Manganese doped Ni-MOF derived porous carbon-based bifunctional oxygen electrode catalyst for metal air batteries

In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic impact, and remarkable efficacy in charge transfer. A bifunctional catalyst, consisting of a Mn-doped Ni-based metal-organic framework (MOF) embed...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 334; p. 130448
Main Authors Iqbal, Naseem, Ahmad, Rabia, Noor, Tayyaba, Shahzad, Nadia, Shahzad, Muhammad Imran
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic impact, and remarkable efficacy in charge transfer. A bifunctional catalyst, consisting of a Mn-doped Ni-based metal-organic framework (MOF) embedded in porous carbon, was synthesized by a simple hydrothermal process using terephthalic acid as an organic linker. The obtained material was subjected to pyrolysis and was evaluated for its use in metal-air batteries. The atomic and molecular structures of pure MOFs and Mn-doped Ni-MOFs were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS). Post pyrolysis, the examination unveiled an ideal porosity configuration, leading to the highest specific surface area. Both the oxygen evaluation reaction (OER) and the oxygen reduction reaction (ORR) were run as tests to see how well the electrocatalysts might work. The Mn2.5Ni2.5-PC catalyst demonstrated better performance compared to pure MOFs and bimetallic MOFs, with an onset potential of 0.83 V and a half-wave potential of 0.74 V. In addition, the substance exhibited a low overpotential of 343 mV at a current density of 10 mA/cm2 in the oxygen evolution process. The Tafel slope, which measures the reaction rate, was determined to be 64.21 mV/dec. These results are in line with those seen in the original MOFs. The ultimate altered bimetallic electrocatalyst exhibited exceptional durability, with chronoamperometry lasting for 7500 s and cyclic voltammetry for 2000 cycles. The remarkable outcomes showcased the capabilities of these innovative MOFs for application in rechargeable Zn-air batteries. •Analysis of Mn-doped Ni-MOFs shows an optimal porous structure, yielding the largest specific surface area.•Electrocatalysts were tested for their ability to facilitate the oxygen evolution (OER) and reduction (ORR) reactions.•The Mn2.5Ni2.5-PC catalyst outperformed pure and bimetallic MOFs, with onset and half-wave potentials of 0.83 V and 0.74 V.•The material showed a low overpotential of 343 mV at 10 mA/cm² and a Tafel slope of 64.21 mV/dec in OER, matching parent MOFs.•The modified bimetallic electrocatalyst showed excellent stability, with 7500s chronoamperometry and 2000 cycles of CV.
AbstractList In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic impact, and remarkable efficacy in charge transfer. A bifunctional catalyst, consisting of a Mn-doped Ni-based metal-organic framework (MOF) embedded in porous carbon, was synthesized by a simple hydrothermal process using terephthalic acid as an organic linker. The obtained material was subjected to pyrolysis and was evaluated for its use in metal-air batteries. The atomic and molecular structures of pure MOFs and Mn-doped Ni-MOFs were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS). Post pyrolysis, the examination unveiled an ideal porosity configuration, leading to the highest specific surface area. Both the oxygen evaluation reaction (OER) and the oxygen reduction reaction (ORR) were run as tests to see how well the electrocatalysts might work. The Mn2.5Ni2.5-PC catalyst demonstrated better performance compared to pure MOFs and bimetallic MOFs, with an onset potential of 0.83 V and a half-wave potential of 0.74 V. In addition, the substance exhibited a low overpotential of 343 mV at a current density of 10 mA/cm2 in the oxygen evolution process. The Tafel slope, which measures the reaction rate, was determined to be 64.21 mV/dec. These results are in line with those seen in the original MOFs. The ultimate altered bimetallic electrocatalyst exhibited exceptional durability, with chronoamperometry lasting for 7500 s and cyclic voltammetry for 2000 cycles. The remarkable outcomes showcased the capabilities of these innovative MOFs for application in rechargeable Zn-air batteries. •Analysis of Mn-doped Ni-MOFs shows an optimal porous structure, yielding the largest specific surface area.•Electrocatalysts were tested for their ability to facilitate the oxygen evolution (OER) and reduction (ORR) reactions.•The Mn2.5Ni2.5-PC catalyst outperformed pure and bimetallic MOFs, with onset and half-wave potentials of 0.83 V and 0.74 V.•The material showed a low overpotential of 343 mV at 10 mA/cm² and a Tafel slope of 64.21 mV/dec in OER, matching parent MOFs.•The modified bimetallic electrocatalyst showed excellent stability, with 7500s chronoamperometry and 2000 cycles of CV.
ArticleNumber 130448
Author Shahzad, Nadia
Iqbal, Naseem
Shahzad, Muhammad Imran
Ahmad, Rabia
Noor, Tayyaba
Author_xml – sequence: 1
  givenname: Naseem
  orcidid: 0000-0001-6916-4765
  surname: Iqbal
  fullname: Iqbal, Naseem
  email: naseem@uspcase.nust.edu.pk
  organization: U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS–E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
– sequence: 2
  givenname: Rabia
  orcidid: 0000-0002-5167-9813
  surname: Ahmad
  fullname: Ahmad, Rabia
  organization: Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
– sequence: 3
  givenname: Tayyaba
  surname: Noor
  fullname: Noor, Tayyaba
  email: tayyaba.noor@scme.nust.edu.pk
  organization: School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
– sequence: 4
  givenname: Nadia
  surname: Shahzad
  fullname: Shahzad, Nadia
  organization: U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS–E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
– sequence: 5
  givenname: Muhammad Imran
  surname: Shahzad
  fullname: Shahzad, Muhammad Imran
  organization: National Center for Physics (NCP), Islamabad, 44000, Pakistan
BookMark eNqNkE1OwzAQhb0oEm3hDuYACXbi_C1RRQGppRtYW449bl0ldrDTitweV2XBksVo9Ebznma-BZpZZwGhB0pSSmj5eEx7McoD9MNhCmlGsiKlOWGsnqF5FCwhRc1u0SKEIyG0ojSfo6-tsHthIQBWbgCF302y3a2xAm_OUQ7Ou1PAUvjW2aQVIc5ao09WjsZZ0WH3Pe3BYuhAjt4piKuj6KYwYu087iEKLIzHrRjHmAnhDt1o0QW4_-1L9Ll-_li9Jpvdy9vqaZPIrCzGJC9YXrVEFrSsGiUZIVlbyhoqRqmArJaxABpW1VqWOiu1oqqRgiqmRVFXWb5EzTVXeheCB80Hb3rhJ04Jv_DiR_6HF7_w4lde0bu6eiEeeDbgeZAGrARlfPyTK2f-kfIDdBmAdw
Cites_doi 10.1016/j.pecs.2009.11.002
10.1021/acs.jpcc.6b00313
10.1002/cssc.201402699
10.1002/anie.201809009
10.1021/ja5096733
10.1007/s10853-018-2005-1
10.1016/j.electacta.2019.04.121
10.1149/1.1517281
10.1039/D0RA04193A
10.1021/acsanm.3c04389
10.1016/j.electacta.2006.09.029
10.1016/0008-6223(65)90013-8
10.1007/s11051-022-05411-9
10.1038/ncomms9304
10.1002/cctc.201701064
10.1016/j.partic.2022.03.004
10.1016/j.jpowsour.2011.02.015
10.1007/s12034-023-02924-4
10.1038/nmat3712
10.1088/2053-1591/ab8d5d
10.1016/j.cep.2020.108232
10.1021/cm5038183
10.1016/j.carbon.2020.12.053
10.1002/cctc.201000126
10.1016/j.surfin.2017.12.004
10.1016/j.cej.2018.06.093
10.1016/j.jcat.2012.11.029
10.1021/cm800686k
10.1557/jmr.2011.138
10.1016/j.catcom.2018.06.012
10.1021/acsami.1c01875
10.1039/D2RA07642J
10.1038/s41467-020-15925-2
10.1021/acsami.7b13902
10.1016/j.electacta.2018.11.142
10.1039/C4NR04357J
10.1021/acsami.0c11945
10.1016/j.nanoen.2016.12.008
10.1016/j.materresbull.2024.112830
10.1002/adma.201600979
10.1007/s10853-018-2562-3
10.1021/acsami.9b02859
10.1016/S1872-2067(15)61059-2
10.1016/j.jssc.2019.04.014
10.1021/acs.jpcc.0c07473
10.1039/D0RA09970H
10.1039/C9SE00686A
10.1021/acscatal.6b01581
10.1016/j.jcis.2020.04.127
10.1016/j.jechem.2020.03.006
10.1016/S1872-2067(15)60971-8
10.1021/acsami.1c08462
10.1021/jacs.1c01096
10.1039/D2RA06741B
10.1039/D2RA06688B
10.1016/j.cclet.2020.08.029
10.1039/C2CC37045J
10.1002/adfm.201905992
10.1021/acssuschemeng.9b02884
10.1016/j.electacta.2021.139739
10.1016/j.jcis.2018.02.010
10.1016/j.ccr.2022.214839
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.matchemphys.2025.130448
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_matchemphys_2025_130448
S025405842500094X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29M
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
M24
M37
M41
NDZJH
R2-
RIG
SMS
SPG
SSH
WUQ
ID FETCH-LOGICAL-c265t-35437b0c51679dc4002b6c8e7411ae28ce28ee9478fc6f26fd1d9ca1d4fa58723
IEDL.DBID .~1
ISSN 0254-0584
IngestDate Tue Jul 01 05:37:55 EDT 2025
Sat Mar 01 15:46:36 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Bifunctional electrocatalyst
Porous carbon
MOFs
Zn-air batteries
ORR/OER analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-35437b0c51679dc4002b6c8e7411ae28ce28ee9478fc6f26fd1d9ca1d4fa58723
ORCID 0000-0002-5167-9813
0000-0001-6916-4765
ParticipantIDs crossref_primary_10_1016_j_matchemphys_2025_130448
elsevier_sciencedirect_doi_10_1016_j_matchemphys_2025_130448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials chemistry and physics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Xu, He, Ye, Gan, Zhou, Liu (bib21) 2018; 53
Liu, Zhang, Liu, Li, Xu, Ding, Xing, Dai, Zhu (bib29) 2022; 24
Kundu, Mallick, Ghora, Raj (bib5) 2021; 13
Fu, Liang, Liu, Yu, Bai, Yang, Chen (bib1) 2019; 31
Wahab, Iqbal, Noor, Ashraf, Raza, Ahmad, Khan (bib45) 2020; 10
Wei, Qiu, Liu, Zhang, Yuan, Wang (bib14) 2019; 7
Cui, Jiao, Chen, Guo, Yang, Xie, Zhou, Guo (bib71) 2018; 2
Tan, Zuluaga, Gong, Canepa, Wang, Li, Chabal, Thonhauser (bib37) 2014; 26
Han, Wu, Zhong, Deng, Zhao, Hu (bib13) 2017; 31
Zeng, Zhang (bib41) 2010; 36
Zhang, Qu, Yang, Fan, Lei, Liu, Chen (bib28) 2020; 575
Fan, Chen, Cui, Sun, Xu, Kuang (bib16) 2007; 52
Wu, Lin, Ge, Wu, Xu (bib42) 2013; 49
Su, Zhu, Jiang, Shen, Yang, Zou, Chen, Li (bib48) 2014; 6
Kundu, Samanta, Raj (bib3) 2021; 13
Mehek, Iqbal, Noor, Ghazi, Umair (bib58) 2023; 13
Cheng, Lu, Luan, Lou (bib44) 2020
Hong, Park, Kim (bib15) 2019; 311
Zhou, Zhang, Huang, Dong, Lin, Chen, Tjeng, Hu (bib56) 2020; 11
Zong, Chen, Dou, Fan, Wang, Zhang, Du, Xu, Jia, Zhang (bib67) 2021; 32
Morales, Kazakova, Dieckhöfer, Selyutin, Golubtsov, Schuhmann, Masa (bib52) 2020; 30
Li, Zou, Li, Xie, Niu, Zou, Zeng, Huang (bib9) 2022; 572
Zheng, Cao, Liu, Cai, Ding, Liu, Wang, Hu, Zhong (bib68) 2019; 11
Li, Zhang, Li, Ma, Du, Li, Wang, Zhao, Dou, Xu (bib4) 2020; 12
Agarwal, Yu, Manthiram (bib63) 2020; 16
Chang, Shi, Chen, Wang, Yi (bib62) 2022; 473
Feng, Wu, Niu, Li, Yao, Hu, Li (bib57) 2019; 3
Lan, Tao (bib23) 2011; 196
Sun, Shi, Zhang, Li, Zhao, Gao, Li (bib34) 2018; 114
Slade, Campbell, Ralph, Walsh (bib19) 2002; 149
Ahmad, Iqbal, Noor, Nemani, Zhu, Anasori (bib46) 2024; 7
Du, Gao, Chen (bib55) 2016; 37
Bonino, Chavan, Vitillo, Groppo, Agostini, Lamberti, Dietzel, Prestipino, Bordiga (bib36) 2008; 20
Xie, Fan, Liu, Zhang, Huang (bib30) 2023; 72
Wang, Xie, Lai, Liu, Li, Qiu (bib31) 2021; 515
Ferreira, Brito, Franceschi, Simonetti, Cividanes, Chipara, Lozano (bib35) 2018; 10
Ahmad, Iqbal, Noor, Ali, Ali, Shahzad, Raza (bib10) 2022; 404
Sun, Cai, Tang, Lv, Wang (bib17) 2018; 351
Vetter (bib51) 2013
Lee, Joo, Shokouhimehr (bib54) 2015; 36
Javed, Noor, Iqbal, Naqvi (bib2) 2023; 13
Gong, Zheng, Zeng, Yang, Liang, Li, Tao, Yang (bib6) 2021; 174
Menezes, Indra, Sahraie, Bergmann, Strasser, Driess (bib72) 2015; 8
Nesselberger, Roefzaad, Fayçal Hamou, Ulrich Biedermann, Schweinberger, Kunz, Schloegl, Wiberg, Ashton, Heiz, Mayrhofer, Arenz (bib47) 2013; 12
Dau, Limberg, Reier, Risch, Roggan, Strasser (bib49) 2010; 2
Salama, Mannaa, Altass, Ibrahim, Khder (bib27) 2021; 11
Song, Hu (bib73) 2014; 136
Liu, Wang, Yu, Tian, Sun, Ma, Li, Fu (bib12) 2018; 57
Du, Dong, Liu, Wei, Liu, Liu (bib18) 2018; 518
Raveendran, Chandran, Dhanusuraman (bib40) 2023; 13
Zhu, Xia, Akita, Zou, Xu (bib8) 2016; 28
Wang, Zhao, Ma, Yang, Li, Cui, Guo, Wang (bib69) 2020; 50
Zalomaeva, Chibiryaev, Kovalenko, Kholdeeva, Balzhinimaev, Fedin (bib32) 2013; 298
Gulbransen, Andrew, Brassart (bib64) 1965; 2
Yan, Cao, Wang, Sha, Cui, Cui (bib11) 2019; 275
Shi, Chu, Xiong, Gao, Huang, Zhang, Ding (bib38) 2021; 159
Hod, Deria, Bury, Mondloch, Kung, So, Sampson, Peters, Kubiak, Farha, Hupp (bib50) 2015; 6
Gao, Sui, Wei, Qi, Meng, He (bib20) 2018; 53
Fukuzumi, Lee, Nam (bib61) 2018; 10
Radhika, Gopalakrishna, Chaitra, Bhatta, Venkatesh, Sudha Kamath, Kathyayini (bib33) 2020; 7
Kumar, Canaff, Rousseau, Arrii-Clacens, Napporn, Habrioux, Kokoh (bib66) 2016; 120
Raza, Iqbal, Noor, Shaukat, Ahmad, Gao, Ghazi (bib7) 2024; 176
Zana, Wiberg, Deng, Østergaard, Rossmeisl, Arenz (bib60) 2017; 9
Wang, Du, Xu, Yan, Wen, Ren, Shu (bib43) 2022
Bláha, Valeš, Bastl, Kalbáč, Shiozawa (bib39) 2020; 124
Sanad, Puente Santiago, Tolba, Ahsan, Fernandez-Delgado, Shawky Adly, Hashem, Mahrous Abodouh, El-Shall, Sreenivasan, Allam, Echegoyen (bib53) 2021; 143
Khan, Durrani, Mehmood, Khan (bib22) 2011; 26
Zhou, Zheng, Jaroniec, Qiao (bib59) 2016; 6
Kesavan, Sannasi, Kathiresan, Ramesh (bib26) 2023; 46
Ahmad, Iqbal, Noor (bib24) 2019
Wang, Zou, Liu, Liu, Sun, Lin, Li, Luo (bib25) 2021; 11
Zhang, Dai, Zheng, Chen, Dai (bib65) 2018; 30
Yi, He, Yin, Chen, Li, Yin (bib70) 2019; 295
Tan (10.1016/j.matchemphys.2025.130448_bib37) 2014; 26
Wang (10.1016/j.matchemphys.2025.130448_bib25) 2021; 11
Han (10.1016/j.matchemphys.2025.130448_bib13) 2017; 31
Fu (10.1016/j.matchemphys.2025.130448_bib1) 2019; 31
Xie (10.1016/j.matchemphys.2025.130448_bib30) 2023; 72
Raza (10.1016/j.matchemphys.2025.130448_bib7) 2024; 176
Sanad (10.1016/j.matchemphys.2025.130448_bib53) 2021; 143
Salama (10.1016/j.matchemphys.2025.130448_bib27) 2021; 11
Vetter (10.1016/j.matchemphys.2025.130448_bib51) 2013
Zhou (10.1016/j.matchemphys.2025.130448_bib56) 2020; 11
Mehek (10.1016/j.matchemphys.2025.130448_bib58) 2023; 13
Hong (10.1016/j.matchemphys.2025.130448_bib15) 2019; 311
Zheng (10.1016/j.matchemphys.2025.130448_bib68) 2019; 11
Du (10.1016/j.matchemphys.2025.130448_bib18) 2018; 518
Bláha (10.1016/j.matchemphys.2025.130448_bib39) 2020; 124
Fukuzumi (10.1016/j.matchemphys.2025.130448_bib61) 2018; 10
Zhang (10.1016/j.matchemphys.2025.130448_bib28) 2020; 575
Wahab (10.1016/j.matchemphys.2025.130448_bib45) 2020; 10
Ahmad (10.1016/j.matchemphys.2025.130448_bib24) 2019
Nesselberger (10.1016/j.matchemphys.2025.130448_bib47) 2013; 12
Morales (10.1016/j.matchemphys.2025.130448_bib52) 2020; 30
Lee (10.1016/j.matchemphys.2025.130448_bib54) 2015; 36
Song (10.1016/j.matchemphys.2025.130448_bib73) 2014; 136
Kundu (10.1016/j.matchemphys.2025.130448_bib5) 2021; 13
Ahmad (10.1016/j.matchemphys.2025.130448_bib10) 2022; 404
Wang (10.1016/j.matchemphys.2025.130448_bib43) 2022
Wu (10.1016/j.matchemphys.2025.130448_bib42) 2013; 49
Gong (10.1016/j.matchemphys.2025.130448_bib6) 2021; 174
Wang (10.1016/j.matchemphys.2025.130448_bib31) 2021; 515
Javed (10.1016/j.matchemphys.2025.130448_bib2) 2023; 13
Zeng (10.1016/j.matchemphys.2025.130448_bib41) 2010; 36
Liu (10.1016/j.matchemphys.2025.130448_bib29) 2022; 24
Yi (10.1016/j.matchemphys.2025.130448_bib70) 2019; 295
Liu (10.1016/j.matchemphys.2025.130448_bib12) 2018; 57
Shi (10.1016/j.matchemphys.2025.130448_bib38) 2021; 159
Menezes (10.1016/j.matchemphys.2025.130448_bib72) 2015; 8
Gulbransen (10.1016/j.matchemphys.2025.130448_bib64) 1965; 2
Dau (10.1016/j.matchemphys.2025.130448_bib49) 2010; 2
Zhou (10.1016/j.matchemphys.2025.130448_bib59) 2016; 6
Zhao (10.1016/j.matchemphys.2025.130448_bib21) 2018; 53
Zalomaeva (10.1016/j.matchemphys.2025.130448_bib32) 2013; 298
Li (10.1016/j.matchemphys.2025.130448_bib4) 2020; 12
Slade (10.1016/j.matchemphys.2025.130448_bib19) 2002; 149
Hod (10.1016/j.matchemphys.2025.130448_bib50) 2015; 6
Lan (10.1016/j.matchemphys.2025.130448_bib23) 2011; 196
Du (10.1016/j.matchemphys.2025.130448_bib55) 2016; 37
Wang (10.1016/j.matchemphys.2025.130448_bib69) 2020; 50
Yan (10.1016/j.matchemphys.2025.130448_bib11) 2019; 275
Zhang (10.1016/j.matchemphys.2025.130448_bib65) 2018; 30
Kesavan (10.1016/j.matchemphys.2025.130448_bib26) 2023; 46
Radhika (10.1016/j.matchemphys.2025.130448_bib33) 2020; 7
Bonino (10.1016/j.matchemphys.2025.130448_bib36) 2008; 20
Su (10.1016/j.matchemphys.2025.130448_bib48) 2014; 6
Cui (10.1016/j.matchemphys.2025.130448_bib71) 2018; 2
Kundu (10.1016/j.matchemphys.2025.130448_bib3) 2021; 13
Zana (10.1016/j.matchemphys.2025.130448_bib60) 2017; 9
Khan (10.1016/j.matchemphys.2025.130448_bib22) 2011; 26
Sun (10.1016/j.matchemphys.2025.130448_bib34) 2018; 114
Zhu (10.1016/j.matchemphys.2025.130448_bib8) 2016; 28
Wei (10.1016/j.matchemphys.2025.130448_bib14) 2019; 7
Zong (10.1016/j.matchemphys.2025.130448_bib67) 2021; 32
Raveendran (10.1016/j.matchemphys.2025.130448_bib40) 2023; 13
Cheng (10.1016/j.matchemphys.2025.130448_bib44) 2020
Feng (10.1016/j.matchemphys.2025.130448_bib57) 2019; 3
Chang (10.1016/j.matchemphys.2025.130448_bib62) 2022; 473
Ahmad (10.1016/j.matchemphys.2025.130448_bib46) 2024; 7
Kumar (10.1016/j.matchemphys.2025.130448_bib66) 2016; 120
Agarwal (10.1016/j.matchemphys.2025.130448_bib63) 2020; 16
Li (10.1016/j.matchemphys.2025.130448_bib9) 2022; 572
Ferreira (10.1016/j.matchemphys.2025.130448_bib35) 2018; 10
Sun (10.1016/j.matchemphys.2025.130448_bib17) 2018; 351
Gao (10.1016/j.matchemphys.2025.130448_bib20) 2018; 53
Fan (10.1016/j.matchemphys.2025.130448_bib16) 2007; 52
References_xml – volume: 120
  start-page: 7949
  year: 2016
  end-page: 7958
  ident: bib66
  publication-title: J. Phys. Chem. C
– volume: 298
  start-page: 179
  year: 2013
  end-page: 185
  ident: bib32
  publication-title: J. Catal.
– volume: 6
  start-page: 15080
  year: 2014
  end-page: 15089
  ident: bib48
  publication-title: Nanoscale
– volume: 9
  start-page: 38176
  year: 2017
  end-page: 38180
  ident: bib60
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1137
  year: 2023
  end-page: 1161
  ident: bib2
  publication-title: RSC Adv.
– volume: 159
  year: 2021
  ident: bib38
  publication-title: Chemical Engineering and Processing - Process Intensification
– volume: 36
  start-page: 307
  year: 2010
  end-page: 326
  ident: bib41
  publication-title: Prog. Energy Combust. Sci.
– volume: 57
  start-page: 16166
  year: 2018
  end-page: 16170
  ident: bib12
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 143
  year: 2013
  end-page: 145
  ident: bib42
  publication-title: Chem. Commun.
– volume: 11
  start-page: 4318
  year: 2021
  end-page: 4326
  ident: bib27
  publication-title: RSC Adv.
– volume: 143
  start-page: 4064
  year: 2021
  end-page: 4073
  ident: bib53
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3843
  year: 2023
  end-page: 3876
  ident: bib40
  publication-title: RSC Adv.
– volume: 114
  start-page: 104
  year: 2018
  end-page: 108
  ident: bib34
  publication-title: Catal. Commun.
– volume: 26
  start-page: 6886
  year: 2014
  end-page: 6895
  ident: bib37
  publication-title: Chem. Mater.
– volume: 10
  start-page: 100
  year: 2018
  end-page: 109
  ident: bib35
  publication-title: Surface. Interfac.
– volume: 572
  year: 2022
  ident: bib9
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 90
  year: 2023
  ident: bib26
  publication-title: Bull. Mater. Sci.
– volume: 8
  start-page: 164
  year: 2015
  end-page: 171
  ident: bib72
  publication-title: ChemSusChem
– volume: 31
  start-page: 541
  year: 2017
  end-page: 550
  ident: bib13
  publication-title: Nano Energy
– volume: 13
  start-page: 40172
  year: 2021
  end-page: 40199
  ident: bib5
  publication-title: ACS Appl. Mater. Interfaces
– volume: 518
  start-page: 57
  year: 2018
  end-page: 68
  ident: bib18
  publication-title: J. Colloid Interface Sci.
– volume: 32
  start-page: 1121
  year: 2021
  end-page: 1126
  ident: bib67
  publication-title: Chin. Chem. Lett.
– volume: 176
  year: 2024
  ident: bib7
  publication-title: Mater. Res. Bull.
– volume: 53
  start-page: 13111
  year: 2018
  end-page: 13125
  ident: bib21
  publication-title: J. Mater. Sci.
– volume: 2
  start-page: 421
  year: 1965
  end-page: 429
  ident: bib64
  publication-title: Carbon
– volume: 11
  year: 2021
  ident: bib25
  publication-title: Sci. Rep.
– volume: 16
  year: 2020
  ident: bib63
  publication-title: Mater. Today Energy
– volume: 31
  year: 2019
  ident: bib1
  publication-title: Adv. Mater.
– volume: 515
  year: 2021
  ident: bib31
  publication-title: Mol. Catal.
– volume: 11
  start-page: 15662
  year: 2019
  end-page: 15669
  ident: bib68
  publication-title: ACS Appl. Mater. Interfaces
– volume: 275
  start-page: 167
  year: 2019
  end-page: 173
  ident: bib11
  publication-title: J. Solid State Chem.
– volume: 295
  start-page: 966
  year: 2019
  end-page: 977
  ident: bib70
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 8304
  year: 2015
  ident: bib50
  publication-title: Nat. Commun.
– volume: 20
  start-page: 4957
  year: 2008
  end-page: 4968
  ident: bib36
  publication-title: Chem. Mater.
– volume: 30
  year: 2020
  ident: bib52
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1984
  year: 2020
  ident: bib56
  publication-title: Nat. Commun.
– volume: 28
  start-page: 6391
  year: 2016
  end-page: 6398
  ident: bib8
  publication-title: Adv. Mater.
– volume: 124
  start-page: 24245
  year: 2020
  end-page: 24250
  ident: bib39
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 27728
  year: 2020
  end-page: 27742
  ident: bib45
  publication-title: RSC Adv.
– volume: 12
  start-page: 919
  year: 2013
  end-page: 924
  ident: bib47
  publication-title: Nat. Mater.
– volume: 10
  start-page: 9
  year: 2018
  end-page: 28
  ident: bib61
  publication-title: ChemCatChem
– volume: 30
  year: 2018
  ident: bib65
  publication-title: Adv. Mater.
– volume: 351
  start-page: 169
  year: 2018
  end-page: 176
  ident: bib17
  publication-title: Chem. Eng. J.
– volume: 149
  start-page: A1556
  year: 2002
  end-page: A1564
  ident: bib19
  publication-title: J. Electrochem. Soc.
– year: 2013
  ident: bib51
  article-title: Electrochemical Kinetics: Theoretical Aspects
– volume: 53
  start-page: 6807
  year: 2018
  end-page: 6818
  ident: bib20
  publication-title: J. Mater. Sci.
– volume: 136
  start-page: 16481
  year: 2014
  end-page: 16484
  ident: bib73
  publication-title: J. Am. Chem. Soc.
– volume: 575
  start-page: 347
  year: 2020
  end-page: 355
  ident: bib28
  publication-title: J. Colloid Interface Sci.
– volume: 37
  start-page: 1049
  year: 2016
  end-page: 1061
  ident: bib55
  publication-title: Chin. J. Catal.
– year: 2022
  ident: bib43
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 3455
  year: 2019
  end-page: 3461
  ident: bib57
  publication-title: Sustain. Energy Fuels
– volume: 13
  start-page: 652
  year: 2023
  end-page: 664
  ident: bib58
  publication-title: RSC Adv.
– volume: 2
  year: 2018
  ident: bib71
  publication-title: Small Methods
– volume: 24
  start-page: 23
  year: 2022
  ident: bib29
  publication-title: J. Nanoparticle Res.
– volume: 404
  year: 2022
  ident: bib10
  publication-title: Electrochim. Acta
– volume: 311
  start-page: 62
  year: 2019
  end-page: 71
  ident: bib15
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 2268
  year: 2011
  end-page: 2275
  ident: bib22
  publication-title: J. Mater. Res.
– volume: 72
  start-page: 134
  year: 2023
  end-page: 144
  ident: bib30
  publication-title: Particuology
– volume: 7
  year: 2020
  ident: bib33
  publication-title: Mater. Res. Express
– volume: 6
  start-page: 4720
  year: 2016
  end-page: 4728
  ident: bib59
  publication-title: ACS Catal.
– volume: 174
  start-page: 475
  year: 2021
  end-page: 483
  ident: bib6
  publication-title: Carbon
– volume: 7
  start-page: 253
  year: 2024
  end-page: 266
  ident: bib46
  publication-title: ACS Appl. Nano Mater.
– volume: 473
  year: 2022
  ident: bib62
  publication-title: Coord. Chem. Rev.
– volume: 50
  start-page: 52
  year: 2020
  end-page: 62
  ident: bib69
  publication-title: J. Energy Chem.
– volume: 13
  start-page: 30486
  year: 2021
  end-page: 30496
  ident: bib3
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 14180
  year: 2019
  end-page: 14188
  ident: bib14
  publication-title: ACS Sustain. Chem. Eng.
– volume: 12
  start-page: 44710
  year: 2020
  end-page: 44719
  ident: bib4
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 2959
  year: 2007
  end-page: 2965
  ident: bib16
  publication-title: Electrochim. Acta
– start-page: 12
  year: 2019
  ident: bib24
  publication-title: Materials
– volume: 2
  start-page: 724
  year: 2010
  end-page: 761
  ident: bib49
  publication-title: ChemCatChem
– volume: 36
  start-page: 1799
  year: 2015
  end-page: 1810
  ident: bib54
  publication-title: Chin. J. Catal.
– volume: 196
  start-page: 5021
  year: 2011
  end-page: 5026
  ident: bib23
  publication-title: J. Power Sources
– year: 2020
  ident: bib44
  publication-title: Angew. Chem.
– volume: 36
  start-page: 307
  year: 2010
  ident: 10.1016/j.matchemphys.2025.130448_bib41
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2009.11.002
– volume: 120
  start-page: 7949
  year: 2016
  ident: 10.1016/j.matchemphys.2025.130448_bib66
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00313
– volume: 8
  start-page: 164
  year: 2015
  ident: 10.1016/j.matchemphys.2025.130448_bib72
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402699
– volume: 57
  start-page: 16166
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201809009
– volume: 136
  start-page: 16481
  year: 2014
  ident: 10.1016/j.matchemphys.2025.130448_bib73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 53
  start-page: 6807
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib20
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2005-1
– volume: 311
  start-page: 62
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib15
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.121
– volume: 149
  start-page: A1556
  year: 2002
  ident: 10.1016/j.matchemphys.2025.130448_bib19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1517281
– volume: 10
  start-page: 27728
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib45
  publication-title: RSC Adv.
  doi: 10.1039/D0RA04193A
– volume: 7
  start-page: 253
  year: 2024
  ident: 10.1016/j.matchemphys.2025.130448_bib46
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c04389
– volume: 2
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib71
  publication-title: Small Methods
– volume: 52
  start-page: 2959
  year: 2007
  ident: 10.1016/j.matchemphys.2025.130448_bib16
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.09.029
– volume: 2
  start-page: 421
  year: 1965
  ident: 10.1016/j.matchemphys.2025.130448_bib64
  publication-title: Carbon
  doi: 10.1016/0008-6223(65)90013-8
– volume: 24
  start-page: 23
  year: 2022
  ident: 10.1016/j.matchemphys.2025.130448_bib29
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-022-05411-9
– volume: 6
  start-page: 8304
  year: 2015
  ident: 10.1016/j.matchemphys.2025.130448_bib50
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9304
– volume: 10
  start-page: 9
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib61
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201701064
– volume: 72
  start-page: 134
  year: 2023
  ident: 10.1016/j.matchemphys.2025.130448_bib30
  publication-title: Particuology
  doi: 10.1016/j.partic.2022.03.004
– volume: 196
  start-page: 5021
  year: 2011
  ident: 10.1016/j.matchemphys.2025.130448_bib23
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.02.015
– volume: 515
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib31
  publication-title: Mol. Catal.
– volume: 46
  start-page: 90
  year: 2023
  ident: 10.1016/j.matchemphys.2025.130448_bib26
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-023-02924-4
– year: 2013
  ident: 10.1016/j.matchemphys.2025.130448_bib51
– volume: 12
  start-page: 919
  year: 2013
  ident: 10.1016/j.matchemphys.2025.130448_bib47
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3712
– volume: 31
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib1
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib33
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab8d5d
– volume: 159
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib38
  publication-title: Chemical Engineering and Processing - Process Intensification
  doi: 10.1016/j.cep.2020.108232
– volume: 26
  start-page: 6886
  year: 2014
  ident: 10.1016/j.matchemphys.2025.130448_bib37
  publication-title: Chem. Mater.
  doi: 10.1021/cm5038183
– volume: 174
  start-page: 475
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib6
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.12.053
– volume: 2
  start-page: 724
  year: 2010
  ident: 10.1016/j.matchemphys.2025.130448_bib49
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000126
– volume: 10
  start-page: 100
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib35
  publication-title: Surface. Interfac.
  doi: 10.1016/j.surfin.2017.12.004
– volume: 351
  start-page: 169
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib17
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.06.093
– volume: 298
  start-page: 179
  year: 2013
  ident: 10.1016/j.matchemphys.2025.130448_bib32
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.11.029
– volume: 20
  start-page: 4957
  year: 2008
  ident: 10.1016/j.matchemphys.2025.130448_bib36
  publication-title: Chem. Mater.
  doi: 10.1021/cm800686k
– year: 2022
  ident: 10.1016/j.matchemphys.2025.130448_bib43
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 2268
  year: 2011
  ident: 10.1016/j.matchemphys.2025.130448_bib22
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.138
– volume: 114
  start-page: 104
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib34
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2018.06.012
– volume: 13
  start-page: 30486
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib3
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01875
– volume: 13
  start-page: 3843
  year: 2023
  ident: 10.1016/j.matchemphys.2025.130448_bib40
  publication-title: RSC Adv.
  doi: 10.1039/D2RA07642J
– volume: 11
  start-page: 1984
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15925-2
– volume: 9
  start-page: 38176
  year: 2017
  ident: 10.1016/j.matchemphys.2025.130448_bib60
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13902
– volume: 295
  start-page: 966
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib70
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.142
– volume: 6
  start-page: 15080
  year: 2014
  ident: 10.1016/j.matchemphys.2025.130448_bib48
  publication-title: Nanoscale
  doi: 10.1039/C4NR04357J
– volume: 30
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib65
  publication-title: Adv. Mater.
– volume: 12
  start-page: 44710
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib4
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11945
– volume: 31
  start-page: 541
  year: 2017
  ident: 10.1016/j.matchemphys.2025.130448_bib13
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.008
– volume: 176
  year: 2024
  ident: 10.1016/j.matchemphys.2025.130448_bib7
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2024.112830
– volume: 28
  start-page: 6391
  year: 2016
  ident: 10.1016/j.matchemphys.2025.130448_bib8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600979
– volume: 53
  start-page: 13111
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib21
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2562-3
– volume: 11
  start-page: 15662
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib68
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02859
– volume: 572
  year: 2022
  ident: 10.1016/j.matchemphys.2025.130448_bib9
  publication-title: Appl. Surf. Sci.
– volume: 11
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib25
  publication-title: Sci. Rep.
– volume: 37
  start-page: 1049
  year: 2016
  ident: 10.1016/j.matchemphys.2025.130448_bib55
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)61059-2
– volume: 275
  start-page: 167
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib11
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.04.014
– volume: 124
  start-page: 24245
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c07473
– volume: 11
  start-page: 4318
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib27
  publication-title: RSC Adv.
  doi: 10.1039/D0RA09970H
– volume: 3
  start-page: 3455
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib57
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C9SE00686A
– volume: 6
  start-page: 4720
  year: 2016
  ident: 10.1016/j.matchemphys.2025.130448_bib59
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01581
– volume: 575
  start-page: 347
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib28
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.127
– volume: 50
  start-page: 52
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib69
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.006
– volume: 36
  start-page: 1799
  year: 2015
  ident: 10.1016/j.matchemphys.2025.130448_bib54
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)60971-8
– year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib44
  publication-title: Angew. Chem.
– volume: 13
  start-page: 40172
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib5
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c08462
– volume: 143
  start-page: 4064
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01096
– volume: 13
  start-page: 1137
  year: 2023
  ident: 10.1016/j.matchemphys.2025.130448_bib2
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06741B
– volume: 13
  start-page: 652
  year: 2023
  ident: 10.1016/j.matchemphys.2025.130448_bib58
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06688B
– volume: 32
  start-page: 1121
  year: 2021
  ident: 10.1016/j.matchemphys.2025.130448_bib67
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.08.029
– volume: 49
  start-page: 143
  year: 2013
  ident: 10.1016/j.matchemphys.2025.130448_bib42
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC37045J
– start-page: 12
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib24
  publication-title: Materials
– volume: 16
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib63
  publication-title: Mater. Today Energy
– volume: 30
  year: 2020
  ident: 10.1016/j.matchemphys.2025.130448_bib52
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905992
– volume: 7
  start-page: 14180
  year: 2019
  ident: 10.1016/j.matchemphys.2025.130448_bib14
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02884
– volume: 404
  year: 2022
  ident: 10.1016/j.matchemphys.2025.130448_bib10
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139739
– volume: 518
  start-page: 57
  year: 2018
  ident: 10.1016/j.matchemphys.2025.130448_bib18
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.02.010
– volume: 473
  year: 2022
  ident: 10.1016/j.matchemphys.2025.130448_bib62
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214839
SSID ssj0017113
Score 2.46704
Snippet In recent times, bimetallic electrocatalysts have been the subject of extensive research owing to their exceptional electrical configuration, synergistic...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 130448
SubjectTerms Bifunctional electrocatalyst
MOFs
ORR/OER analysis
Porous carbon
Zn-air batteries
Title Manganese doped Ni-MOF derived porous carbon-based bifunctional oxygen electrode catalyst for metal air batteries
URI https://dx.doi.org/10.1016/j.matchemphys.2025.130448
Volume 334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kgo-D-MT6KBG8xnZ3k-wueJFiqYr1oEJvSzYPWaHbWqvoxd_uZB9aQfDgYQ_ZTWD5MpmZJF_yARzr2AY2koZqJTVl2rc0xlBA49AIaUUY4JhybIuB6N-zyyEfLkC3PgvjaJWV7y99euGtqzftCs32JMvat-4cd4e7baSCHzd0J9hZ6Kz85OOL5uGFXimRjJWpq70ER98cL0wKEZqRW0TAqaLPnTYyc1JAv8WoubjTW4e1KmEkZ-U_bcCCyTdhuVvrtG3C6tyVglvwdC3zB-lkJYkeT4wmg4xe3_SIxu-vWMR0G-f6RMlpOs6pi2GapJmLbuWiIBm_vaNNkUoeRxtSLPC8P88IprdkZLBAZDYlaXExJ86zt-G-d37X7dNKVoEqX_AZDTgLwrSjuNuB0QoHsZ8KFRnMLTxp_EjhY0zMwsgqYX1htadjJT3NrORR6Ac70MjHudkFwoKOwr4WMlWCaa5kwKMoZpqJ1Arb8Zrg10Amk_L2jKSmlT0mc-gnDv2kRL8JpzXkyQ9TSNDL_91873_N92HFlUpyzgE0ZtMXc4h5xyxtFYbVgsWzi6v-4BNkttxD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64gMtBXHE3gtc40zZJW_Aig8O4zHhQYW4lzSIV7IzjKHrxt_vSRUcQPHjoIU0C5Wvy3svLl3wARzq2gY2koVpJTZn2LY3RFdA4NEJaEQY4pxzboic6d-yiz_tT0KrPwjhaZWX7S5teWOvqTaNCszHMssaNO8fd5G4bqeDH9adhluH0dTIGxx9fPA8v9EqNZGxNXfM5OPwmeWFUiNg8uiwCrhV97sSRmdMC-s1JTTie9jIsVREjOS0_agWmTL4K861aqG0VFifuFFyDp67M76XTlSR6MDSa9DLavW4TjfWvWMR4Gxf7RMlROsipc2KapJlzb2VWkAze3nFQkUofRxtSZHjen8cE41vyaLBAZDYiaXEzJy601-GufXbb6tBKV4EqX_AxDTgLwrSpuNuC0QpnsZ8KFRkMLjxp_EjhY0zMwsgqYX1htadjJT3NrORR6AcbMJMPcrMJhAVNhT9byFQJprmSAY-imGkmUits09sCvwYyGZbXZyQ1r-whmUA_cegnJfpbcFJDnvwYCwma-b-7b_-v-wHMd267V8nVee9yBxZcTcnU2YWZ8ejF7GEQMk73i0H2CYml3dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manganese+doped+Ni-MOF+derived+porous+carbon-based+bifunctional+oxygen+electrode+catalyst+for+metal+air+batteries&rft.jtitle=Materials+chemistry+and+physics&rft.au=Iqbal%2C+Naseem&rft.au=Ahmad%2C+Rabia&rft.au=Noor%2C+Tayyaba&rft.au=Shahzad%2C+Nadia&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.volume=334&rft_id=info:doi/10.1016%2Fj.matchemphys.2025.130448&rft.externalDocID=S025405842500094X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon