Manganese doped Ni-MOF derived porous carbon-based bifunctional oxygen electrode catalyst for metal air batteries
In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic impact, and remarkable efficacy in charge transfer. A bifunctional catalyst, consisting of a Mn-doped Ni-based metal-organic framework (MOF) embed...
Saved in:
Published in | Materials chemistry and physics Vol. 334; p. 130448 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic impact, and remarkable efficacy in charge transfer. A bifunctional catalyst, consisting of a Mn-doped Ni-based metal-organic framework (MOF) embedded in porous carbon, was synthesized by a simple hydrothermal process using terephthalic acid as an organic linker. The obtained material was subjected to pyrolysis and was evaluated for its use in metal-air batteries. The atomic and molecular structures of pure MOFs and Mn-doped Ni-MOFs were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS). Post pyrolysis, the examination unveiled an ideal porosity configuration, leading to the highest specific surface area. Both the oxygen evaluation reaction (OER) and the oxygen reduction reaction (ORR) were run as tests to see how well the electrocatalysts might work. The Mn2.5Ni2.5-PC catalyst demonstrated better performance compared to pure MOFs and bimetallic MOFs, with an onset potential of 0.83 V and a half-wave potential of 0.74 V. In addition, the substance exhibited a low overpotential of 343 mV at a current density of 10 mA/cm2 in the oxygen evolution process. The Tafel slope, which measures the reaction rate, was determined to be 64.21 mV/dec. These results are in line with those seen in the original MOFs. The ultimate altered bimetallic electrocatalyst exhibited exceptional durability, with chronoamperometry lasting for 7500 s and cyclic voltammetry for 2000 cycles. The remarkable outcomes showcased the capabilities of these innovative MOFs for application in rechargeable Zn-air batteries.
•Analysis of Mn-doped Ni-MOFs shows an optimal porous structure, yielding the largest specific surface area.•Electrocatalysts were tested for their ability to facilitate the oxygen evolution (OER) and reduction (ORR) reactions.•The Mn2.5Ni2.5-PC catalyst outperformed pure and bimetallic MOFs, with onset and half-wave potentials of 0.83 V and 0.74 V.•The material showed a low overpotential of 343 mV at 10 mA/cm² and a Tafel slope of 64.21 mV/dec in OER, matching parent MOFs.•The modified bimetallic electrocatalyst showed excellent stability, with 7500s chronoamperometry and 2000 cycles of CV. |
---|---|
AbstractList | In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic impact, and remarkable efficacy in charge transfer. A bifunctional catalyst, consisting of a Mn-doped Ni-based metal-organic framework (MOF) embedded in porous carbon, was synthesized by a simple hydrothermal process using terephthalic acid as an organic linker. The obtained material was subjected to pyrolysis and was evaluated for its use in metal-air batteries. The atomic and molecular structures of pure MOFs and Mn-doped Ni-MOFs were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS). Post pyrolysis, the examination unveiled an ideal porosity configuration, leading to the highest specific surface area. Both the oxygen evaluation reaction (OER) and the oxygen reduction reaction (ORR) were run as tests to see how well the electrocatalysts might work. The Mn2.5Ni2.5-PC catalyst demonstrated better performance compared to pure MOFs and bimetallic MOFs, with an onset potential of 0.83 V and a half-wave potential of 0.74 V. In addition, the substance exhibited a low overpotential of 343 mV at a current density of 10 mA/cm2 in the oxygen evolution process. The Tafel slope, which measures the reaction rate, was determined to be 64.21 mV/dec. These results are in line with those seen in the original MOFs. The ultimate altered bimetallic electrocatalyst exhibited exceptional durability, with chronoamperometry lasting for 7500 s and cyclic voltammetry for 2000 cycles. The remarkable outcomes showcased the capabilities of these innovative MOFs for application in rechargeable Zn-air batteries.
•Analysis of Mn-doped Ni-MOFs shows an optimal porous structure, yielding the largest specific surface area.•Electrocatalysts were tested for their ability to facilitate the oxygen evolution (OER) and reduction (ORR) reactions.•The Mn2.5Ni2.5-PC catalyst outperformed pure and bimetallic MOFs, with onset and half-wave potentials of 0.83 V and 0.74 V.•The material showed a low overpotential of 343 mV at 10 mA/cm² and a Tafel slope of 64.21 mV/dec in OER, matching parent MOFs.•The modified bimetallic electrocatalyst showed excellent stability, with 7500s chronoamperometry and 2000 cycles of CV. |
ArticleNumber | 130448 |
Author | Shahzad, Nadia Iqbal, Naseem Shahzad, Muhammad Imran Ahmad, Rabia Noor, Tayyaba |
Author_xml | – sequence: 1 givenname: Naseem orcidid: 0000-0001-6916-4765 surname: Iqbal fullname: Iqbal, Naseem email: naseem@uspcase.nust.edu.pk organization: U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS–E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan – sequence: 2 givenname: Rabia orcidid: 0000-0002-5167-9813 surname: Ahmad fullname: Ahmad, Rabia organization: Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia – sequence: 3 givenname: Tayyaba surname: Noor fullname: Noor, Tayyaba email: tayyaba.noor@scme.nust.edu.pk organization: School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan – sequence: 4 givenname: Nadia surname: Shahzad fullname: Shahzad, Nadia organization: U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS–E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan – sequence: 5 givenname: Muhammad Imran surname: Shahzad fullname: Shahzad, Muhammad Imran organization: National Center for Physics (NCP), Islamabad, 44000, Pakistan |
BookMark | eNqNkE1OwzAQhb0oEm3hDuYACXbi_C1RRQGppRtYW449bl0ldrDTitweV2XBksVo9Ebznma-BZpZZwGhB0pSSmj5eEx7McoD9MNhCmlGsiKlOWGsnqF5FCwhRc1u0SKEIyG0ojSfo6-tsHthIQBWbgCF302y3a2xAm_OUQ7Ou1PAUvjW2aQVIc5ao09WjsZZ0WH3Pe3BYuhAjt4piKuj6KYwYu087iEKLIzHrRjHmAnhDt1o0QW4_-1L9Ll-_li9Jpvdy9vqaZPIrCzGJC9YXrVEFrSsGiUZIVlbyhoqRqmArJaxABpW1VqWOiu1oqqRgiqmRVFXWb5EzTVXeheCB80Hb3rhJ04Jv_DiR_6HF7_w4lde0bu6eiEeeDbgeZAGrARlfPyTK2f-kfIDdBmAdw |
Cites_doi | 10.1016/j.pecs.2009.11.002 10.1021/acs.jpcc.6b00313 10.1002/cssc.201402699 10.1002/anie.201809009 10.1021/ja5096733 10.1007/s10853-018-2005-1 10.1016/j.electacta.2019.04.121 10.1149/1.1517281 10.1039/D0RA04193A 10.1021/acsanm.3c04389 10.1016/j.electacta.2006.09.029 10.1016/0008-6223(65)90013-8 10.1007/s11051-022-05411-9 10.1038/ncomms9304 10.1002/cctc.201701064 10.1016/j.partic.2022.03.004 10.1016/j.jpowsour.2011.02.015 10.1007/s12034-023-02924-4 10.1038/nmat3712 10.1088/2053-1591/ab8d5d 10.1016/j.cep.2020.108232 10.1021/cm5038183 10.1016/j.carbon.2020.12.053 10.1002/cctc.201000126 10.1016/j.surfin.2017.12.004 10.1016/j.cej.2018.06.093 10.1016/j.jcat.2012.11.029 10.1021/cm800686k 10.1557/jmr.2011.138 10.1016/j.catcom.2018.06.012 10.1021/acsami.1c01875 10.1039/D2RA07642J 10.1038/s41467-020-15925-2 10.1021/acsami.7b13902 10.1016/j.electacta.2018.11.142 10.1039/C4NR04357J 10.1021/acsami.0c11945 10.1016/j.nanoen.2016.12.008 10.1016/j.materresbull.2024.112830 10.1002/adma.201600979 10.1007/s10853-018-2562-3 10.1021/acsami.9b02859 10.1016/S1872-2067(15)61059-2 10.1016/j.jssc.2019.04.014 10.1021/acs.jpcc.0c07473 10.1039/D0RA09970H 10.1039/C9SE00686A 10.1021/acscatal.6b01581 10.1016/j.jcis.2020.04.127 10.1016/j.jechem.2020.03.006 10.1016/S1872-2067(15)60971-8 10.1021/acsami.1c08462 10.1021/jacs.1c01096 10.1039/D2RA06741B 10.1039/D2RA06688B 10.1016/j.cclet.2020.08.029 10.1039/C2CC37045J 10.1002/adfm.201905992 10.1021/acssuschemeng.9b02884 10.1016/j.electacta.2021.139739 10.1016/j.jcis.2018.02.010 10.1016/j.ccr.2022.214839 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matchemphys.2025.130448 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_matchemphys_2025_130448 S025405842500094X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29M AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ M24 M37 M41 NDZJH R2- RIG SMS SPG SSH WUQ |
ID | FETCH-LOGICAL-c265t-35437b0c51679dc4002b6c8e7411ae28ce28ee9478fc6f26fd1d9ca1d4fa58723 |
IEDL.DBID | .~1 |
ISSN | 0254-0584 |
IngestDate | Tue Jul 01 05:37:55 EDT 2025 Sat Mar 01 15:46:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bifunctional electrocatalyst Porous carbon MOFs Zn-air batteries ORR/OER analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-35437b0c51679dc4002b6c8e7411ae28ce28ee9478fc6f26fd1d9ca1d4fa58723 |
ORCID | 0000-0002-5167-9813 0000-0001-6916-4765 |
ParticipantIDs | crossref_primary_10_1016_j_matchemphys_2025_130448 elsevier_sciencedirect_doi_10_1016_j_matchemphys_2025_130448 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 2025-04-00 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Materials chemistry and physics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Xu, He, Ye, Gan, Zhou, Liu (bib21) 2018; 53 Liu, Zhang, Liu, Li, Xu, Ding, Xing, Dai, Zhu (bib29) 2022; 24 Kundu, Mallick, Ghora, Raj (bib5) 2021; 13 Fu, Liang, Liu, Yu, Bai, Yang, Chen (bib1) 2019; 31 Wahab, Iqbal, Noor, Ashraf, Raza, Ahmad, Khan (bib45) 2020; 10 Wei, Qiu, Liu, Zhang, Yuan, Wang (bib14) 2019; 7 Cui, Jiao, Chen, Guo, Yang, Xie, Zhou, Guo (bib71) 2018; 2 Tan, Zuluaga, Gong, Canepa, Wang, Li, Chabal, Thonhauser (bib37) 2014; 26 Han, Wu, Zhong, Deng, Zhao, Hu (bib13) 2017; 31 Zeng, Zhang (bib41) 2010; 36 Zhang, Qu, Yang, Fan, Lei, Liu, Chen (bib28) 2020; 575 Fan, Chen, Cui, Sun, Xu, Kuang (bib16) 2007; 52 Wu, Lin, Ge, Wu, Xu (bib42) 2013; 49 Su, Zhu, Jiang, Shen, Yang, Zou, Chen, Li (bib48) 2014; 6 Kundu, Samanta, Raj (bib3) 2021; 13 Mehek, Iqbal, Noor, Ghazi, Umair (bib58) 2023; 13 Cheng, Lu, Luan, Lou (bib44) 2020 Hong, Park, Kim (bib15) 2019; 311 Zhou, Zhang, Huang, Dong, Lin, Chen, Tjeng, Hu (bib56) 2020; 11 Zong, Chen, Dou, Fan, Wang, Zhang, Du, Xu, Jia, Zhang (bib67) 2021; 32 Morales, Kazakova, Dieckhöfer, Selyutin, Golubtsov, Schuhmann, Masa (bib52) 2020; 30 Li, Zou, Li, Xie, Niu, Zou, Zeng, Huang (bib9) 2022; 572 Zheng, Cao, Liu, Cai, Ding, Liu, Wang, Hu, Zhong (bib68) 2019; 11 Li, Zhang, Li, Ma, Du, Li, Wang, Zhao, Dou, Xu (bib4) 2020; 12 Agarwal, Yu, Manthiram (bib63) 2020; 16 Chang, Shi, Chen, Wang, Yi (bib62) 2022; 473 Feng, Wu, Niu, Li, Yao, Hu, Li (bib57) 2019; 3 Lan, Tao (bib23) 2011; 196 Sun, Shi, Zhang, Li, Zhao, Gao, Li (bib34) 2018; 114 Slade, Campbell, Ralph, Walsh (bib19) 2002; 149 Ahmad, Iqbal, Noor, Nemani, Zhu, Anasori (bib46) 2024; 7 Du, Gao, Chen (bib55) 2016; 37 Bonino, Chavan, Vitillo, Groppo, Agostini, Lamberti, Dietzel, Prestipino, Bordiga (bib36) 2008; 20 Xie, Fan, Liu, Zhang, Huang (bib30) 2023; 72 Wang, Xie, Lai, Liu, Li, Qiu (bib31) 2021; 515 Ferreira, Brito, Franceschi, Simonetti, Cividanes, Chipara, Lozano (bib35) 2018; 10 Ahmad, Iqbal, Noor, Ali, Ali, Shahzad, Raza (bib10) 2022; 404 Sun, Cai, Tang, Lv, Wang (bib17) 2018; 351 Vetter (bib51) 2013 Lee, Joo, Shokouhimehr (bib54) 2015; 36 Javed, Noor, Iqbal, Naqvi (bib2) 2023; 13 Gong, Zheng, Zeng, Yang, Liang, Li, Tao, Yang (bib6) 2021; 174 Menezes, Indra, Sahraie, Bergmann, Strasser, Driess (bib72) 2015; 8 Nesselberger, Roefzaad, Fayçal Hamou, Ulrich Biedermann, Schweinberger, Kunz, Schloegl, Wiberg, Ashton, Heiz, Mayrhofer, Arenz (bib47) 2013; 12 Dau, Limberg, Reier, Risch, Roggan, Strasser (bib49) 2010; 2 Salama, Mannaa, Altass, Ibrahim, Khder (bib27) 2021; 11 Song, Hu (bib73) 2014; 136 Liu, Wang, Yu, Tian, Sun, Ma, Li, Fu (bib12) 2018; 57 Du, Dong, Liu, Wei, Liu, Liu (bib18) 2018; 518 Raveendran, Chandran, Dhanusuraman (bib40) 2023; 13 Zhu, Xia, Akita, Zou, Xu (bib8) 2016; 28 Wang, Zhao, Ma, Yang, Li, Cui, Guo, Wang (bib69) 2020; 50 Zalomaeva, Chibiryaev, Kovalenko, Kholdeeva, Balzhinimaev, Fedin (bib32) 2013; 298 Gulbransen, Andrew, Brassart (bib64) 1965; 2 Yan, Cao, Wang, Sha, Cui, Cui (bib11) 2019; 275 Shi, Chu, Xiong, Gao, Huang, Zhang, Ding (bib38) 2021; 159 Hod, Deria, Bury, Mondloch, Kung, So, Sampson, Peters, Kubiak, Farha, Hupp (bib50) 2015; 6 Gao, Sui, Wei, Qi, Meng, He (bib20) 2018; 53 Fukuzumi, Lee, Nam (bib61) 2018; 10 Radhika, Gopalakrishna, Chaitra, Bhatta, Venkatesh, Sudha Kamath, Kathyayini (bib33) 2020; 7 Kumar, Canaff, Rousseau, Arrii-Clacens, Napporn, Habrioux, Kokoh (bib66) 2016; 120 Raza, Iqbal, Noor, Shaukat, Ahmad, Gao, Ghazi (bib7) 2024; 176 Zana, Wiberg, Deng, Østergaard, Rossmeisl, Arenz (bib60) 2017; 9 Wang, Du, Xu, Yan, Wen, Ren, Shu (bib43) 2022 Bláha, Valeš, Bastl, Kalbáč, Shiozawa (bib39) 2020; 124 Sanad, Puente Santiago, Tolba, Ahsan, Fernandez-Delgado, Shawky Adly, Hashem, Mahrous Abodouh, El-Shall, Sreenivasan, Allam, Echegoyen (bib53) 2021; 143 Khan, Durrani, Mehmood, Khan (bib22) 2011; 26 Zhou, Zheng, Jaroniec, Qiao (bib59) 2016; 6 Kesavan, Sannasi, Kathiresan, Ramesh (bib26) 2023; 46 Ahmad, Iqbal, Noor (bib24) 2019 Wang, Zou, Liu, Liu, Sun, Lin, Li, Luo (bib25) 2021; 11 Zhang, Dai, Zheng, Chen, Dai (bib65) 2018; 30 Yi, He, Yin, Chen, Li, Yin (bib70) 2019; 295 Tan (10.1016/j.matchemphys.2025.130448_bib37) 2014; 26 Wang (10.1016/j.matchemphys.2025.130448_bib25) 2021; 11 Han (10.1016/j.matchemphys.2025.130448_bib13) 2017; 31 Fu (10.1016/j.matchemphys.2025.130448_bib1) 2019; 31 Xie (10.1016/j.matchemphys.2025.130448_bib30) 2023; 72 Raza (10.1016/j.matchemphys.2025.130448_bib7) 2024; 176 Sanad (10.1016/j.matchemphys.2025.130448_bib53) 2021; 143 Salama (10.1016/j.matchemphys.2025.130448_bib27) 2021; 11 Vetter (10.1016/j.matchemphys.2025.130448_bib51) 2013 Zhou (10.1016/j.matchemphys.2025.130448_bib56) 2020; 11 Mehek (10.1016/j.matchemphys.2025.130448_bib58) 2023; 13 Hong (10.1016/j.matchemphys.2025.130448_bib15) 2019; 311 Zheng (10.1016/j.matchemphys.2025.130448_bib68) 2019; 11 Du (10.1016/j.matchemphys.2025.130448_bib18) 2018; 518 Bláha (10.1016/j.matchemphys.2025.130448_bib39) 2020; 124 Fukuzumi (10.1016/j.matchemphys.2025.130448_bib61) 2018; 10 Zhang (10.1016/j.matchemphys.2025.130448_bib28) 2020; 575 Wahab (10.1016/j.matchemphys.2025.130448_bib45) 2020; 10 Ahmad (10.1016/j.matchemphys.2025.130448_bib24) 2019 Nesselberger (10.1016/j.matchemphys.2025.130448_bib47) 2013; 12 Morales (10.1016/j.matchemphys.2025.130448_bib52) 2020; 30 Lee (10.1016/j.matchemphys.2025.130448_bib54) 2015; 36 Song (10.1016/j.matchemphys.2025.130448_bib73) 2014; 136 Kundu (10.1016/j.matchemphys.2025.130448_bib5) 2021; 13 Ahmad (10.1016/j.matchemphys.2025.130448_bib10) 2022; 404 Wang (10.1016/j.matchemphys.2025.130448_bib43) 2022 Wu (10.1016/j.matchemphys.2025.130448_bib42) 2013; 49 Gong (10.1016/j.matchemphys.2025.130448_bib6) 2021; 174 Wang (10.1016/j.matchemphys.2025.130448_bib31) 2021; 515 Javed (10.1016/j.matchemphys.2025.130448_bib2) 2023; 13 Zeng (10.1016/j.matchemphys.2025.130448_bib41) 2010; 36 Liu (10.1016/j.matchemphys.2025.130448_bib29) 2022; 24 Yi (10.1016/j.matchemphys.2025.130448_bib70) 2019; 295 Liu (10.1016/j.matchemphys.2025.130448_bib12) 2018; 57 Shi (10.1016/j.matchemphys.2025.130448_bib38) 2021; 159 Menezes (10.1016/j.matchemphys.2025.130448_bib72) 2015; 8 Gulbransen (10.1016/j.matchemphys.2025.130448_bib64) 1965; 2 Dau (10.1016/j.matchemphys.2025.130448_bib49) 2010; 2 Zhou (10.1016/j.matchemphys.2025.130448_bib59) 2016; 6 Zhao (10.1016/j.matchemphys.2025.130448_bib21) 2018; 53 Zalomaeva (10.1016/j.matchemphys.2025.130448_bib32) 2013; 298 Li (10.1016/j.matchemphys.2025.130448_bib4) 2020; 12 Slade (10.1016/j.matchemphys.2025.130448_bib19) 2002; 149 Hod (10.1016/j.matchemphys.2025.130448_bib50) 2015; 6 Lan (10.1016/j.matchemphys.2025.130448_bib23) 2011; 196 Du (10.1016/j.matchemphys.2025.130448_bib55) 2016; 37 Wang (10.1016/j.matchemphys.2025.130448_bib69) 2020; 50 Yan (10.1016/j.matchemphys.2025.130448_bib11) 2019; 275 Zhang (10.1016/j.matchemphys.2025.130448_bib65) 2018; 30 Kesavan (10.1016/j.matchemphys.2025.130448_bib26) 2023; 46 Radhika (10.1016/j.matchemphys.2025.130448_bib33) 2020; 7 Bonino (10.1016/j.matchemphys.2025.130448_bib36) 2008; 20 Su (10.1016/j.matchemphys.2025.130448_bib48) 2014; 6 Cui (10.1016/j.matchemphys.2025.130448_bib71) 2018; 2 Kundu (10.1016/j.matchemphys.2025.130448_bib3) 2021; 13 Zana (10.1016/j.matchemphys.2025.130448_bib60) 2017; 9 Khan (10.1016/j.matchemphys.2025.130448_bib22) 2011; 26 Sun (10.1016/j.matchemphys.2025.130448_bib34) 2018; 114 Zhu (10.1016/j.matchemphys.2025.130448_bib8) 2016; 28 Wei (10.1016/j.matchemphys.2025.130448_bib14) 2019; 7 Zong (10.1016/j.matchemphys.2025.130448_bib67) 2021; 32 Raveendran (10.1016/j.matchemphys.2025.130448_bib40) 2023; 13 Cheng (10.1016/j.matchemphys.2025.130448_bib44) 2020 Feng (10.1016/j.matchemphys.2025.130448_bib57) 2019; 3 Chang (10.1016/j.matchemphys.2025.130448_bib62) 2022; 473 Ahmad (10.1016/j.matchemphys.2025.130448_bib46) 2024; 7 Kumar (10.1016/j.matchemphys.2025.130448_bib66) 2016; 120 Agarwal (10.1016/j.matchemphys.2025.130448_bib63) 2020; 16 Li (10.1016/j.matchemphys.2025.130448_bib9) 2022; 572 Ferreira (10.1016/j.matchemphys.2025.130448_bib35) 2018; 10 Sun (10.1016/j.matchemphys.2025.130448_bib17) 2018; 351 Gao (10.1016/j.matchemphys.2025.130448_bib20) 2018; 53 Fan (10.1016/j.matchemphys.2025.130448_bib16) 2007; 52 |
References_xml | – volume: 120 start-page: 7949 year: 2016 end-page: 7958 ident: bib66 publication-title: J. Phys. Chem. C – volume: 298 start-page: 179 year: 2013 end-page: 185 ident: bib32 publication-title: J. Catal. – volume: 6 start-page: 15080 year: 2014 end-page: 15089 ident: bib48 publication-title: Nanoscale – volume: 9 start-page: 38176 year: 2017 end-page: 38180 ident: bib60 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1137 year: 2023 end-page: 1161 ident: bib2 publication-title: RSC Adv. – volume: 159 year: 2021 ident: bib38 publication-title: Chemical Engineering and Processing - Process Intensification – volume: 36 start-page: 307 year: 2010 end-page: 326 ident: bib41 publication-title: Prog. Energy Combust. Sci. – volume: 57 start-page: 16166 year: 2018 end-page: 16170 ident: bib12 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 143 year: 2013 end-page: 145 ident: bib42 publication-title: Chem. Commun. – volume: 11 start-page: 4318 year: 2021 end-page: 4326 ident: bib27 publication-title: RSC Adv. – volume: 143 start-page: 4064 year: 2021 end-page: 4073 ident: bib53 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3843 year: 2023 end-page: 3876 ident: bib40 publication-title: RSC Adv. – volume: 114 start-page: 104 year: 2018 end-page: 108 ident: bib34 publication-title: Catal. Commun. – volume: 26 start-page: 6886 year: 2014 end-page: 6895 ident: bib37 publication-title: Chem. Mater. – volume: 10 start-page: 100 year: 2018 end-page: 109 ident: bib35 publication-title: Surface. Interfac. – volume: 572 year: 2022 ident: bib9 publication-title: Appl. Surf. Sci. – volume: 46 start-page: 90 year: 2023 ident: bib26 publication-title: Bull. Mater. Sci. – volume: 8 start-page: 164 year: 2015 end-page: 171 ident: bib72 publication-title: ChemSusChem – volume: 31 start-page: 541 year: 2017 end-page: 550 ident: bib13 publication-title: Nano Energy – volume: 13 start-page: 40172 year: 2021 end-page: 40199 ident: bib5 publication-title: ACS Appl. Mater. Interfaces – volume: 518 start-page: 57 year: 2018 end-page: 68 ident: bib18 publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 1121 year: 2021 end-page: 1126 ident: bib67 publication-title: Chin. Chem. Lett. – volume: 176 year: 2024 ident: bib7 publication-title: Mater. Res. Bull. – volume: 53 start-page: 13111 year: 2018 end-page: 13125 ident: bib21 publication-title: J. Mater. Sci. – volume: 2 start-page: 421 year: 1965 end-page: 429 ident: bib64 publication-title: Carbon – volume: 11 year: 2021 ident: bib25 publication-title: Sci. Rep. – volume: 16 year: 2020 ident: bib63 publication-title: Mater. Today Energy – volume: 31 year: 2019 ident: bib1 publication-title: Adv. Mater. – volume: 515 year: 2021 ident: bib31 publication-title: Mol. Catal. – volume: 11 start-page: 15662 year: 2019 end-page: 15669 ident: bib68 publication-title: ACS Appl. Mater. Interfaces – volume: 275 start-page: 167 year: 2019 end-page: 173 ident: bib11 publication-title: J. Solid State Chem. – volume: 295 start-page: 966 year: 2019 end-page: 977 ident: bib70 publication-title: Electrochim. Acta – volume: 6 start-page: 8304 year: 2015 ident: bib50 publication-title: Nat. Commun. – volume: 20 start-page: 4957 year: 2008 end-page: 4968 ident: bib36 publication-title: Chem. Mater. – volume: 30 year: 2020 ident: bib52 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1984 year: 2020 ident: bib56 publication-title: Nat. Commun. – volume: 28 start-page: 6391 year: 2016 end-page: 6398 ident: bib8 publication-title: Adv. Mater. – volume: 124 start-page: 24245 year: 2020 end-page: 24250 ident: bib39 publication-title: J. Phys. Chem. C – volume: 10 start-page: 27728 year: 2020 end-page: 27742 ident: bib45 publication-title: RSC Adv. – volume: 12 start-page: 919 year: 2013 end-page: 924 ident: bib47 publication-title: Nat. Mater. – volume: 10 start-page: 9 year: 2018 end-page: 28 ident: bib61 publication-title: ChemCatChem – volume: 30 year: 2018 ident: bib65 publication-title: Adv. Mater. – volume: 351 start-page: 169 year: 2018 end-page: 176 ident: bib17 publication-title: Chem. Eng. J. – volume: 149 start-page: A1556 year: 2002 end-page: A1564 ident: bib19 publication-title: J. Electrochem. Soc. – year: 2013 ident: bib51 article-title: Electrochemical Kinetics: Theoretical Aspects – volume: 53 start-page: 6807 year: 2018 end-page: 6818 ident: bib20 publication-title: J. Mater. Sci. – volume: 136 start-page: 16481 year: 2014 end-page: 16484 ident: bib73 publication-title: J. Am. Chem. Soc. – volume: 575 start-page: 347 year: 2020 end-page: 355 ident: bib28 publication-title: J. Colloid Interface Sci. – volume: 37 start-page: 1049 year: 2016 end-page: 1061 ident: bib55 publication-title: Chin. J. Catal. – year: 2022 ident: bib43 publication-title: Chem. Eng. J. – volume: 3 start-page: 3455 year: 2019 end-page: 3461 ident: bib57 publication-title: Sustain. Energy Fuels – volume: 13 start-page: 652 year: 2023 end-page: 664 ident: bib58 publication-title: RSC Adv. – volume: 2 year: 2018 ident: bib71 publication-title: Small Methods – volume: 24 start-page: 23 year: 2022 ident: bib29 publication-title: J. Nanoparticle Res. – volume: 404 year: 2022 ident: bib10 publication-title: Electrochim. Acta – volume: 311 start-page: 62 year: 2019 end-page: 71 ident: bib15 publication-title: Electrochim. Acta – volume: 26 start-page: 2268 year: 2011 end-page: 2275 ident: bib22 publication-title: J. Mater. Res. – volume: 72 start-page: 134 year: 2023 end-page: 144 ident: bib30 publication-title: Particuology – volume: 7 year: 2020 ident: bib33 publication-title: Mater. Res. Express – volume: 6 start-page: 4720 year: 2016 end-page: 4728 ident: bib59 publication-title: ACS Catal. – volume: 174 start-page: 475 year: 2021 end-page: 483 ident: bib6 publication-title: Carbon – volume: 7 start-page: 253 year: 2024 end-page: 266 ident: bib46 publication-title: ACS Appl. Nano Mater. – volume: 473 year: 2022 ident: bib62 publication-title: Coord. Chem. Rev. – volume: 50 start-page: 52 year: 2020 end-page: 62 ident: bib69 publication-title: J. Energy Chem. – volume: 13 start-page: 30486 year: 2021 end-page: 30496 ident: bib3 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 14180 year: 2019 end-page: 14188 ident: bib14 publication-title: ACS Sustain. Chem. Eng. – volume: 12 start-page: 44710 year: 2020 end-page: 44719 ident: bib4 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 2959 year: 2007 end-page: 2965 ident: bib16 publication-title: Electrochim. Acta – start-page: 12 year: 2019 ident: bib24 publication-title: Materials – volume: 2 start-page: 724 year: 2010 end-page: 761 ident: bib49 publication-title: ChemCatChem – volume: 36 start-page: 1799 year: 2015 end-page: 1810 ident: bib54 publication-title: Chin. J. Catal. – volume: 196 start-page: 5021 year: 2011 end-page: 5026 ident: bib23 publication-title: J. Power Sources – year: 2020 ident: bib44 publication-title: Angew. Chem. – volume: 36 start-page: 307 year: 2010 ident: 10.1016/j.matchemphys.2025.130448_bib41 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.11.002 – volume: 120 start-page: 7949 year: 2016 ident: 10.1016/j.matchemphys.2025.130448_bib66 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00313 – volume: 8 start-page: 164 year: 2015 ident: 10.1016/j.matchemphys.2025.130448_bib72 publication-title: ChemSusChem doi: 10.1002/cssc.201402699 – volume: 57 start-page: 16166 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809009 – volume: 136 start-page: 16481 year: 2014 ident: 10.1016/j.matchemphys.2025.130448_bib73 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 53 start-page: 6807 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib20 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2005-1 – volume: 311 start-page: 62 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib15 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.121 – volume: 149 start-page: A1556 year: 2002 ident: 10.1016/j.matchemphys.2025.130448_bib19 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1517281 – volume: 10 start-page: 27728 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib45 publication-title: RSC Adv. doi: 10.1039/D0RA04193A – volume: 7 start-page: 253 year: 2024 ident: 10.1016/j.matchemphys.2025.130448_bib46 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c04389 – volume: 2 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib71 publication-title: Small Methods – volume: 52 start-page: 2959 year: 2007 ident: 10.1016/j.matchemphys.2025.130448_bib16 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.09.029 – volume: 2 start-page: 421 year: 1965 ident: 10.1016/j.matchemphys.2025.130448_bib64 publication-title: Carbon doi: 10.1016/0008-6223(65)90013-8 – volume: 24 start-page: 23 year: 2022 ident: 10.1016/j.matchemphys.2025.130448_bib29 publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-022-05411-9 – volume: 6 start-page: 8304 year: 2015 ident: 10.1016/j.matchemphys.2025.130448_bib50 publication-title: Nat. Commun. doi: 10.1038/ncomms9304 – volume: 10 start-page: 9 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib61 publication-title: ChemCatChem doi: 10.1002/cctc.201701064 – volume: 72 start-page: 134 year: 2023 ident: 10.1016/j.matchemphys.2025.130448_bib30 publication-title: Particuology doi: 10.1016/j.partic.2022.03.004 – volume: 196 start-page: 5021 year: 2011 ident: 10.1016/j.matchemphys.2025.130448_bib23 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.02.015 – volume: 515 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib31 publication-title: Mol. Catal. – volume: 46 start-page: 90 year: 2023 ident: 10.1016/j.matchemphys.2025.130448_bib26 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-023-02924-4 – year: 2013 ident: 10.1016/j.matchemphys.2025.130448_bib51 – volume: 12 start-page: 919 year: 2013 ident: 10.1016/j.matchemphys.2025.130448_bib47 publication-title: Nat. Mater. doi: 10.1038/nmat3712 – volume: 31 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib1 publication-title: Adv. Mater. – volume: 7 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib33 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab8d5d – volume: 159 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib38 publication-title: Chemical Engineering and Processing - Process Intensification doi: 10.1016/j.cep.2020.108232 – volume: 26 start-page: 6886 year: 2014 ident: 10.1016/j.matchemphys.2025.130448_bib37 publication-title: Chem. Mater. doi: 10.1021/cm5038183 – volume: 174 start-page: 475 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib6 publication-title: Carbon doi: 10.1016/j.carbon.2020.12.053 – volume: 2 start-page: 724 year: 2010 ident: 10.1016/j.matchemphys.2025.130448_bib49 publication-title: ChemCatChem doi: 10.1002/cctc.201000126 – volume: 10 start-page: 100 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib35 publication-title: Surface. Interfac. doi: 10.1016/j.surfin.2017.12.004 – volume: 351 start-page: 169 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib17 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.093 – volume: 298 start-page: 179 year: 2013 ident: 10.1016/j.matchemphys.2025.130448_bib32 publication-title: J. Catal. doi: 10.1016/j.jcat.2012.11.029 – volume: 20 start-page: 4957 year: 2008 ident: 10.1016/j.matchemphys.2025.130448_bib36 publication-title: Chem. Mater. doi: 10.1021/cm800686k – year: 2022 ident: 10.1016/j.matchemphys.2025.130448_bib43 publication-title: Chem. Eng. J. – volume: 26 start-page: 2268 year: 2011 ident: 10.1016/j.matchemphys.2025.130448_bib22 publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.138 – volume: 114 start-page: 104 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib34 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2018.06.012 – volume: 13 start-page: 30486 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib3 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01875 – volume: 13 start-page: 3843 year: 2023 ident: 10.1016/j.matchemphys.2025.130448_bib40 publication-title: RSC Adv. doi: 10.1039/D2RA07642J – volume: 11 start-page: 1984 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib56 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15925-2 – volume: 9 start-page: 38176 year: 2017 ident: 10.1016/j.matchemphys.2025.130448_bib60 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13902 – volume: 295 start-page: 966 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib70 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.142 – volume: 6 start-page: 15080 year: 2014 ident: 10.1016/j.matchemphys.2025.130448_bib48 publication-title: Nanoscale doi: 10.1039/C4NR04357J – volume: 30 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib65 publication-title: Adv. Mater. – volume: 12 start-page: 44710 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib4 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11945 – volume: 31 start-page: 541 year: 2017 ident: 10.1016/j.matchemphys.2025.130448_bib13 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.008 – volume: 176 year: 2024 ident: 10.1016/j.matchemphys.2025.130448_bib7 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2024.112830 – volume: 28 start-page: 6391 year: 2016 ident: 10.1016/j.matchemphys.2025.130448_bib8 publication-title: Adv. Mater. doi: 10.1002/adma.201600979 – volume: 53 start-page: 13111 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib21 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2562-3 – volume: 11 start-page: 15662 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib68 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02859 – volume: 572 year: 2022 ident: 10.1016/j.matchemphys.2025.130448_bib9 publication-title: Appl. Surf. Sci. – volume: 11 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib25 publication-title: Sci. Rep. – volume: 37 start-page: 1049 year: 2016 ident: 10.1016/j.matchemphys.2025.130448_bib55 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)61059-2 – volume: 275 start-page: 167 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib11 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.04.014 – volume: 124 start-page: 24245 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib39 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c07473 – volume: 11 start-page: 4318 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib27 publication-title: RSC Adv. doi: 10.1039/D0RA09970H – volume: 3 start-page: 3455 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib57 publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE00686A – volume: 6 start-page: 4720 year: 2016 ident: 10.1016/j.matchemphys.2025.130448_bib59 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01581 – volume: 575 start-page: 347 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib28 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.127 – volume: 50 start-page: 52 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib69 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.006 – volume: 36 start-page: 1799 year: 2015 ident: 10.1016/j.matchemphys.2025.130448_bib54 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)60971-8 – year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib44 publication-title: Angew. Chem. – volume: 13 start-page: 40172 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib5 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c08462 – volume: 143 start-page: 4064 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib53 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01096 – volume: 13 start-page: 1137 year: 2023 ident: 10.1016/j.matchemphys.2025.130448_bib2 publication-title: RSC Adv. doi: 10.1039/D2RA06741B – volume: 13 start-page: 652 year: 2023 ident: 10.1016/j.matchemphys.2025.130448_bib58 publication-title: RSC Adv. doi: 10.1039/D2RA06688B – volume: 32 start-page: 1121 year: 2021 ident: 10.1016/j.matchemphys.2025.130448_bib67 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.08.029 – volume: 49 start-page: 143 year: 2013 ident: 10.1016/j.matchemphys.2025.130448_bib42 publication-title: Chem. Commun. doi: 10.1039/C2CC37045J – start-page: 12 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib24 publication-title: Materials – volume: 16 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib63 publication-title: Mater. Today Energy – volume: 30 year: 2020 ident: 10.1016/j.matchemphys.2025.130448_bib52 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905992 – volume: 7 start-page: 14180 year: 2019 ident: 10.1016/j.matchemphys.2025.130448_bib14 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02884 – volume: 404 year: 2022 ident: 10.1016/j.matchemphys.2025.130448_bib10 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139739 – volume: 518 start-page: 57 year: 2018 ident: 10.1016/j.matchemphys.2025.130448_bib18 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.02.010 – volume: 473 year: 2022 ident: 10.1016/j.matchemphys.2025.130448_bib62 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214839 |
SSID | ssj0017113 |
Score | 2.46704 |
Snippet | In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 130448 |
SubjectTerms | Bifunctional electrocatalyst MOFs ORR/OER analysis Porous carbon Zn-air batteries |
Title | Manganese doped Ni-MOF derived porous carbon-based bifunctional oxygen electrode catalyst for metal air batteries |
URI | https://dx.doi.org/10.1016/j.matchemphys.2025.130448 |
Volume | 334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kgo-D-MT6KBG8xnZ3k-wueJFiqYr1oEJvSzYPWaHbWqvoxd_uZB9aQfDgYQ_ZTWD5MpmZJF_yARzr2AY2koZqJTVl2rc0xlBA49AIaUUY4JhybIuB6N-zyyEfLkC3PgvjaJWV7y99euGtqzftCs32JMvat-4cd4e7baSCHzd0J9hZ6Kz85OOL5uGFXimRjJWpq70ER98cL0wKEZqRW0TAqaLPnTYyc1JAv8WoubjTW4e1KmEkZ-U_bcCCyTdhuVvrtG3C6tyVglvwdC3zB-lkJYkeT4wmg4xe3_SIxu-vWMR0G-f6RMlpOs6pi2GapJmLbuWiIBm_vaNNkUoeRxtSLPC8P88IprdkZLBAZDYlaXExJ86zt-G-d37X7dNKVoEqX_AZDTgLwrSjuNuB0QoHsZ8KFRnMLTxp_EjhY0zMwsgqYX1htadjJT3NrORR6Ac70MjHudkFwoKOwr4WMlWCaa5kwKMoZpqJ1Arb8Zrg10Amk_L2jKSmlT0mc-gnDv2kRL8JpzXkyQ9TSNDL_91873_N92HFlUpyzgE0ZtMXc4h5xyxtFYbVgsWzi6v-4BNkttxD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64gMtBXHE3gtc40zZJW_Aig8O4zHhQYW4lzSIV7IzjKHrxt_vSRUcQPHjoIU0C5Wvy3svLl3wARzq2gY2koVpJTZn2LY3RFdA4NEJaEQY4pxzboic6d-yiz_tT0KrPwjhaZWX7S5teWOvqTaNCszHMssaNO8fd5G4bqeDH9adhluH0dTIGxx9fPA8v9EqNZGxNXfM5OPwmeWFUiNg8uiwCrhV97sSRmdMC-s1JTTie9jIsVREjOS0_agWmTL4K861aqG0VFifuFFyDp67M76XTlSR6MDSa9DLavW4TjfWvWMR4Gxf7RMlROsipc2KapJlzb2VWkAze3nFQkUofRxtSZHjen8cE41vyaLBAZDYiaXEzJy601-GufXbb6tBKV4EqX_AxDTgLwrSpuNuC0QpnsZ8KFRkMLjxp_EjhY0zMwsgqYX1htadjJT3NrORR6AcbMJMPcrMJhAVNhT9byFQJprmSAY-imGkmUits09sCvwYyGZbXZyQ1r-whmUA_cegnJfpbcFJDnvwYCwma-b-7b_-v-wHMd267V8nVee9yBxZcTcnU2YWZ8ejF7GEQMk73i0H2CYml3dE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manganese+doped+Ni-MOF+derived+porous+carbon-based+bifunctional+oxygen+electrode+catalyst+for+metal+air+batteries&rft.jtitle=Materials+chemistry+and+physics&rft.au=Iqbal%2C+Naseem&rft.au=Ahmad%2C+Rabia&rft.au=Noor%2C+Tayyaba&rft.au=Shahzad%2C+Nadia&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.volume=334&rft_id=info:doi/10.1016%2Fj.matchemphys.2025.130448&rft.externalDocID=S025405842500094X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |