Perturbed uncertain differential equations and perturbed reflected canonical process

In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the reflection principle and a successive approximation method, we obtain the existence and uniqueness of the solution to the considered equatio...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 9; pp. 9647 - 9659
Main Authors Ma, Yuanbin, Li, Zhi
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021562

Cover

Loading…
Abstract In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the reflection principle and a successive approximation method, we obtain the existence and uniqueness of the solution to the considered equations. As an application, we establish the existence and uniqueness of some perturbed reflected canonical process.
AbstractList In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the reflection principle and a successive approximation method, we obtain the existence and uniqueness of the solution to the considered equations. As an application, we establish the existence and uniqueness of some perturbed reflected canonical process.
Author Ma, Yuanbin
Li, Zhi
Author_xml – sequence: 1
  givenname: Yuanbin
  surname: Ma
  fullname: Ma, Yuanbin
– sequence: 2
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
BookMark eNpNkM1KAzEUhYNUsNbufIB5AKfmv8lSij-Fgi66D5nkRlOmMzWZWfj2prYUV_dwOXycc27RpOs7QOie4AXTjD_u7fC1oJgSIekVmlK-ZLXUSk3-6Rs0z3mHcXFRTpd8irYfkIYxNeCrsXNF29hVPoYACboh2raC79EOse9yZTtfHS72BKEFNxTlbIkSXfEeUu8g5zt0HWybYX6-M7R9ed6u3urN--t69bSpHZViqDnmjbZyKYl0jnDFgEgvSxcrlVNcgwpeUwUeAxGEsCA8pg1g3zAnGsxmaH3C-t7uzCHFvU0_prfR_D369GlsGqJrwThMFXHKeiUCt15rTHggXmkvcEMEL6yHE8ulPufS7cIj2Bz3Ncd9zXlf9guNB3Dn
Cites_doi 10.1007/s004400050113
10.1016/j.anihpb.2004.03.005
10.1137/1111038
10.1016/j.cam.2009.02.077
10.1016/j.jmaa.2008.09.024
10.1007/978-3-540-89484-1
10.1080/01969722.2010.511552
10.3233/JIFS-17354
10.1016/S0304-4149(99)00065-4
10.1109/TFUZZ.2017.2735941
10.1007/978-981-13-2134-4
10.1007/s004400050215
10.1007/s00500-018-03678-6
10.1186/s13662-017-1452-3
10.1007/s10700-010-9073-2
10.1186/2195-5468-1-1
10.1007/BF00569993
10.1016/j.chaos.2011.12.009
10.1007/BF01204951
10.1112/S0024610798006401
10.1007/s10700-016-9253-9
ContentType Journal Article
CorporateAuthor School of Information and Mathematics, Yangtze University, Jingzhou 434023, China
CorporateAuthor_xml – name: School of Information and Mathematics, Yangtze University, Jingzhou 434023, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021562
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 9659
ExternalDocumentID oai_doaj_org_article_c0281c8ad85f4ad99014f1d89d50b154
10_3934_math_2021562
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c265t-404b9a67616cc1483e16d6934a68c849e8fd928ed0e15113f5d02be0db3c5b03
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:32:19 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-404b9a67616cc1483e16d6934a68c849e8fd928ed0e15113f5d02be0db3c5b03
OpenAccessLink https://doaj.org/article/c0281c8ad85f4ad99014f1d89d50b154
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c0281c8ad85f4ad99014f1d89d50b154
crossref_primary_10_3934_math_2021562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021562-6
key-10.3934/math.2021562-19
key-10.3934/math.2021562-7
key-10.3934/math.2021562-4
key-10.3934/math.2021562-5
key-10.3934/math.2021562-2
key-10.3934/math.2021562-3
key-10.3934/math.2021562-1
key-10.3934/math.2021562-20
key-10.3934/math.2021562-21
key-10.3934/math.2021562-22
key-10.3934/math.2021562-23
key-10.3934/math.2021562-24
key-10.3934/math.2021562-25
key-10.3934/math.2021562-26
key-10.3934/math.2021562-27
key-10.3934/math.2021562-28
key-10.3934/math.2021562-10
key-10.3934/math.2021562-11
key-10.3934/math.2021562-12
key-10.3934/math.2021562-13
key-10.3934/math.2021562-14
key-10.3934/math.2021562-15
key-10.3934/math.2021562-16
key-10.3934/math.2021562-8
key-10.3934/math.2021562-17
key-10.3934/math.2021562-9
key-10.3934/math.2021562-18
References_xml – ident: key-10.3934/math.2021562-5
  doi: 10.1007/s004400050113
– ident: key-10.3934/math.2021562-28
  doi: 10.1016/j.anihpb.2004.03.005
– ident: key-10.3934/math.2021562-25
  doi: 10.1137/1111038
– ident: key-10.3934/math.2021562-8
– ident: key-10.3934/math.2021562-27
  doi: 10.1016/j.cam.2009.02.077
– ident: key-10.3934/math.2021562-7
  doi: 10.1016/j.anihpb.2004.03.005
– ident: key-10.3934/math.2021562-23
  doi: 10.1016/j.jmaa.2008.09.024
– ident: key-10.3934/math.2021562-26
  doi: 10.1007/978-3-540-89484-1
– ident: key-10.3934/math.2021562-17
– ident: key-10.3934/math.2021562-11
  doi: 10.1080/01969722.2010.511552
– ident: key-10.3934/math.2021562-18
  doi: 10.3233/JIFS-17354
– ident: key-10.3934/math.2021562-6
  doi: 10.1016/S0304-4149(99)00065-4
– ident: key-10.3934/math.2021562-16
  doi: 10.1109/TFUZZ.2017.2735941
– ident: key-10.3934/math.2021562-12
  doi: 10.1007/978-981-13-2134-4
– ident: key-10.3934/math.2021562-3
  doi: 10.1007/s004400050215
– ident: key-10.3934/math.2021562-19
– ident: key-10.3934/math.2021562-14
  doi: 10.1007/s00500-018-03678-6
– ident: key-10.3934/math.2021562-24
  doi: 10.1186/s13662-017-1452-3
– ident: key-10.3934/math.2021562-22
  doi: 10.1007/s10700-010-9073-2
– ident: key-10.3934/math.2021562-13
  doi: 10.1186/2195-5468-1-1
– ident: key-10.3934/math.2021562-9
– ident: key-10.3934/math.2021562-2
  doi: 10.1007/BF00569993
– ident: key-10.3934/math.2021562-21
  doi: 10.1016/j.chaos.2011.12.009
– ident: key-10.3934/math.2021562-20
– ident: key-10.3934/math.2021562-4
  doi: 10.1007/BF01204951
– ident: key-10.3934/math.2021562-10
  doi: 10.1186/2195-5468-1-1
– ident: key-10.3934/math.2021562-1
  doi: 10.1112/S0024610798006401
– ident: key-10.3934/math.2021562-15
  doi: 10.1007/s10700-016-9253-9
SSID ssj0002124274
Score 2.130985
Snippet In this paper, we consider a class of perturbed uncertain differential equations, which is a type of differential equations driven by canonical process. By the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 9647
SubjectTerms canonical process
existence and uniqueness
perturbed uncertain differential equations
reflected diffusions
Title Perturbed uncertain differential equations and perturbed reflected canonical process
URI https://doaj.org/article/c0281c8ad85f4ad99014f1d89d50b154
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gBjVMd2HGcERFUhFTEEqVtkny8TKqUt_59znFZlYmGLIie2v0vu8_l8d4zdlVZrDSAzb3NDBooQmSMdmAknwKrgWuwivKevZvKuX2bFbKfUVzwTltIDJ-BGQASYg3XBFq12IbpxdJsHW4VCeOL_qH2J83aMqaiDSSFrsrfSSXdVKT2i9V_0PRDDGfmLg3ZS9XecMj5ih_1ikD-kQRyzPZyfsIPpNpPq6pTVb7gkVvAYODFQ8t_zTVUT-js_OH6lbN0r7uaBL7bNqdu4JU9XhN5nF_7IFyks4IzV4-f6aZL1lRAykKZYE4baV86UJjcAZMAozE0wNC1nLFhdoW1DJS0GgcTguWqLIKRHEbyCwgt1zgbUEV4wjrIqQelWIDp6rnIOQAiUwggoS9BDdr-BplmkfBcN2QkRwiZC2PQQDtljxG3bJmap7m6Q7Jpeds1fsrv8j5dcsf04prQtcs0G6-U33tBCYe1vu2_iB_NgvM8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbed+uncertain+differential+equations+and+perturbed+reflected+canonical+process&rft.jtitle=AIMS+mathematics&rft.au=Ma%2C+Yuanbin&rft.au=Li%2C+Zhi&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=9&rft.spage=9647&rft.epage=9659&rft_id=info:doi/10.3934%2Fmath.2021562&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon