Synthesis of carbon microsphere-assisted snowflake-like ZnO nanomaterials for selective detection of NO2 at room temperature
[Display omitted] •Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates the diffusion and adsorption of gases.•The large specific surface area increased the chemisorbed oxygen content on the ZnO-25 surface.•The int...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 110; pp. 542 - 551 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.06.2022
한국공업화학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates the diffusion and adsorption of gases.•The large specific surface area increased the chemisorbed oxygen content on the ZnO-25 surface.•The introduction of carbon microspheres improved the response of ZnO for NO2 at room temperature.
In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnation and high-temperature calcination with carbon microspheres as the sacrificial template. The effects of ethanol concentration in aqueous solution on the microstructure and sensing properties of ZnO nanomaterials were investigated. The results showed that using 25 % ethanol-containing aqueous solution as impregnation solution, snowflake-like ZnO nanomaterials (ZnO-25) showed excellent sensing performance for NO2 at room temperature. It is mainly attributable to the rich channels and large specific surface area of the snowflake-like ZnO, which facilitates the rapid diffusion of the target gas. A large amount of chemisorbed oxygen can promote the surface reaction. In addition, the unremoved carbon during calcination promotes the electrical properties of ZnO. This strategy will provide a new sight on developing a type of sensitive NO2 gas sensing device working at room temperature. |
---|---|
AbstractList | In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnationand high-temperature calcination with carbon microspheres as the sacrificial template. The effects ofethanol concentration in aqueous solution on the microstructure and sensing properties of ZnO nanomaterialswere investigated. The results showed that using 25 % ethanol-containing aqueous solution asimpregnation solution, snowflake-like ZnO nanomaterials (ZnO-25) showed excellent sensing performancefor NO2 at room temperature. It is mainly attributable to the rich channels and large specific surfacearea of the snowflake-like ZnO, which facilitates the rapid diffusion of the target gas. A large amountof chemisorbed oxygen can promote the surface reaction. In addition, the unremoved carbon during calcinationpromotes the electrical properties of ZnO. This strategy will provide a new sight on developing atype of sensitive NO2 gas sensing device working at room temperature. KCI Citation Count: 1 [Display omitted] •Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates the diffusion and adsorption of gases.•The large specific surface area increased the chemisorbed oxygen content on the ZnO-25 surface.•The introduction of carbon microspheres improved the response of ZnO for NO2 at room temperature. In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnation and high-temperature calcination with carbon microspheres as the sacrificial template. The effects of ethanol concentration in aqueous solution on the microstructure and sensing properties of ZnO nanomaterials were investigated. The results showed that using 25 % ethanol-containing aqueous solution as impregnation solution, snowflake-like ZnO nanomaterials (ZnO-25) showed excellent sensing performance for NO2 at room temperature. It is mainly attributable to the rich channels and large specific surface area of the snowflake-like ZnO, which facilitates the rapid diffusion of the target gas. A large amount of chemisorbed oxygen can promote the surface reaction. In addition, the unremoved carbon during calcination promotes the electrical properties of ZnO. This strategy will provide a new sight on developing a type of sensitive NO2 gas sensing device working at room temperature. |
Author | Cui, Yahan Lin, Jiasheng Li, Qiaoyan Zhao, Chun Ding, Lan |
Author_xml | – sequence: 1 givenname: Qiaoyan surname: Li fullname: Li, Qiaoyan organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China – sequence: 2 givenname: Yahan surname: Cui fullname: Cui, Yahan organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China – sequence: 3 givenname: Jiasheng surname: Lin fullname: Lin, Jiasheng organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China – sequence: 4 givenname: Chun surname: Zhao fullname: Zhao, Chun organization: State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China – sequence: 5 givenname: Lan surname: Ding fullname: Ding, Lan email: dinglan@jlu.edu.cn organization: Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002855939$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kMlKBDEURYMoOP6Aq6yFajN0xRS4EXECscEBxE1IpV403VVJk8QWwY83ZbtyITx4D3LPhZxdtOmDB4QOKZlQQsXxfDJ3YCaMMDYhvAzbQDtUnojqpJk-b5abMVERKZ630W5Kc0IE4VLsoK-HT5_fILmEg8VGxzZ4PDgTQ1q-QYRKp_KWocPJhw_b6wVUvVsAfvEz7LUPg84Qne4TtiHiBD2Y7FaAO8jjVdpK792MYZ1xDGHAGYYlRJ3fI-yjLVtIOPjde-jp8uLx_Lq6nV3dnJ_dVoaJOld1DdzwjgGvScsJNKZpWys7LiWxltYgjJGiBtaB1Fx3rG7bBghlNW-bhk75Hjpa9_po1cI4FbT72a9BLaI6u3-8UZQQ2kw5K2G5Do8OUgSrjMt6_EmO2vUlqEblaq5G5WpUrggvM6LsD7qMbtDx83_odA1BMbByEFUyDryBzsViUHXB_Yd_A37qn3Y |
CitedBy_id | crossref_primary_10_1016_j_mtsust_2024_100764 crossref_primary_10_1002_crat_202300013 crossref_primary_10_1016_j_apsusc_2023_158551 crossref_primary_10_1016_j_jiec_2022_08_035 crossref_primary_10_18596_jotcsa_1389331 crossref_primary_10_1016_j_apsusc_2024_161138 crossref_primary_10_1007_s10854_024_12733_y crossref_primary_10_1016_j_jiec_2025_01_053 crossref_primary_10_1016_j_cej_2025_160923 crossref_primary_10_1021_acsomega_3c07280 crossref_primary_10_1002_adfm_202311300 crossref_primary_10_1016_j_snb_2022_132964 crossref_primary_10_1016_j_snb_2024_136179 crossref_primary_10_1016_j_snb_2024_135478 |
Cites_doi | 10.1021/acssensors.7b00129 10.1016/j.snb.2019.127481 10.1016/j.snb.2015.04.119 10.1016/j.snb.2018.09.095 10.1016/j.snb.2011.11.027 10.1002/anie.200352386 10.1016/j.ceramint.2018.04.018 10.1039/C8MH01365A 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W 10.1007/s00339-018-2244-7 10.1039/D0TA09706C 10.1016/j.snb.2017.08.203 10.1039/C6MH00500D 10.1016/j.snb.2018.05.005 10.1021/jp909478q 10.1016/j.snb.2017.10.081 10.1007/s10008-018-4062-4 10.1016/j.jhazmat.2020.124093 10.1002/anie.201712959 10.1016/S0925-4005(03)00417-9 10.1016/j.matchemphys.2016.10.007 10.1002/adma.200390108 10.1039/C4RA16632A 10.1016/j.ceramint.2020.04.278 10.1016/j.snb.2016.07.127 10.1186/s11671-016-1740-y 10.1016/j.snb.2017.04.190 10.1016/j.snb.2018.12.089 10.1021/cm052848y 10.1016/j.snb.2015.12.010 10.1016/j.snb.2016.01.077 10.1039/D0QI00119H 10.1039/C2TB00132B 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N 10.1016/j.mssp.2019.104861 10.1002/chem.200500660 10.1021/am400500a 10.1016/j.matlet.2015.10.067 10.1016/j.snb.2018.05.027 10.1016/j.jallcom.2013.03.258 10.1021/acsami.7b02533 10.1016/j.snb.2013.11.034 10.1016/j.snb.2015.06.115 10.1016/j.snb.2018.10.063 10.1016/j.snb.2017.03.149 10.1039/C5CY00879D 10.1016/j.jmmm.2012.09.058 10.1016/j.snb.2018.02.105 10.1063/1.1992666 10.1016/j.powtec.2020.08.014 10.1021/am5057322 |
ContentType | Journal Article |
Copyright | 2022 The Korean Society of Industrial and Engineering Chemistry |
Copyright_xml | – notice: 2022 The Korean Society of Industrial and Engineering Chemistry |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2022.03.032 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 551 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10019432 10_1016_j_jiec_2022_03_032 S1226086X22001642 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION EJD HZ~ MZR OK1 RIG SSH ZY4 ZZE 85H ABPIF ABTAH ACYCR AJBFU |
ID | FETCH-LOGICAL-c265t-55e3c3d2e350b30e9c9bbf8d3880ff15e6cc865e2de8a3ad25bb9e01253b99143 |
IEDL.DBID | .~1 |
ISSN | 1226-086X |
IngestDate | Tue Nov 21 21:43:50 EST 2023 Tue Jul 01 03:34:24 EDT 2025 Thu Apr 24 22:59:57 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas sensing Snowflake-like ZnO Nitrogen dioxide Room-temperature Carbon microsphere |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-55e3c3d2e350b30e9c9bbf8d3880ff15e6cc865e2de8a3ad25bb9e01253b99143 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10019432 crossref_citationtrail_10_1016_j_jiec_2022_03_032 crossref_primary_10_1016_j_jiec_2022_03_032 elsevier_sciencedirect_doi_10_1016_j_jiec_2022_03_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-25 |
PublicationDateYYYYMMDD | 2022-06-25 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2022 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Wang, Yao, Xu, Wu, Lin, Zheng, Feng, Gao (b0275) 2021; 332 Xiong, Lu, Ding, Zhu, Li, Ling, Xue (b0020) 2017; 2 Seekaew, Wisitsoraat, Phokharatkul, Wongchoosuk (b0140) 2019; 279 Caruso (b0300) 2001; 13 Park, An, Mun, Lee (b0090) 2013; 5 Jin, Zhu, Jian, Wei, Gao, Zhang, Zheng (b0205) 2018; 5 Gao, Zhu, Ong, Wang, Ho (b0240) 2015; 5 Saboor, Khodadadi, Mortazavi, Asgaria (b0285) 2017; 238 Kind, Yan, Messer, Law, Yang (b0080) 2002; 14 Tong, Du, Liang, Hu, Wu, Guan, Hu (b0210) 2013; 1 Shima, Hossain, Lee, Son, Hahn (b0195) 2017; 185 Li, He, Bai, Liu, Ikram, Lv, Ullah, Khan, Kan, Shi (b0270) 2020; 7 Zhang, Li (b0220) 2019; 731 Song, Qiao, Sun, Tan, Ma, Kang, Sun, Huang, Wang (b0295) 2018; 256 Vuong, Phuoc, Hien, Chien (b0060) 2020; 107 Cui, Shi, Xie, Wang, Lin (b0265) 2016; 227 Li, Wang (b0180) 2010; 114 Han, Li, Liu, Li, Shao, Ri, Ma, Liu (b0100) 2021; 403 Rai, Yu (b0190) 2012; 161 Gaidi, Salem, Akir, Massoudi, Ghrib, Litaiem, Khirouni (b0185) 2018; 22 Xu, Li, Zhang, Feng, Wang, Liu, Sun, Sun, Lu (b0110) 2015; 5 Sun, Li (b0235) 2004; 43 Zhu, Wang, Duan, Zhang, Li, Liu, Xu, Cai (b0050) 2015; 221 Liu, Li, Zhang, Xiao, Gao, Yang, Wang, Lu (b0155) 2017; 249 Hu, Zou, Su, Li, Ye, Cai, Kong, Yang, Zhang (b0030) 2018; 270 Dutta, Kim, Ide, Kim, Hossain, Bando, Yamauchi, Wu (b0115) 2017; 4 Qian, Yu, Luo, Gong, Fei, Liu (b0160) 2006; 18 Sun, Yu, Dong, Xia, Yang (b0280) 2020; 844 Wang, Men, Zhang, Gu, Han (b0040) 2018; 263 Mishra, Mohapatra, Sharma, Chattarjee, Singh, Varma, Behera, Nayak, Entel (b0200) 2013; 329 Lee, Lee, Hong, Lee, Yoon (b0010) 2018; 255 Chen, Wang, Xiang (b0165) 2018; 270 Choi, Lee, Lee, Lee (b0005) 2018; 124 Sun, Sun, Han, Pan, Liu, Bai, Feng, Luo, Li, Chen (b0070) 2019; 285 Vayssieres (b0075) 2003; 15 Wang, Dai, Li, Bai, Liu, Li, Wang, Liu, Lu (b0255) 2021; 329 Kim, Kwon, Mirzaei, Kang, Choi, Bang, Kim (b0245) 2017; 249 Cheng, Wu, Liu, Zhao, Gao, Li, Zhang, Yan, Geyu (b0055) 2020; 304 Matsagar, Yang, Dutta, Ok, Wu (b0120) 2021; 9 Qu, Wang, Chen, Han, Lin (b0145) 2016; 228 Chen, Yu, Du, Hu, Liu, Ma, Jia, Fan (b0105) 2021; 345 Nundy, Eom, Song, Park, Lee (b0225) 2020; 46 Wei, Wang, Zhang, Zhou (b0260) 2014; 192 Sun, Liu, Li (b0175) 2006; 12 Wang, Shen, Li, Xia, Yang (b0095) 2019; 298 Jin, Ge, Jian, Wei (b0230) 2016; 11 Wang, Xu, Ding, Chang, Zhang, Yamauchi, Wu (b0130) 2018; 57 Li, Zhou, Guo, Wang, Liu, Sun, Liu, Lu (b0170) 2014; 6 Li, Li, Wu, Wang, Luo, Torun, Hu, Yang, Grundmann, Liu, Fu (b0290) 2019; 6 Urso, Leonardi, Neri, Petralia, Conoci, Priolo, Mirabella (b0065) 2020; 305 Huang, Tsai, Lin, Weng, Chang, Chiu, Lin, Lin, Lin, Chen (b0150) 2018; 44 Özgür, Alivov, Liu, Teke, Reshchikov, Doğan, Avrutin, Cho, Morkoç (b0085) 2005; 98 Tamaki, Hayashi, Yamamoto, Matsuoka (b0015) 2003; 95 Konnerth, Matsagar, Chen, Prechtl, Shieh, Wu (b0125) 2020; 416 Gu, Nie, Han, Wang (b0135) 2015; 219 Wang, Na, Zhang, Deng, Huo, Gao (b0250) 2020; 375 Chen, Shen, Zhou, Zhao, Zhong, Li, Han, Wei, Meng (b0025) 2019; 280 Kim, Na, Kwon, Kang, Choi, Bang, Wu, Kim (b0045) 2017; 9 Sanchez, Takimi, Rodembusch, Bergmann (b0215) 2013; 572 Shen, Chen, Wang, Gong, Chen, Liu, Wei, Meng, San (b0035) 2016; 163 Chen (10.1016/j.jiec.2022.03.032_b0105) 2021; 345 Tamaki (10.1016/j.jiec.2022.03.032_b0015) 2003; 95 Hu (10.1016/j.jiec.2022.03.032_b0030) 2018; 270 Sun (10.1016/j.jiec.2022.03.032_b0070) 2019; 285 Vayssieres (10.1016/j.jiec.2022.03.032_b0075) 2003; 15 Kim (10.1016/j.jiec.2022.03.032_b0245) 2017; 249 Rai (10.1016/j.jiec.2022.03.032_b0190) 2012; 161 Urso (10.1016/j.jiec.2022.03.032_b0065) 2020; 305 Li (10.1016/j.jiec.2022.03.032_b0290) 2019; 6 Mishra (10.1016/j.jiec.2022.03.032_b0200) 2013; 329 Zhang (10.1016/j.jiec.2022.03.032_b0220) 2019; 731 Tong (10.1016/j.jiec.2022.03.032_b0210) 2013; 1 Wei (10.1016/j.jiec.2022.03.032_b0260) 2014; 192 Sun (10.1016/j.jiec.2022.03.032_b0175) 2006; 12 Jin (10.1016/j.jiec.2022.03.032_b0205) 2018; 5 Jin (10.1016/j.jiec.2022.03.032_b0230) 2016; 11 Song (10.1016/j.jiec.2022.03.032_b0295) 2018; 256 Qian (10.1016/j.jiec.2022.03.032_b0160) 2006; 18 Wang (10.1016/j.jiec.2022.03.032_b0250) 2020; 375 Huang (10.1016/j.jiec.2022.03.032_b0150) 2018; 44 Park (10.1016/j.jiec.2022.03.032_b0090) 2013; 5 Shima (10.1016/j.jiec.2022.03.032_b0195) 2017; 185 Chen (10.1016/j.jiec.2022.03.032_b0025) 2019; 280 Sun (10.1016/j.jiec.2022.03.032_b0280) 2020; 844 Liu (10.1016/j.jiec.2022.03.032_b0155) 2017; 249 Matsagar (10.1016/j.jiec.2022.03.032_b0120) 2021; 9 Dutta (10.1016/j.jiec.2022.03.032_b0115) 2017; 4 Li (10.1016/j.jiec.2022.03.032_b0170) 2014; 6 Choi (10.1016/j.jiec.2022.03.032_b0005) 2018; 124 Chen (10.1016/j.jiec.2022.03.032_b0165) 2018; 270 Xiong (10.1016/j.jiec.2022.03.032_b0020) 2017; 2 Cheng (10.1016/j.jiec.2022.03.032_b0055) 2020; 304 Wang (10.1016/j.jiec.2022.03.032_b0275) 2021; 332 Sanchez (10.1016/j.jiec.2022.03.032_b0215) 2013; 572 Caruso (10.1016/j.jiec.2022.03.032_b0300) 2001; 13 Xu (10.1016/j.jiec.2022.03.032_b0110) 2015; 5 Qu (10.1016/j.jiec.2022.03.032_b0145) 2016; 228 Saboor (10.1016/j.jiec.2022.03.032_b0285) 2017; 238 Seekaew (10.1016/j.jiec.2022.03.032_b0140) 2019; 279 Wang (10.1016/j.jiec.2022.03.032_b0095) 2019; 298 Sun (10.1016/j.jiec.2022.03.032_b0235) 2004; 43 Zhu (10.1016/j.jiec.2022.03.032_b0050) 2015; 221 Li (10.1016/j.jiec.2022.03.032_b0270) 2020; 7 Vuong (10.1016/j.jiec.2022.03.032_b0060) 2020; 107 Shen (10.1016/j.jiec.2022.03.032_b0035) 2016; 163 Özgür (10.1016/j.jiec.2022.03.032_b0085) 2005; 98 Kind (10.1016/j.jiec.2022.03.032_b0080) 2002; 14 Lee (10.1016/j.jiec.2022.03.032_b0010) 2018; 255 Gaidi (10.1016/j.jiec.2022.03.032_b0185) 2018; 22 Wang (10.1016/j.jiec.2022.03.032_b0255) 2021; 329 Wang (10.1016/j.jiec.2022.03.032_b0130) 2018; 57 Gu (10.1016/j.jiec.2022.03.032_b0135) 2015; 219 Li (10.1016/j.jiec.2022.03.032_b0180) 2010; 114 Konnerth (10.1016/j.jiec.2022.03.032_b0125) 2020; 416 Wang (10.1016/j.jiec.2022.03.032_b0040) 2018; 263 Nundy (10.1016/j.jiec.2022.03.032_b0225) 2020; 46 Cui (10.1016/j.jiec.2022.03.032_b0265) 2016; 227 Kim (10.1016/j.jiec.2022.03.032_b0045) 2017; 9 Han (10.1016/j.jiec.2022.03.032_b0100) 2021; 403 Gao (10.1016/j.jiec.2022.03.032_b0240) 2015; 5 |
References_xml | – volume: 57 start-page: 2894 year: 2018 end-page: 2898 ident: b0130 publication-title: Angew. Chem. Int. Ed. – volume: 279 start-page: 69 year: 2019 end-page: 78 ident: b0140 publication-title: Sens. Actuators B- Chem. – volume: 305 year: 2020 ident: b0065 publication-title: Sens. Actuators B- Chem. – volume: 22 start-page: 3631 year: 2018 end-page: 3637 ident: b0185 publication-title: J. Solid. State. Electr. – volume: 270 start-page: 207 year: 2018 end-page: 215 ident: b0165 publication-title: Sens. Actuators B- Chem. – volume: 12 start-page: 2039 year: 2006 end-page: 2047 ident: b0175 publication-title: Chem.-Eur. J. – volume: 329 start-page: 146 year: 2013 end-page: 152 ident: b0200 publication-title: J. Magn. Magn. Mater. – volume: 270 start-page: 119 year: 2018 end-page: 129 ident: b0030 publication-title: Sens. Actuators B- Chem. – volume: 345 year: 2021 ident: b0105 publication-title: Sens. Actuators B- Chem. – volume: 329 year: 2021 ident: b0255 publication-title: Sens. Actuators B- Chem. – volume: 107 year: 2020 ident: b0060 publication-title: Mat. Sci. Semicon. Proc. – volume: 416 start-page: 9790 year: 2020 end-page: 9794 ident: b0125 article-title: Coordin publication-title: Chem. Rev. – volume: 44 start-page: 12308 year: 2018 end-page: 12314 ident: b0150 publication-title: Ceram. Int. – volume: 731 year: 2019 ident: b0220 publication-title: Chem. Phys. Lett. – volume: 114 start-page: 890 year: 2010 end-page: 896 ident: b0180 publication-title: J. Phys. Chem. C – volume: 192 start-page: 480 year: 2014 end-page: 487 ident: b0260 publication-title: Sens. Actuators B- Chem. – volume: 219 start-page: 94 year: 2015 end-page: 99 ident: b0135 publication-title: Sens. Actuators B- Chem. – volume: 1 start-page: 454 year: 2013 end-page: 463 ident: b0210 publication-title: J. Mater. Chem. B – volume: 221 start-page: 350 year: 2015 end-page: 356 ident: b0050 publication-title: Sens. Actuators B- Chem. – volume: 227 start-page: 220 year: 2016 end-page: 226 ident: b0265 publication-title: Sens. Actuators B- Chem. – volume: 2 start-page: 679 year: 2017 end-page: 686 ident: b0020 publication-title: ACS Sens. – volume: 332 year: 2021 ident: b0275 publication-title: Sens. Actuators B- Chem. – volume: 43 start-page: 597 year: 2004 end-page: 601 ident: b0235 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 526 year: 2016 ident: b0230 publication-title: Nanoscale Res. Lett. – volume: 5 start-page: 30297 year: 2015 end-page: 30302 ident: b0110 publication-title: Rsc Adv. – volume: 9 start-page: 3703 year: 2021 end-page: 3728 ident: b0120 publication-title: J. Mater. Chem. A – volume: 403 year: 2021 ident: b0100 publication-title: J. Hazard. Mater. – volume: 46 start-page: 19354 year: 2020 end-page: 19364 ident: b0225 publication-title: Ceram. Int. – volume: 844 year: 2020 ident: b0280 publication-title: J. Alloy. Compd. – volume: 249 start-page: 590 year: 2017 end-page: 601 ident: b0245 publication-title: Sens. Actuators B- Chem. – volume: 285 start-page: 68 year: 2019 end-page: 75 ident: b0070 publication-title: Sens. Actuators B- Chem. – volume: 124 start-page: 817 year: 2018 ident: b0005 publication-title: Appl. Phys. a-Mater. – volume: 15 start-page: 464 year: 2003 end-page: 466 ident: b0075 publication-title: Adv. Mater. – volume: 18 start-page: 2102 year: 2006 end-page: 2108 ident: b0160 publication-title: Chem. Mater. – volume: 238 start-page: 1070 year: 2017 end-page: 1083 ident: b0285 publication-title: Sens. Actuators B- Chem. – volume: 256 start-page: 374 year: 2018 end-page: 382 ident: b0295 publication-title: Sens. Actuators B- Chem. – volume: 6 start-page: 470 year: 2019 end-page: 506 ident: b0290 publication-title: Mater. Horiz. – volume: 163 start-page: 150 year: 2016 end-page: 153 ident: b0035 publication-title: Mater. Lett. – volume: 298 year: 2019 ident: b0095 publication-title: Sens. Actuators B- Chem. – volume: 95 start-page: 111 year: 2003 end-page: 115 ident: b0015 publication-title: Sens. Actuators B- Chem. – volume: 263 start-page: 218 year: 2018 end-page: 228 ident: b0040 publication-title: Sens. Actuators B- Chem. – volume: 304 year: 2020 ident: b0055 publication-title: Sens. Actuators B- Chem. – volume: 5 start-page: 4285 year: 2013 end-page: 4292 ident: b0090 publication-title: ACS Appl. Mater. Inter. – volume: 280 start-page: 151 year: 2019 end-page: 161 ident: b0025 publication-title: Sens. Actuators B- Chem. – volume: 13 start-page: 11 year: 2001 end-page: 22 ident: b0300 publication-title: Adv. Mater. – volume: 4 start-page: 522 year: 2017 end-page: 545 ident: b0115 publication-title: Mater. Horiz. – volume: 7 start-page: 2031 year: 2020 end-page: 2042 ident: b0270 publication-title: Inorg. Chem. Front. – volume: 228 start-page: 595 year: 2016 end-page: 604 ident: b0145 publication-title: Sens. Actuators B- Chem. – volume: 572 start-page: 68 year: 2013 end-page: 73 ident: b0215 publication-title: J. Alloy. Compd. – volume: 98 year: 2005 ident: b0085 publication-title: J. Appl. Phys. – volume: 5 year: 2018 ident: b0205 publication-title: Mater Res. Express. – volume: 6 start-page: 18661 year: 2014 end-page: 18667 ident: b0170 publication-title: ACS Appl. Mater. Inter. – volume: 375 start-page: 463 year: 2020 end-page: 471 ident: b0250 publication-title: Powder Technol. – volume: 185 start-page: 73 year: 2017 end-page: 82 ident: b0195 publication-title: Mater. Chem. Phys. – volume: 255 start-page: 1788 year: 2018 end-page: 1804 ident: b0010 publication-title: Sens. Actuators B- Chem. – volume: 9 start-page: 31667 year: 2017 end-page: 31682 ident: b0045 publication-title: ACS Appl. Mater. Inter. – volume: 14 start-page: 158 year: 2002 end-page: 160 ident: b0080 publication-title: Adv. Mater. – volume: 161 start-page: 748 year: 2012 end-page: 754 ident: b0190 publication-title: Sens. Actuators B- Chem. – volume: 249 start-page: 715 year: 2017 end-page: 724 ident: b0155 publication-title: Sens. Actuators B- Chem. – volume: 5 start-page: 4703 year: 2015 end-page: 4726 ident: b0240 publication-title: Catal. Sci. Technol. – volume: 2 start-page: 679 year: 2017 ident: 10.1016/j.jiec.2022.03.032_b0020 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00129 – volume: 305 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0065 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2019.127481 – volume: 219 start-page: 94 year: 2015 ident: 10.1016/j.jiec.2022.03.032_b0135 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2015.04.119 – volume: 279 start-page: 69 year: 2019 ident: 10.1016/j.jiec.2022.03.032_b0140 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2018.09.095 – volume: 161 start-page: 748 year: 2012 ident: 10.1016/j.jiec.2022.03.032_b0190 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2011.11.027 – volume: 43 start-page: 597 year: 2004 ident: 10.1016/j.jiec.2022.03.032_b0235 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200352386 – volume: 44 start-page: 12308 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0150 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.04.018 – volume: 6 start-page: 470 year: 2019 ident: 10.1016/j.jiec.2022.03.032_b0290 publication-title: Mater. Horiz. doi: 10.1039/C8MH01365A – volume: 14 start-page: 158 year: 2002 ident: 10.1016/j.jiec.2022.03.032_b0080 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W – volume: 124 start-page: 817 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0005 publication-title: Appl. Phys. a-Mater. doi: 10.1007/s00339-018-2244-7 – volume: 9 start-page: 3703 year: 2021 ident: 10.1016/j.jiec.2022.03.032_b0120 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09706C – volume: 255 start-page: 1788 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0010 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2017.08.203 – volume: 4 start-page: 522 year: 2017 ident: 10.1016/j.jiec.2022.03.032_b0115 publication-title: Mater. Horiz. doi: 10.1039/C6MH00500D – volume: 270 start-page: 207 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0165 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2018.05.005 – volume: 114 start-page: 890 year: 2010 ident: 10.1016/j.jiec.2022.03.032_b0180 publication-title: J. Phys. Chem. C doi: 10.1021/jp909478q – volume: 256 start-page: 374 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0295 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2017.10.081 – volume: 22 start-page: 3631 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0185 publication-title: J. Solid. State. Electr. doi: 10.1007/s10008-018-4062-4 – volume: 844 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0280 publication-title: J. Alloy. Compd. – volume: 403 year: 2021 ident: 10.1016/j.jiec.2022.03.032_b0100 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124093 – volume: 57 start-page: 2894 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0130 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712959 – volume: 95 start-page: 111 year: 2003 ident: 10.1016/j.jiec.2022.03.032_b0015 publication-title: Sens. Actuators B- Chem. doi: 10.1016/S0925-4005(03)00417-9 – volume: 185 start-page: 73 year: 2017 ident: 10.1016/j.jiec.2022.03.032_b0195 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2016.10.007 – volume: 298 year: 2019 ident: 10.1016/j.jiec.2022.03.032_b0095 publication-title: Sens. Actuators B- Chem. – volume: 304 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0055 publication-title: Sens. Actuators B- Chem. – volume: 329 year: 2021 ident: 10.1016/j.jiec.2022.03.032_b0255 publication-title: Sens. Actuators B- Chem. – volume: 15 start-page: 464 year: 2003 ident: 10.1016/j.jiec.2022.03.032_b0075 publication-title: Adv. Mater. doi: 10.1002/adma.200390108 – volume: 5 start-page: 30297 year: 2015 ident: 10.1016/j.jiec.2022.03.032_b0110 publication-title: Rsc Adv. doi: 10.1039/C4RA16632A – volume: 46 start-page: 19354 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0225 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.278 – volume: 238 start-page: 1070 year: 2017 ident: 10.1016/j.jiec.2022.03.032_b0285 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2016.07.127 – volume: 11 start-page: 526 year: 2016 ident: 10.1016/j.jiec.2022.03.032_b0230 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1740-y – volume: 249 start-page: 715 year: 2017 ident: 10.1016/j.jiec.2022.03.032_b0155 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2017.04.190 – volume: 285 start-page: 68 year: 2019 ident: 10.1016/j.jiec.2022.03.032_b0070 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2018.12.089 – volume: 332 year: 2021 ident: 10.1016/j.jiec.2022.03.032_b0275 publication-title: Sens. Actuators B- Chem. – volume: 18 start-page: 2102 year: 2006 ident: 10.1016/j.jiec.2022.03.032_b0160 publication-title: Chem. Mater. doi: 10.1021/cm052848y – volume: 227 start-page: 220 year: 2016 ident: 10.1016/j.jiec.2022.03.032_b0265 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2015.12.010 – volume: 228 start-page: 595 year: 2016 ident: 10.1016/j.jiec.2022.03.032_b0145 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2016.01.077 – volume: 7 start-page: 2031 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0270 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00119H – volume: 1 start-page: 454 year: 2013 ident: 10.1016/j.jiec.2022.03.032_b0210 publication-title: J. Mater. Chem. B doi: 10.1039/C2TB00132B – volume: 13 start-page: 11 year: 2001 ident: 10.1016/j.jiec.2022.03.032_b0300 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N – volume: 107 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0060 publication-title: Mat. Sci. Semicon. Proc. doi: 10.1016/j.mssp.2019.104861 – volume: 12 start-page: 2039 year: 2006 ident: 10.1016/j.jiec.2022.03.032_b0175 publication-title: Chem.-Eur. J. doi: 10.1002/chem.200500660 – volume: 5 start-page: 4285 year: 2013 ident: 10.1016/j.jiec.2022.03.032_b0090 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am400500a – volume: 416 start-page: 9790 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0125 article-title: Coordin publication-title: Chem. Rev. – volume: 731 year: 2019 ident: 10.1016/j.jiec.2022.03.032_b0220 publication-title: Chem. Phys. Lett. – volume: 163 start-page: 150 year: 2016 ident: 10.1016/j.jiec.2022.03.032_b0035 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.10.067 – volume: 270 start-page: 119 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0030 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2018.05.027 – volume: 5 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0205 publication-title: Mater Res. Express. – volume: 572 start-page: 68 year: 2013 ident: 10.1016/j.jiec.2022.03.032_b0215 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2013.03.258 – volume: 9 start-page: 31667 year: 2017 ident: 10.1016/j.jiec.2022.03.032_b0045 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b02533 – volume: 192 start-page: 480 year: 2014 ident: 10.1016/j.jiec.2022.03.032_b0260 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2013.11.034 – volume: 345 year: 2021 ident: 10.1016/j.jiec.2022.03.032_b0105 publication-title: Sens. Actuators B- Chem. – volume: 221 start-page: 350 year: 2015 ident: 10.1016/j.jiec.2022.03.032_b0050 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2015.06.115 – volume: 280 start-page: 151 year: 2019 ident: 10.1016/j.jiec.2022.03.032_b0025 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2018.10.063 – volume: 249 start-page: 590 year: 2017 ident: 10.1016/j.jiec.2022.03.032_b0245 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2017.03.149 – volume: 5 start-page: 4703 year: 2015 ident: 10.1016/j.jiec.2022.03.032_b0240 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00879D – volume: 329 start-page: 146 year: 2013 ident: 10.1016/j.jiec.2022.03.032_b0200 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2012.09.058 – volume: 263 start-page: 218 year: 2018 ident: 10.1016/j.jiec.2022.03.032_b0040 publication-title: Sens. Actuators B- Chem. doi: 10.1016/j.snb.2018.02.105 – volume: 98 year: 2005 ident: 10.1016/j.jiec.2022.03.032_b0085 publication-title: J. Appl. Phys. doi: 10.1063/1.1992666 – volume: 375 start-page: 463 year: 2020 ident: 10.1016/j.jiec.2022.03.032_b0250 publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.08.014 – volume: 6 start-page: 18661 year: 2014 ident: 10.1016/j.jiec.2022.03.032_b0170 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am5057322 |
SSID | ssj0060386 ssib009049966 |
Score | 2.3803084 |
Snippet | [Display omitted]
•Snowflake-like ZnO nanomaterials were prepared using carbon microspheres as sacrificial templates.•The porous structure of ZnO facilitates... In this paper, the snowflake-like ZnO nanomaterials were prepared by combining zinc salt impregnationand high-temperature calcination with carbon microspheres... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 542 |
SubjectTerms | Carbon microsphere Gas sensing Nitrogen dioxide Room-temperature Snowflake-like ZnO 화학공학 |
Title | Synthesis of carbon microsphere-assisted snowflake-like ZnO nanomaterials for selective detection of NO2 at room temperature |
URI | https://dx.doi.org/10.1016/j.jiec.2022.03.032 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002855939 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2022, 110(0), , pp.542-551 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qfdEHabVitS0L-ibbS_ZHcnkspeWqcH2ohcOXZTeZlfTOTblERBD_dmeSXGkf7IMQCAmzS9gZZr4s337D2Ic8V5A4yAWWXie0z7woHG3iIHYtclWQphSxLebZ7Fp_WpjFFjvdnIUhWuWY-4ec3mfr8c1kXM3JbV1PrlJEDgjIF1L2OlGUh7XOKcqP_9zRPLJE9d0eyViQ9XhwZuB43dRAMoZS9kKnSv6rOD2J63Cv7JzvsBcjXuQnwyftsi2IL9nzeyqCr9jvq18RYVxbt7wJvHRr30T-nYh2LWkGgEB8TM6seBubn2HlliBW9RL413jJo4sNgtYhDjkiWN72nXEwCfIKup6oFWne-aXkruMEtDnpWY1izHvs-vzsy-lMjE0VRCkz0wljQJWqkqBM4lUCRVl4H6YVicKEkBrIynKaGZAVTJ1ylTTeF4BlzCiPWFKr12w7NhHeMG7STMoAFQ6rdKYTJ0OhA8nzpLnLHeyzdLOathwVx6nxxcpuqGU3ljxgyQM2UXjJffbxbsztoLfxqLXZOMk-iBqLBeHRce_Ro3ZZ1pbkten-rbHLtcWfiAuScU4LreTb_5z9HXtGT0Qok-aAbXfrH3CI0KXzR31sHrGnJxefZ_O_3h7uNw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF7a-qA-iD-x_lxQnyReMptNLg8-iFrubL0-tIXDl3U3mUh656ZcIqUg_lP-g84kuVIf7INQCASS7LLMTGa-DV--EeJlmioMLaYBlV4bxC5xQWb5Iw5h1yxVGWtKMdtilkyO4k9zPd8Qv9f_wjCtcsj9fU7vsvVwZTRYc3RSVaODiJADAfI5QKcTBQOzchfPTmnf1rydfiAnvwLY-Xj4fhIMrQWCHBLdBlqjylUBqHToVIhZnjlXjguWRinLSGOS5-NEIxQ4tsoWoJ3LkJK5Vo4QVaxo3k1xLaZ0wW0T3vw655UkoeraS_LqAl7e8KdOTyo7rpB1EwE6ZVUF_6qGm35VXqhzO7fFrQGgyne9De6IDfR3xc0LsoX3xM-DM0-4sakaWZcytytXe_mdmX0NixRgQICco6eQja9Py6VdYLCsFii_-H3pra8JJfeBLwkyy6ZrxUNZVxbYdswwz_PO9kHaVjKylyygNag_3xdHV2LqB2LL1x4fCqmjBKDEgoYVcRKHFsosLlkPKEptanFbRGtrmnyQOOdOG0uz5rIdG_aAYQ-YUNEB2-L1-ZiTXuDj0qf12knmrzA1VIEuHfeCPGoWeWVYz5vP32qzWBnatUxZNzrKYgWP_nP25-L65PDzntmbznYfixt8h9lsoJ-IrXb1A58Sbmrdsy5Opfh61S_GH1nxKnI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+carbon+microsphere-assisted+snowflake-like+ZnO+nanomaterials+for+selective+detection+of+NO2+at+room+temperature&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Qiaoyan+Li&rft.au=Yahan+Cui&rft.au=Jiasheng+Lin&rft.au=Chun+Zhao&rft.date=2022-06-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=542&rft.epage=551&rft_id=info:doi/10.1016%2Fj.jiec.2022.03.032&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10019432 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |