 2019
  ident: 10.1016/j.jiec.2022.03.032_b0140
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2018.09.095
– volume: 161
  start-page: 748
  year: 2012
  ident: 10.1016/j.jiec.2022.03.032_b0190
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2011.11.027
– volume: 43
  start-page: 597
  year: 2004
  ident: 10.1016/j.jiec.2022.03.032_b0235
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200352386
– volume: 44
  start-page: 12308
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0150
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.04.018
– volume: 6
  start-page: 470
  year: 2019
  ident: 10.1016/j.jiec.2022.03.032_b0290
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01365A
– volume: 14
  start-page: 158
  year: 2002
  ident: 10.1016/j.jiec.2022.03.032_b0080
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
– volume: 124
  start-page: 817
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0005
  publication-title: Appl. Phys. a-Mater.
  doi: 10.1007/s00339-018-2244-7
– volume: 9
  start-page: 3703
  year: 2021
  ident: 10.1016/j.jiec.2022.03.032_b0120
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09706C
– volume: 255
  start-page: 1788
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0010
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2017.08.203
– volume: 4
  start-page: 522
  year: 2017
  ident: 10.1016/j.jiec.2022.03.032_b0115
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00500D
– volume: 270
  start-page: 207
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0165
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2018.05.005
– volume: 114
  start-page: 890
  year: 2010
  ident: 10.1016/j.jiec.2022.03.032_b0180
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp909478q
– volume: 256
  start-page: 374
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0295
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2017.10.081
– volume: 22
  start-page: 3631
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0185
  publication-title: J. Solid. State. Electr.
  doi: 10.1007/s10008-018-4062-4
– volume: 844
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0280
  publication-title: J. Alloy. Compd.
– volume: 403
  year: 2021
  ident: 10.1016/j.jiec.2022.03.032_b0100
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124093
– volume: 57
  start-page: 2894
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0130
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712959
– volume: 95
  start-page: 111
  year: 2003
  ident: 10.1016/j.jiec.2022.03.032_b0015
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/S0925-4005(03)00417-9
– volume: 185
  start-page: 73
  year: 2017
  ident: 10.1016/j.jiec.2022.03.032_b0195
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.10.007
– volume: 298
  year: 2019
  ident: 10.1016/j.jiec.2022.03.032_b0095
  publication-title: Sens. Actuators B- Chem.
– volume: 304
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0055
  publication-title: Sens. Actuators B- Chem.
– volume: 329
  year: 2021
  ident: 10.1016/j.jiec.2022.03.032_b0255
  publication-title: Sens. Actuators B- Chem.
– volume: 15
  start-page: 464
  year: 2003
  ident: 10.1016/j.jiec.2022.03.032_b0075
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390108
– volume: 5
  start-page: 30297
  year: 2015
  ident: 10.1016/j.jiec.2022.03.032_b0110
  publication-title: Rsc Adv.
  doi: 10.1039/C4RA16632A
– volume: 46
  start-page: 19354
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0225
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.278
– volume: 238
  start-page: 1070
  year: 2017
  ident: 10.1016/j.jiec.2022.03.032_b0285
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2016.07.127
– volume: 11
  start-page: 526
  year: 2016
  ident: 10.1016/j.jiec.2022.03.032_b0230
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1740-y
– volume: 249
  start-page: 715
  year: 2017
  ident: 10.1016/j.jiec.2022.03.032_b0155
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2017.04.190
– volume: 285
  start-page: 68
  year: 2019
  ident: 10.1016/j.jiec.2022.03.032_b0070
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2018.12.089
– volume: 332
  year: 2021
  ident: 10.1016/j.jiec.2022.03.032_b0275
  publication-title: Sens. Actuators B- Chem.
– volume: 18
  start-page: 2102
  year: 2006
  ident: 10.1016/j.jiec.2022.03.032_b0160
  publication-title: Chem. Mater.
  doi: 10.1021/cm052848y
– volume: 227
  start-page: 220
  year: 2016
  ident: 10.1016/j.jiec.2022.03.032_b0265
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2015.12.010
– volume: 228
  start-page: 595
  year: 2016
  ident: 10.1016/j.jiec.2022.03.032_b0145
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2016.01.077
– volume: 7
  start-page: 2031
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0270
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00119H
– volume: 1
  start-page: 454
  year: 2013
  ident: 10.1016/j.jiec.2022.03.032_b0210
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C2TB00132B
– volume: 13
  start-page: 11
  year: 2001
  ident: 10.1016/j.jiec.2022.03.032_b0300
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
– volume: 107
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0060
  publication-title: Mat. Sci. Semicon. Proc.
  doi: 10.1016/j.mssp.2019.104861
– volume: 12
  start-page: 2039
  year: 2006
  ident: 10.1016/j.jiec.2022.03.032_b0175
  publication-title: Chem.-Eur. J.
  doi: 10.1002/chem.200500660
– volume: 5
  start-page: 4285
  year: 2013
  ident: 10.1016/j.jiec.2022.03.032_b0090
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am400500a
– volume: 416
  start-page: 9790
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0125
  article-title: Coordin
  publication-title: Chem. Rev.
– volume: 731
  year: 2019
  ident: 10.1016/j.jiec.2022.03.032_b0220
  publication-title: Chem. Phys. Lett.
– volume: 163
  start-page: 150
  year: 2016
  ident: 10.1016/j.jiec.2022.03.032_b0035
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.10.067
– volume: 270
  start-page: 119
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0030
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2018.05.027
– volume: 5
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0205
  publication-title: Mater Res. Express.
– volume: 572
  start-page: 68
  year: 2013
  ident: 10.1016/j.jiec.2022.03.032_b0215
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2013.03.258
– volume: 9
  start-page: 31667
  year: 2017
  ident: 10.1016/j.jiec.2022.03.032_b0045
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b02533
– volume: 192
  start-page: 480
  year: 2014
  ident: 10.1016/j.jiec.2022.03.032_b0260
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2013.11.034
– volume: 345
  year: 2021
  ident: 10.1016/j.jiec.2022.03.032_b0105
  publication-title: Sens. Actuators B- Chem.
– volume: 221
  start-page: 350
  year: 2015
  ident: 10.1016/j.jiec.2022.03.032_b0050
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2015.06.115
– volume: 280
  start-page: 151
  year: 2019
  ident: 10.1016/j.jiec.2022.03.032_b0025
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2018.10.063
– volume: 249
  start-page: 590
  year: 2017
  ident: 10.1016/j.jiec.2022.03.032_b0245
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2017.03.149
– volume: 5
  start-page: 4703
  year: 2015
  ident: 10.1016/j.jiec.2022.03.032_b0240
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00879D
– volume: 329
  start-page: 146
  year: 2013
  ident: 10.1016/j.jiec.2022.03.032_b0200
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2012.09.058
– volume: 263
  start-page: 218
  year: 2018
  ident: 10.1016/j.jiec.2022.03.032_b0040
  publication-title: Sens. Actuators B- Chem.
  doi: 10.1016/j.snb.2018.02.105
– volume: 98
  year: 2005
  ident: 10.1016/j.jiec.2022.03.032_b0085
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1992666
– volume: 375
  start-page: 463
  year: 2020
  ident: 10.1016/j.jiec.2022.03.032_b0250
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.08.014
– volume: 6
  start-page: 18661
  year: 2014
  ident: 10.1016/j.jiec.2022.03.032_b0170
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am5057322
SSID ssj0060386
ssib009049966
Score 2.3803084
Snippet [Display omitted] •Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates...
In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnationand high-temperature calcination with carbon microspheres...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 542
SubjectTerms Carbon microsphere
Gas sensing
Nitrogen dioxide
Room-temperature
Snowflake-like ZnO
화학공학
Title Synthesis of carbon microsphere-assisted snowflake-like ZnO nanomaterials for selective detection of NO2 at room temperature
URI https://dx.doi.org/10.1016/j.jiec.2022.03.032
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002855939
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2022, 110(0), , pp.542-551
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qfdEHabVitS0L-ibbS_ZHcnkspeWqcH2ohcOXZTeZlfTOTblERBD_dmeSXGkf7IMQCAmzS9gZZr4s337D2Ic8V5A4yAWWXie0z7woHG3iIHYtclWQphSxLebZ7Fp_WpjFFjvdnIUhWuWY-4ec3mfr8c1kXM3JbV1PrlJEDgjIF1L2OlGUh7XOKcqP_9zRPLJE9d0eyViQ9XhwZuB43dRAMoZS9kKnSv6rOD2J63Cv7JzvsBcjXuQnwyftsi2IL9nzeyqCr9jvq18RYVxbt7wJvHRr30T-nYh2LWkGgEB8TM6seBubn2HlliBW9RL413jJo4sNgtYhDjkiWN72nXEwCfIKup6oFWne-aXkruMEtDnpWY1izHvs-vzsy-lMjE0VRCkz0wljQJWqkqBM4lUCRVl4H6YVicKEkBrIynKaGZAVTJ1ylTTeF4BlzCiPWFKr12w7NhHeMG7STMoAFQ6rdKYTJ0OhA8nzpLnLHeyzdLOathwVx6nxxcpuqGU3ljxgyQM2UXjJffbxbsztoLfxqLXZOMk-iBqLBeHRce_Ro3ZZ1pbkten-rbHLtcWfiAuScU4LreTb_5z9HXtGT0Qok-aAbXfrH3CI0KXzR31sHrGnJxefZ_O_3h7uNw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF7a-qA-iD-x_lxQnyReMptNLg8-iFrubL0-tIXDl3U3mUh656ZcIqUg_lP-g84kuVIf7INQCASS7LLMTGa-DV--EeJlmioMLaYBlV4bxC5xQWb5Iw5h1yxVGWtKMdtilkyO4k9zPd8Qv9f_wjCtcsj9fU7vsvVwZTRYc3RSVaODiJADAfI5QKcTBQOzchfPTmnf1rydfiAnvwLY-Xj4fhIMrQWCHBLdBlqjylUBqHToVIhZnjlXjguWRinLSGOS5-NEIxQ4tsoWoJ3LkJK5Vo4QVaxo3k1xLaZ0wW0T3vw655UkoeraS_LqAl7e8KdOTyo7rpB1EwE6ZVUF_6qGm35VXqhzO7fFrQGgyne9De6IDfR3xc0LsoX3xM-DM0-4sakaWZcytytXe_mdmX0NixRgQICco6eQja9Py6VdYLCsFii_-H3pra8JJfeBLwkyy6ZrxUNZVxbYdswwz_PO9kHaVjKylyygNag_3xdHV2LqB2LL1x4fCqmjBKDEgoYVcRKHFsosLlkPKEptanFbRGtrmnyQOOdOG0uz5rIdG_aAYQ-YUNEB2-L1-ZiTXuDj0qf12knmrzA1VIEuHfeCPGoWeWVYz5vP32qzWBnatUxZNzrKYgWP_nP25-L65PDzntmbznYfixt8h9lsoJ-IrXb1A58Sbmrdsy5Opfh61S_GH1nxKnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+carbon+microsphere-assisted+snowflake-like+ZnO+nanomaterials+for+selective+detection+of+NO2+at+room+temperature&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Qiaoyan+Li&rft.au=Yahan+Cui&rft.au=Jiasheng+Lin&rft.au=Chun+Zhao&rft.date=2022-06-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=542&rft.epage=551&rft_id=info:doi/10.1016%2Fj.jiec.2022.03.032&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10019432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon