Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study

The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of t...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 12; pp. 124701 - 355
Main Authors Li, Siwen, Ying, Yuxiang, Jiang, Tongxiao, Nie, Deming
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.11.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad84c3

Cover

Loading…
Abstract The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of the Reynolds number ( Re ), aspect ratio ( ε ), squirmer-type factor ( β ) and blockage ratio ( κ ) on swimming efficiency ( η ) and power expenditure ( P ). The results show no significant difference in power expenditure between pushers (microswimmers propelled from the tail) and pullers (microswimmers propelled from the head) at the low Reynolds numbers adopted in this study. However, the swimming efficiency of pushers surpasses that of pullers. Moreover, as the degree of channel blockage increases (i.e., κ increases), the squirmer rod consumes more energy while swimming, and its swimming efficiency also increases, which is clearly reflected when ε ≤ 3. Notably, squirmer rods with a larger aspect ratio ε and a β value approaching 0 can achieve high swimming efficiency with lower power expenditure. The advantages of self-propelled microswimmers are manifested when ε > 4 and β = ±1, where the squirmer rod consumes less energy than a passive rod driven by an external field. These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry, propulsion mechanism and fluid dynamic environment.
AbstractList The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of the Reynolds number ( Re ), aspect ratio ( ε ), squirmer-type factor ( β ) and blockage ratio ( κ ) on swimming efficiency ( η ) and power expenditure ( P ). The results show no significant difference in power expenditure between pushers (microswimmers propelled from the tail) and pullers (microswimmers propelled from the head) at the low Reynolds numbers adopted in this study. However, the swimming efficiency of pushers surpasses that of pullers. Moreover, as the degree of channel blockage increases (i.e., κ increases), the squirmer rod consumes more energy while swimming, and its swimming efficiency also increases, which is clearly reflected when ε ≤ 3. Notably, squirmer rods with a larger aspect ratio ε and a β value approaching 0 can achieve high swimming efficiency with lower power expenditure. The advantages of self-propelled microswimmers are manifested when ε > 4 and β = ±1, where the squirmer rod consumes less energy than a passive rod driven by an external field. These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry, propulsion mechanism and fluid dynamic environment.
The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method(LBM).We considered variable-length squirmer rods,assembled from circular squirmer models with self-propulsion mechanisms,and analyzed the effects of the Reynolds number(Re),aspect ratio(ε),squirmer-type factor(β)and blockage ratio(κ)on swimming efficiency(η)and power expenditure(P).The results show no significant difference in power expenditure between pushers(microswimmers propelled from the tail)and pullers(microswimmers propelled from the head)at the low Reynolds numbers adopted in this study.However,the swimming efficiency of pushers surpasses that of pullers.Moreover,as the degree of channel blockage increases(i.e.,κ increases),the squirmer rod consumes more energy while swimming,and its swimming efficiency also increases,which is clearly reflected when ε ≤ 3.Notably,squirmer rods with a larger aspect ratio ε and a β value approaching O can achieve high swimming efficiency with lower power expenditure.The advantages of self-propelled microswimmers are manifested when ε>4 and β=±1,where the squirmer rod consumes less energy than a passive rod driven by an external field.These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry,propulsion mechanism and fluid dynamic environment.
Author Nie, Deming
Ying, Yuxiang
Li, Siwen
Jiang, Tongxiao
Author_xml – sequence: 1
  givenname: Siwen
  surname: Li
  fullname: Li, Siwen
  organization: China Jiliang University College of Metrology Measurement and Instrument, Hangzhou 310018, China
– sequence: 2
  givenname: Yuxiang
  surname: Ying
  fullname: Ying, Yuxiang
  organization: Zhejiang University Institute of Fluid Engineering, Hangzhou 310018, China
– sequence: 3
  givenname: Tongxiao
  surname: Jiang
  fullname: Jiang, Tongxiao
  organization: China Jiliang University College of Metrology Measurement and Instrument, Hangzhou 310018, China
– sequence: 4
  givenname: Deming
  surname: Nie
  fullname: Nie, Deming
  organization: China Jiliang University College of Metrology Measurement and Instrument, Hangzhou 310018, China
BookMark eNp1kL1PwzAQxS1UJNrCzuiNhVB_JXHYqooCUiUWmC3XvhRXiVPiRFH460kIgonp7nTvPd39FmjmKw8IXVNyR4mUK5qkIqIkTlbaSmH4GZozEsuISy5maP67vkCLEI6EJJQwPkcf26LqcA66aWsI2HnbGrB432ON68pG4V2fhrl0pq5C58oSaqy9xa4J-Ht2_oAhz51x4E1_j9e46arIuhJ8cJXXBfbtYHJm6ELT2v4Snee6CHD1U5fobfvwunmKdi-Pz5v1LjIsiZuIGcMgFlkmRB5DqhNtLTOaEi4tFUJYzqTdaxBZbGIuQKZ7nXIeA0iZEJ3xJbqZcjvtc-0P6li19XBPUJ-HrlDACBOUET4qyaQcfww15OpUu1LXvaJEjXDVSE-N9NQEd7DcThZXnf6C_5V_AR_kflA
Cites_doi 10.1088/1402-4896/ad1912
10.1209/0295-5075/17/6/001
10.1016/j.snb.2020.128752
10.1063/5.0053408
10.1167/iovs.13-11825
10.1073/pnas.1010013108
10.1016/j.jmmm.2018.08.001
10.1063/1.5045701
10.3390/mi10010033
10.1002/adfm.201503441
10.1021/mp900022m
10.1126/sciadv.aba5855
10.1103/PhysRevE.65.041203
10.1017/S0022112008003807
10.1063/1.4758304
10.1002/aic.690440822
10.1088/1674-1056/ac339a
10.1073/pnas.2011146117
10.1017/S0022112098002493
10.1103/PhysRevE.101.052608
10.1039/D0SM00616E
10.1093/qjmam/56.1.65
10.1063/5.0107133
10.1088/1367-2630/9/5/145
10.1017/S0004972700047134
10.1103/PhysRevFluids.5.063102
10.1017/jfm.2023.155
10.1016/j.bpj.2014.01.047
10.1016/j.eurpolymj.2019.109353
10.1016/j.biomaterials.2020.120163
10.1088/1873-7005/acfbb0
10.1063/1.3507951
10.1103/PhysRevE.56.6811
10.1016/S0021-9991(02)00022-0
10.1126/scirobotics.aar4423
10.1002/advs.202001256
10.1017/jfm.2016.239
10.1017/jfm.2020.456
10.1017/jfm.2013.225
10.15302/J-ENG-2015005
10.1017/S0022112005005768
10.1089/soro.2017.0062
10.5772/58706
10.1140/epje/i2020-11927-2
10.1103/PhysRevE.90.013010
10.1007/s10846-010-9516-6
10.1038/s41467-019-10549-7
10.1093/imamat/hxw030
10.1109/BIOROB.2016.7523671
10.1063/9.0000441
10.1017/jfm.2023.126
10.1038/srep17414
10.1021/acs.nanolett.8b05051
10.1007/s10544-012-9712-1
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad84c3
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 355
ExternalDocumentID zgwl_e202412039
10_1088_1674_1056_ad84c3
cpb_33_12_124701
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c265t-2cc2e549944f5e7a6add2ca1038d1444d328dbae495c534e87ba7335ee8860a93
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:16 EDT 2025
Tue Nov 19 23:09:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords direct numerical simulations
low-Reynolds-number motions
multiphase flows
swimming mi-croorganisms
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-2cc2e549944f5e7a6add2ca1038d1444d328dbae495c534e87ba7335ee8860a93
PageCount 12
ParticipantIDs wanfang_journals_zgwl_e202412039
crossref_primary_10_1088_1674_1056_ad84c3
iop_journals_10_1088_1674_1056_ad84c3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Ouyang (cpb_33_12_124701bib30) 2018; 30
Rühle (cpb_33_12_124701bib22) 2020; 43
Shintake (cpb_33_12_124701bib5) 2018; 5
Pedley (cpb_33_12_124701bib15) 2016; 81
Ullrich (cpb_33_12_124701bib1) 2013; 54
Blake (cpb_33_12_124701bib14) 1971; 5
Nejati (cpb_33_12_124701bib41) 2020; 122
Zhang (cpb_33_12_124701bib48) 2022; 31
Magar (cpb_33_12_124701bib17) 2005; 539
Agrahari (cpb_33_12_124701bib2) 2020; 260
Wei (cpb_33_12_124701bib3) 2019; 19
Alapan (cpb_33_12_124701bib12) 2018; 3
Omori (cpb_33_12_124701bib29) 2020; 117
Fadda (cpb_33_12_124701bib21) 2020; 101
Chapman (cpb_33_12_124701bib52) 1970
Wang (cpb_33_12_124701bib36) 2012; 24
Michelin (cpb_33_12_124701bib56) 2010; 22
Binagia (cpb_33_12_124701bib35) 2020; 900
Biondi (cpb_33_12_124701bib47) 1998; 44
Magdanz (cpb_33_12_124701bib13) 2020; 6
Lucarini (cpb_33_12_124701bib25) 2014; 11
Leshansky (cpb_33_12_124701bib31) 2007; 9
Aidun (cpb_33_12_124701bib55) 1998; 373
Ren (cpb_33_12_124701bib6) 2019; 10
Eastham (cpb_33_12_124701bib34) 2020; 5
Acemoglu (cpb_33_12_124701bib26) 2014; 106
Wu (cpb_33_12_124701bib4) 2015; 25
Qiu (cpb_33_12_124701bib8) 2015; 1
Nie (cpb_33_12_124701bib18) 2023; 960
Ghanbari (cpb_33_12_124701bib28) 2011; 63
Darmawan (cpb_33_12_124701bib10) 2020; 324
Ishikawa (cpb_33_12_124701bib19) 2008; 615
Ullrich (cpb_33_12_124701bib27) 2016
Ouyang (cpb_33_12_124701bib45) 2021; 33
Ying (cpb_33_12_124701bib20) 2022; 34
Zhu (cpb_33_12_124701bib37) 2013; 726
Ying (cpb_33_12_124701bib43) 2024; 99
Michelin (cpb_33_12_124701bib32) 2010; 22
Christian (cpb_33_12_124701bib42) 2009; 6
Chisholm (cpb_33_12_124701bib33) 2016; 796
Ishikawa (cpb_33_12_124701bib46) 2019; 10
Akolpoglu (cpb_33_12_124701bib11) 2020; 7
Ouyang (cpb_33_12_124701bib38) 2023; 959
Qian (cpb_33_12_124701bib51) 1992; 17
Zheng (cpb_33_12_124701bib23) 2023; 13
Wolf-Gladrow (cpb_33_12_124701bib50) 2004
Li (cpb_33_12_124701bib57) 2023; 55
Gong (cpb_33_12_124701bib9) 2018; 468
Sahari (cpb_33_12_124701bib39) 2012; 14
He (cpb_33_12_124701bib49) 1997; 56
Merkel (cpb_33_12_124701bib40) 2011; 108
Huang (cpb_33_12_124701bib7) 2015; 5
Magar (cpb_33_12_124701bib16) 2003; 56
Lallemand (cpb_33_12_124701bib53) 2003; 184
Mei (cpb_33_12_124701bib54) 2002; 65
Zantop (cpb_33_12_124701bib44) 2020; 16
Li (cpb_33_12_124701bib24) 2014; 90
References_xml – volume: 99
  year: 2024
  ident: cpb_33_12_124701bib43
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad1912
– volume: 17
  start-page: 479
  year: 1992
  ident: cpb_33_12_124701bib51
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/17/6/001
– volume: 324
  year: 2020
  ident: cpb_33_12_124701bib10
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128752
– volume: 33
  year: 2021
  ident: cpb_33_12_124701bib45
  publication-title: Phys. Fluids
  doi: 10.1063/5.0053408
– start-page: 9
  year: 2004
  ident: cpb_33_12_124701bib50
– volume: 54
  start-page: 2853
  year: 2013
  ident: cpb_33_12_124701bib1
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-11825
– volume: 108
  start-page: 586
  year: 2011
  ident: cpb_33_12_124701bib40
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1010013108
– volume: 468
  start-page: 148
  year: 2018
  ident: cpb_33_12_124701bib9
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.08.001
– volume: 30
  year: 2018
  ident: cpb_33_12_124701bib30
  publication-title: Phys. Fluids
  doi: 10.1063/1.5045701
– volume: 10
  start-page: 33
  year: 2019
  ident: cpb_33_12_124701bib46
  publication-title: Micromachines
  doi: 10.3390/mi10010033
– volume: 25
  start-page: 7497
  year: 2015
  ident: cpb_33_12_124701bib4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503441
– volume: 6
  start-page: 1343
  year: 2009
  ident: cpb_33_12_124701bib42
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/mp900022m
– volume: 6
  year: 2020
  ident: cpb_33_12_124701bib13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba5855
– volume: 65
  year: 2002
  ident: cpb_33_12_124701bib54
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.041203
– volume: 615
  start-page: 401
  year: 2008
  ident: cpb_33_12_124701bib19
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008003807
– volume: 24
  year: 2012
  ident: cpb_33_12_124701bib36
  publication-title: Phys. Fluids
  doi: 10.1063/1.4758304
– volume: 44
  start-page: 1923
  year: 1998
  ident: cpb_33_12_124701bib47
  publication-title: AIChE J.
  doi: 10.1002/aic.690440822
– volume: 31
  year: 2022
  ident: cpb_33_12_124701bib48
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac339a
– volume: 117
  year: 2020
  ident: cpb_33_12_124701bib29
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2011146117
– volume: 373
  start-page: 287
  year: 1998
  ident: cpb_33_12_124701bib55
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098002493
– volume: 101
  year: 2020
  ident: cpb_33_12_124701bib21
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.052608
– volume: 16
  start-page: 6400
  year: 2020
  ident: cpb_33_12_124701bib44
  publication-title: Soft Matter
  doi: 10.1039/D0SM00616E
– volume: 56
  start-page: 65
  year: 2003
  ident: cpb_33_12_124701bib16
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/56.1.65
– volume: 34
  year: 2022
  ident: cpb_33_12_124701bib20
  publication-title: Phys. Fluids
  doi: 10.1063/5.0107133
– volume: 9
  start-page: 145
  year: 2007
  ident: cpb_33_12_124701bib31
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/5/145
– volume: 5
  start-page: 255
  year: 1971
  ident: cpb_33_12_124701bib14
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700047134
– volume: 5
  year: 2020
  ident: cpb_33_12_124701bib34
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.063102
– volume: 960
  start-page: A31
  year: 2023
  ident: cpb_33_12_124701bib18
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.155
– volume: 106
  start-page: 1537
  year: 2014
  ident: cpb_33_12_124701bib26
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.01.047
– volume: 122
  year: 2020
  ident: cpb_33_12_124701bib41
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.109353
– volume: 260
  year: 2020
  ident: cpb_33_12_124701bib2
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120163
– volume: 55
  year: 2023
  ident: cpb_33_12_124701bib57
  publication-title: Fluid Dyn. Res.
  doi: 10.1088/1873-7005/acfbb0
– volume: 22
  year: 2010
  ident: cpb_33_12_124701bib56
  publication-title: Phys. Fluids
  doi: 10.1063/1.3507951
– volume: 56
  start-page: 6811
  year: 1997
  ident: cpb_33_12_124701bib49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.6811
– volume: 184
  start-page: 406
  year: 2003
  ident: cpb_33_12_124701bib53
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(02)00022-0
– volume: 3
  year: 2018
  ident: cpb_33_12_124701bib12
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aar4423
– volume: 7
  year: 2020
  ident: cpb_33_12_124701bib11
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001256
– volume: 796
  start-page: 233
  year: 2016
  ident: cpb_33_12_124701bib33
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.239
– volume: 900
  start-page: A4
  year: 2020
  ident: cpb_33_12_124701bib35
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.456
– volume: 726
  start-page: 285
  year: 2013
  ident: cpb_33_12_124701bib37
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.225
– volume: 1
  start-page: 021
  year: 2015
  ident: cpb_33_12_124701bib8
  publication-title: Eng.
  doi: 10.15302/J-ENG-2015005
– volume: 539
  start-page: 93
  year: 2005
  ident: cpb_33_12_124701bib17
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005005768
– volume: 5
  start-page: 466
  year: 2018
  ident: cpb_33_12_124701bib5
  publication-title: Soft Robot.
  doi: 10.1089/soro.2017.0062
– volume: 11
  start-page: 116
  year: 2014
  ident: cpb_33_12_124701bib25
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/58706
– start-page: 119
  year: 1970
  ident: cpb_33_12_124701bib52
– volume: 43
  start-page: 1
  year: 2020
  ident: cpb_33_12_124701bib22
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2020-11927-2
– volume: 22
  year: 2010
  ident: cpb_33_12_124701bib32
  publication-title: Phys. Fluids
  doi: 10.1063/1.3507951
– volume: 90
  year: 2014
  ident: cpb_33_12_124701bib24
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.013010
– volume: 63
  start-page: 399
  year: 2011
  ident: cpb_33_12_124701bib28
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-010-9516-6
– volume: 10
  start-page: 2703
  year: 2019
  ident: cpb_33_12_124701bib6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10549-7
– volume: 81
  start-page: 488
  year: 2016
  ident: cpb_33_12_124701bib15
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxw030
– start-page: 470
  year: 2016
  ident: cpb_33_12_124701bib27
  doi: 10.1109/BIOROB.2016.7523671
– volume: 13
  year: 2023
  ident: cpb_33_12_124701bib23
  publication-title: AIP Adv.
  doi: 10.1063/9.0000441
– volume: 959
  start-page: A25
  year: 2023
  ident: cpb_33_12_124701bib38
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.126
– volume: 5
  year: 2015
  ident: cpb_33_12_124701bib7
  publication-title: Sci. Rep.
  doi: 10.1038/srep17414
– volume: 19
  start-page: 1914
  year: 2019
  ident: cpb_33_12_124701bib3
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05051
– volume: 14
  start-page: 999
  year: 2012
  ident: cpb_33_12_124701bib39
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-012-9712-1
SSID ssj0061023
Score 2.3479636
Snippet The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We...
The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method(LBM).We...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 124701
SubjectTerms direct numerical simulations
low-Reynolds-number motions
multiphase flows
swimming microorganisms
Title Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad84c3
https://d.wanfangdata.com.cn/periodical/zgwl-e202412039
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELz4Ft_koAcPWXeTtsnqaREXFXwcFDwIJU8V1-5quyzurzfTdH0hIt4amKbtTDqTycx8g9C2ii3lznGiuY5JxLUl0ptRop2h3t4zxhtQ73x2nhxfR6c38c0YOnivhen2KtVf85cBKDiwsEqIE3uQN0-gYfyeNCLSbBxNQuNKWN4nF5cjNZwAJgF4WyPqKkb50wxfbNK4f25ZwZM5md19MjbtWXQ7es2QY_JY6xeqpoffEBz_-R1zaKbahOJWIJ1HYzZbQFNlMqjOF9Fzu9MdYGdLzM8ce6_dy99g9Yol9vqW5Pey58dPkMuXDx7g6BvLzOCHIsfl2JtDbEtsCijs3MctXAy6xEAjgQACgrN-iBR1cIlvu4Su20dXh8ekas1ANE3iglCtqQXXMopcbLlMvJqkWgLauvEuWmQYFUZJ690vHbPICq4kZyy2VoikLptsGU1k3cyuIGy4UHXHlUuchvbXXoFERjHOnEoarslX0e5IOGkvIHCkZeRciBRYmAIL08DCVbTjuZ1Wv2H-Cx2u5PtBO7wbdFJL_Z6lQeusufbHqdbRNNwTyhM30ETx0rebfp9SqK1yPb4Bk73hDw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4qIgL0ALiXR_aAwfvw05iLzcErKAFygEkbsFPQCzZhWS1gl_P2M6qLUIIiVssjZ1k7MwjM_MNQj9Uail3jhPNdUoSri2RoEaJdoaCvmeMt32988lpdniR_LpML-s-p6EWpj-oRX8DLiNQcGRhnRAnmj5vnviG8U1pRKJZc2DcJJpOQRT7nK6jP2djUZx5XALvcY1n1HHKt1b5Ty9Nwr1DFU_hZHH9j8LpzqOr8aPGPJO7xrBSDf38CsXxE--ygOZqYxTvRvKvaMIW39CXkBSqy0X00O31R9jZgP1ZYvDe4RwYrJ6wxCB3SXkjBzC-9zl95ejW_wLHsjD4tipxGINaxDZgVPgCzx28i6tRnxjfUCCCgeBiGCNGPRxwbpfQRffgfO-Q1C0aiKZZWhGqNbXexUwSl1ouMxCXVEuPum7AVUsMo8IoacEN0ylLrOBKcsZSa4XIWrLDltFU0S_sCsKGC9VyXLnMad8GGwRJYhTjzKms7Tp8FW2PNygfRCSOPETQhcg9G3PPxjyycRX9BI7n9edYvkOH6z3-S_t8PerlloLt0qYt1ln74FLf0czZfjc_Pjr9vY5m_fRYsbiBpqrHod0E06VSW-F4vgCeqOZz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+features+induced+by+a+rod-shaped+microswimmer+and+its+swimming+efficiency%3A+A+two-dimensional+numerical+study&rft.jtitle=Chinese+physics+B&rft.au=Li+%E6%9D%8E%2C+Siwen+%E6%96%AF%E6%96%87&rft.au=Ying+%E5%BA%94%2C+Yuxiang+%E5%AE%87%E7%BF%94&rft.au=Jiang+%E5%A7%9C%2C+Tongxiao+%E7%AB%A5%E6%99%93&rft.au=Nie+%E8%81%82%2C+Deming+%E5%BE%B7%E6%98%8E&rft.date=2024-11-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=12&rft.spage=124701&rft_id=info:doi/10.1088%2F1674-1056%2Fad84c3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad84c3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg