Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study
The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of t...
Saved in:
Published in | Chinese physics B Vol. 33; no. 12; pp. 124701 - 355 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad84c3 |
Cover
Loading…
Abstract | The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of the Reynolds number (
Re
), aspect ratio (
ε
), squirmer-type factor (
β
) and blockage ratio (
κ
) on swimming efficiency (
η
) and power expenditure (
P
). The results show no significant difference in power expenditure between pushers (microswimmers propelled from the tail) and pullers (microswimmers propelled from the head) at the low Reynolds numbers adopted in this study. However, the swimming efficiency of pushers surpasses that of pullers. Moreover, as the degree of channel blockage increases (i.e.,
κ
increases), the squirmer rod consumes more energy while swimming, and its swimming efficiency also increases, which is clearly reflected when
ε
≤ 3. Notably, squirmer rods with a larger aspect ratio
ε
and a
β
value approaching 0 can achieve high swimming efficiency with lower power expenditure. The advantages of self-propelled microswimmers are manifested when
ε
> 4 and
β
= ±1, where the squirmer rod consumes less energy than a passive rod driven by an external field. These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry, propulsion mechanism and fluid dynamic environment. |
---|---|
AbstractList | The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of the Reynolds number (
Re
), aspect ratio (
ε
), squirmer-type factor (
β
) and blockage ratio (
κ
) on swimming efficiency (
η
) and power expenditure (
P
). The results show no significant difference in power expenditure between pushers (microswimmers propelled from the tail) and pullers (microswimmers propelled from the head) at the low Reynolds numbers adopted in this study. However, the swimming efficiency of pushers surpasses that of pullers. Moreover, as the degree of channel blockage increases (i.e.,
κ
increases), the squirmer rod consumes more energy while swimming, and its swimming efficiency also increases, which is clearly reflected when
ε
≤ 3. Notably, squirmer rods with a larger aspect ratio
ε
and a
β
value approaching 0 can achieve high swimming efficiency with lower power expenditure. The advantages of self-propelled microswimmers are manifested when
ε
> 4 and
β
= ±1, where the squirmer rod consumes less energy than a passive rod driven by an external field. These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry, propulsion mechanism and fluid dynamic environment. The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method(LBM).We considered variable-length squirmer rods,assembled from circular squirmer models with self-propulsion mechanisms,and analyzed the effects of the Reynolds number(Re),aspect ratio(ε),squirmer-type factor(β)and blockage ratio(κ)on swimming efficiency(η)and power expenditure(P).The results show no significant difference in power expenditure between pushers(microswimmers propelled from the tail)and pullers(microswimmers propelled from the head)at the low Reynolds numbers adopted in this study.However,the swimming efficiency of pushers surpasses that of pullers.Moreover,as the degree of channel blockage increases(i.e.,κ increases),the squirmer rod consumes more energy while swimming,and its swimming efficiency also increases,which is clearly reflected when ε ≤ 3.Notably,squirmer rods with a larger aspect ratio ε and a β value approaching O can achieve high swimming efficiency with lower power expenditure.The advantages of self-propelled microswimmers are manifested when ε>4 and β=±1,where the squirmer rod consumes less energy than a passive rod driven by an external field.These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry,propulsion mechanism and fluid dynamic environment. |
Author | Nie, Deming Ying, Yuxiang Li, Siwen Jiang, Tongxiao |
Author_xml | – sequence: 1 givenname: Siwen surname: Li fullname: Li, Siwen organization: China Jiliang University College of Metrology Measurement and Instrument, Hangzhou 310018, China – sequence: 2 givenname: Yuxiang surname: Ying fullname: Ying, Yuxiang organization: Zhejiang University Institute of Fluid Engineering, Hangzhou 310018, China – sequence: 3 givenname: Tongxiao surname: Jiang fullname: Jiang, Tongxiao organization: China Jiliang University College of Metrology Measurement and Instrument, Hangzhou 310018, China – sequence: 4 givenname: Deming surname: Nie fullname: Nie, Deming organization: China Jiliang University College of Metrology Measurement and Instrument, Hangzhou 310018, China |
BookMark | eNp1kL1PwzAQxS1UJNrCzuiNhVB_JXHYqooCUiUWmC3XvhRXiVPiRFH460kIgonp7nTvPd39FmjmKw8IXVNyR4mUK5qkIqIkTlbaSmH4GZozEsuISy5maP67vkCLEI6EJJQwPkcf26LqcA66aWsI2HnbGrB432ON68pG4V2fhrl0pq5C58oSaqy9xa4J-Ht2_oAhz51x4E1_j9e46arIuhJ8cJXXBfbtYHJm6ELT2v4Snee6CHD1U5fobfvwunmKdi-Pz5v1LjIsiZuIGcMgFlkmRB5DqhNtLTOaEi4tFUJYzqTdaxBZbGIuQKZ7nXIeA0iZEJ3xJbqZcjvtc-0P6li19XBPUJ-HrlDACBOUET4qyaQcfww15OpUu1LXvaJEjXDVSE-N9NQEd7DcThZXnf6C_5V_AR_kflA |
Cites_doi | 10.1088/1402-4896/ad1912 10.1209/0295-5075/17/6/001 10.1016/j.snb.2020.128752 10.1063/5.0053408 10.1167/iovs.13-11825 10.1073/pnas.1010013108 10.1016/j.jmmm.2018.08.001 10.1063/1.5045701 10.3390/mi10010033 10.1002/adfm.201503441 10.1021/mp900022m 10.1126/sciadv.aba5855 10.1103/PhysRevE.65.041203 10.1017/S0022112008003807 10.1063/1.4758304 10.1002/aic.690440822 10.1088/1674-1056/ac339a 10.1073/pnas.2011146117 10.1017/S0022112098002493 10.1103/PhysRevE.101.052608 10.1039/D0SM00616E 10.1093/qjmam/56.1.65 10.1063/5.0107133 10.1088/1367-2630/9/5/145 10.1017/S0004972700047134 10.1103/PhysRevFluids.5.063102 10.1017/jfm.2023.155 10.1016/j.bpj.2014.01.047 10.1016/j.eurpolymj.2019.109353 10.1016/j.biomaterials.2020.120163 10.1088/1873-7005/acfbb0 10.1063/1.3507951 10.1103/PhysRevE.56.6811 10.1016/S0021-9991(02)00022-0 10.1126/scirobotics.aar4423 10.1002/advs.202001256 10.1017/jfm.2016.239 10.1017/jfm.2020.456 10.1017/jfm.2013.225 10.15302/J-ENG-2015005 10.1017/S0022112005005768 10.1089/soro.2017.0062 10.5772/58706 10.1140/epje/i2020-11927-2 10.1103/PhysRevE.90.013010 10.1007/s10846-010-9516-6 10.1038/s41467-019-10549-7 10.1093/imamat/hxw030 10.1109/BIOROB.2016.7523671 10.1063/9.0000441 10.1017/jfm.2023.126 10.1038/srep17414 10.1021/acs.nanolett.8b05051 10.1007/s10544-012-9712-1 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad84c3 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 355 |
ExternalDocumentID | zgwl_e202412039 10_1088_1674_1056_ad84c3 cpb_33_12_124701 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c265t-2cc2e549944f5e7a6add2ca1038d1444d328dbae495c534e87ba7335ee8860a93 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:16 EDT 2025 Tue Nov 19 23:09:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | direct numerical simulations low-Reynolds-number motions multiphase flows swimming mi-croorganisms |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-2cc2e549944f5e7a6add2ca1038d1444d328dbae495c534e87ba7335ee8860a93 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_zgwl_e202412039 crossref_primary_10_1088_1674_1056_ad84c3 iop_journals_10_1088_1674_1056_ad84c3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Ouyang (cpb_33_12_124701bib30) 2018; 30 Rühle (cpb_33_12_124701bib22) 2020; 43 Shintake (cpb_33_12_124701bib5) 2018; 5 Pedley (cpb_33_12_124701bib15) 2016; 81 Ullrich (cpb_33_12_124701bib1) 2013; 54 Blake (cpb_33_12_124701bib14) 1971; 5 Nejati (cpb_33_12_124701bib41) 2020; 122 Zhang (cpb_33_12_124701bib48) 2022; 31 Magar (cpb_33_12_124701bib17) 2005; 539 Agrahari (cpb_33_12_124701bib2) 2020; 260 Wei (cpb_33_12_124701bib3) 2019; 19 Alapan (cpb_33_12_124701bib12) 2018; 3 Omori (cpb_33_12_124701bib29) 2020; 117 Fadda (cpb_33_12_124701bib21) 2020; 101 Chapman (cpb_33_12_124701bib52) 1970 Wang (cpb_33_12_124701bib36) 2012; 24 Michelin (cpb_33_12_124701bib56) 2010; 22 Binagia (cpb_33_12_124701bib35) 2020; 900 Biondi (cpb_33_12_124701bib47) 1998; 44 Magdanz (cpb_33_12_124701bib13) 2020; 6 Lucarini (cpb_33_12_124701bib25) 2014; 11 Leshansky (cpb_33_12_124701bib31) 2007; 9 Aidun (cpb_33_12_124701bib55) 1998; 373 Ren (cpb_33_12_124701bib6) 2019; 10 Eastham (cpb_33_12_124701bib34) 2020; 5 Acemoglu (cpb_33_12_124701bib26) 2014; 106 Wu (cpb_33_12_124701bib4) 2015; 25 Qiu (cpb_33_12_124701bib8) 2015; 1 Nie (cpb_33_12_124701bib18) 2023; 960 Ghanbari (cpb_33_12_124701bib28) 2011; 63 Darmawan (cpb_33_12_124701bib10) 2020; 324 Ishikawa (cpb_33_12_124701bib19) 2008; 615 Ullrich (cpb_33_12_124701bib27) 2016 Ouyang (cpb_33_12_124701bib45) 2021; 33 Ying (cpb_33_12_124701bib20) 2022; 34 Zhu (cpb_33_12_124701bib37) 2013; 726 Ying (cpb_33_12_124701bib43) 2024; 99 Michelin (cpb_33_12_124701bib32) 2010; 22 Christian (cpb_33_12_124701bib42) 2009; 6 Chisholm (cpb_33_12_124701bib33) 2016; 796 Ishikawa (cpb_33_12_124701bib46) 2019; 10 Akolpoglu (cpb_33_12_124701bib11) 2020; 7 Ouyang (cpb_33_12_124701bib38) 2023; 959 Qian (cpb_33_12_124701bib51) 1992; 17 Zheng (cpb_33_12_124701bib23) 2023; 13 Wolf-Gladrow (cpb_33_12_124701bib50) 2004 Li (cpb_33_12_124701bib57) 2023; 55 Gong (cpb_33_12_124701bib9) 2018; 468 Sahari (cpb_33_12_124701bib39) 2012; 14 He (cpb_33_12_124701bib49) 1997; 56 Merkel (cpb_33_12_124701bib40) 2011; 108 Huang (cpb_33_12_124701bib7) 2015; 5 Magar (cpb_33_12_124701bib16) 2003; 56 Lallemand (cpb_33_12_124701bib53) 2003; 184 Mei (cpb_33_12_124701bib54) 2002; 65 Zantop (cpb_33_12_124701bib44) 2020; 16 Li (cpb_33_12_124701bib24) 2014; 90 |
References_xml | – volume: 99 year: 2024 ident: cpb_33_12_124701bib43 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad1912 – volume: 17 start-page: 479 year: 1992 ident: cpb_33_12_124701bib51 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/17/6/001 – volume: 324 year: 2020 ident: cpb_33_12_124701bib10 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128752 – volume: 33 year: 2021 ident: cpb_33_12_124701bib45 publication-title: Phys. Fluids doi: 10.1063/5.0053408 – start-page: 9 year: 2004 ident: cpb_33_12_124701bib50 – volume: 54 start-page: 2853 year: 2013 ident: cpb_33_12_124701bib1 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-11825 – volume: 108 start-page: 586 year: 2011 ident: cpb_33_12_124701bib40 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1010013108 – volume: 468 start-page: 148 year: 2018 ident: cpb_33_12_124701bib9 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.08.001 – volume: 30 year: 2018 ident: cpb_33_12_124701bib30 publication-title: Phys. Fluids doi: 10.1063/1.5045701 – volume: 10 start-page: 33 year: 2019 ident: cpb_33_12_124701bib46 publication-title: Micromachines doi: 10.3390/mi10010033 – volume: 25 start-page: 7497 year: 2015 ident: cpb_33_12_124701bib4 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503441 – volume: 6 start-page: 1343 year: 2009 ident: cpb_33_12_124701bib42 publication-title: Mol. Pharmaceutics doi: 10.1021/mp900022m – volume: 6 year: 2020 ident: cpb_33_12_124701bib13 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba5855 – volume: 65 year: 2002 ident: cpb_33_12_124701bib54 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.65.041203 – volume: 615 start-page: 401 year: 2008 ident: cpb_33_12_124701bib19 publication-title: J. Fluid Mech. doi: 10.1017/S0022112008003807 – volume: 24 year: 2012 ident: cpb_33_12_124701bib36 publication-title: Phys. Fluids doi: 10.1063/1.4758304 – volume: 44 start-page: 1923 year: 1998 ident: cpb_33_12_124701bib47 publication-title: AIChE J. doi: 10.1002/aic.690440822 – volume: 31 year: 2022 ident: cpb_33_12_124701bib48 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac339a – volume: 117 year: 2020 ident: cpb_33_12_124701bib29 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2011146117 – volume: 373 start-page: 287 year: 1998 ident: cpb_33_12_124701bib55 publication-title: J. Fluid Mech. doi: 10.1017/S0022112098002493 – volume: 101 year: 2020 ident: cpb_33_12_124701bib21 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.052608 – volume: 16 start-page: 6400 year: 2020 ident: cpb_33_12_124701bib44 publication-title: Soft Matter doi: 10.1039/D0SM00616E – volume: 56 start-page: 65 year: 2003 ident: cpb_33_12_124701bib16 publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/56.1.65 – volume: 34 year: 2022 ident: cpb_33_12_124701bib20 publication-title: Phys. Fluids doi: 10.1063/5.0107133 – volume: 9 start-page: 145 year: 2007 ident: cpb_33_12_124701bib31 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/5/145 – volume: 5 start-page: 255 year: 1971 ident: cpb_33_12_124701bib14 publication-title: Bull. Aust. Math. Soc. doi: 10.1017/S0004972700047134 – volume: 5 year: 2020 ident: cpb_33_12_124701bib34 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.063102 – volume: 960 start-page: A31 year: 2023 ident: cpb_33_12_124701bib18 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.155 – volume: 106 start-page: 1537 year: 2014 ident: cpb_33_12_124701bib26 publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.01.047 – volume: 122 year: 2020 ident: cpb_33_12_124701bib41 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.109353 – volume: 260 year: 2020 ident: cpb_33_12_124701bib2 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120163 – volume: 55 year: 2023 ident: cpb_33_12_124701bib57 publication-title: Fluid Dyn. Res. doi: 10.1088/1873-7005/acfbb0 – volume: 22 year: 2010 ident: cpb_33_12_124701bib56 publication-title: Phys. Fluids doi: 10.1063/1.3507951 – volume: 56 start-page: 6811 year: 1997 ident: cpb_33_12_124701bib49 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.6811 – volume: 184 start-page: 406 year: 2003 ident: cpb_33_12_124701bib53 publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(02)00022-0 – volume: 3 year: 2018 ident: cpb_33_12_124701bib12 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aar4423 – volume: 7 year: 2020 ident: cpb_33_12_124701bib11 publication-title: Adv. Sci. doi: 10.1002/advs.202001256 – volume: 796 start-page: 233 year: 2016 ident: cpb_33_12_124701bib33 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.239 – volume: 900 start-page: A4 year: 2020 ident: cpb_33_12_124701bib35 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.456 – volume: 726 start-page: 285 year: 2013 ident: cpb_33_12_124701bib37 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.225 – volume: 1 start-page: 021 year: 2015 ident: cpb_33_12_124701bib8 publication-title: Eng. doi: 10.15302/J-ENG-2015005 – volume: 539 start-page: 93 year: 2005 ident: cpb_33_12_124701bib17 publication-title: J. Fluid Mech. doi: 10.1017/S0022112005005768 – volume: 5 start-page: 466 year: 2018 ident: cpb_33_12_124701bib5 publication-title: Soft Robot. doi: 10.1089/soro.2017.0062 – volume: 11 start-page: 116 year: 2014 ident: cpb_33_12_124701bib25 publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/58706 – start-page: 119 year: 1970 ident: cpb_33_12_124701bib52 – volume: 43 start-page: 1 year: 2020 ident: cpb_33_12_124701bib22 publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2020-11927-2 – volume: 22 year: 2010 ident: cpb_33_12_124701bib32 publication-title: Phys. Fluids doi: 10.1063/1.3507951 – volume: 90 year: 2014 ident: cpb_33_12_124701bib24 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.013010 – volume: 63 start-page: 399 year: 2011 ident: cpb_33_12_124701bib28 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-010-9516-6 – volume: 10 start-page: 2703 year: 2019 ident: cpb_33_12_124701bib6 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10549-7 – volume: 81 start-page: 488 year: 2016 ident: cpb_33_12_124701bib15 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxw030 – start-page: 470 year: 2016 ident: cpb_33_12_124701bib27 doi: 10.1109/BIOROB.2016.7523671 – volume: 13 year: 2023 ident: cpb_33_12_124701bib23 publication-title: AIP Adv. doi: 10.1063/9.0000441 – volume: 959 start-page: A25 year: 2023 ident: cpb_33_12_124701bib38 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.126 – volume: 5 year: 2015 ident: cpb_33_12_124701bib7 publication-title: Sci. Rep. doi: 10.1038/srep17414 – volume: 19 start-page: 1914 year: 2019 ident: cpb_33_12_124701bib3 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05051 – volume: 14 start-page: 999 year: 2012 ident: cpb_33_12_124701bib39 publication-title: Biomed. Microdevices doi: 10.1007/s10544-012-9712-1 |
SSID | ssj0061023 |
Score | 2.3479636 |
Snippet | The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We... The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method(LBM).We... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 124701 |
SubjectTerms | direct numerical simulations low-Reynolds-number motions multiphase flows swimming microorganisms |
Title | Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad84c3 https://d.wanfangdata.com.cn/periodical/zgwl-e202412039 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELz4Ft_koAcPWXeTtsnqaREXFXwcFDwIJU8V1-5quyzurzfTdH0hIt4amKbtTDqTycx8g9C2ii3lznGiuY5JxLUl0ptRop2h3t4zxhtQ73x2nhxfR6c38c0YOnivhen2KtVf85cBKDiwsEqIE3uQN0-gYfyeNCLSbBxNQuNKWN4nF5cjNZwAJgF4WyPqKkb50wxfbNK4f25ZwZM5md19MjbtWXQ7es2QY_JY6xeqpoffEBz_-R1zaKbahOJWIJ1HYzZbQFNlMqjOF9Fzu9MdYGdLzM8ce6_dy99g9Yol9vqW5Pey58dPkMuXDx7g6BvLzOCHIsfl2JtDbEtsCijs3MctXAy6xEAjgQACgrN-iBR1cIlvu4Su20dXh8ekas1ANE3iglCtqQXXMopcbLlMvJqkWgLauvEuWmQYFUZJ690vHbPICq4kZyy2VoikLptsGU1k3cyuIGy4UHXHlUuchvbXXoFERjHOnEoarslX0e5IOGkvIHCkZeRciBRYmAIL08DCVbTjuZ1Wv2H-Cx2u5PtBO7wbdFJL_Z6lQeusufbHqdbRNNwTyhM30ETx0rebfp9SqK1yPb4Bk73hDw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4qIgL0ALiXR_aAwfvw05iLzcErKAFygEkbsFPQCzZhWS1gl_P2M6qLUIIiVssjZ1k7MwjM_MNQj9Uail3jhPNdUoSri2RoEaJdoaCvmeMt32988lpdniR_LpML-s-p6EWpj-oRX8DLiNQcGRhnRAnmj5vnviG8U1pRKJZc2DcJJpOQRT7nK6jP2djUZx5XALvcY1n1HHKt1b5Ty9Nwr1DFU_hZHH9j8LpzqOr8aPGPJO7xrBSDf38CsXxE--ygOZqYxTvRvKvaMIW39CXkBSqy0X00O31R9jZgP1ZYvDe4RwYrJ6wxCB3SXkjBzC-9zl95ejW_wLHsjD4tipxGINaxDZgVPgCzx28i6tRnxjfUCCCgeBiGCNGPRxwbpfQRffgfO-Q1C0aiKZZWhGqNbXexUwSl1ouMxCXVEuPum7AVUsMo8IoacEN0ylLrOBKcsZSa4XIWrLDltFU0S_sCsKGC9VyXLnMad8GGwRJYhTjzKms7Tp8FW2PNygfRCSOPETQhcg9G3PPxjyycRX9BI7n9edYvkOH6z3-S_t8PerlloLt0qYt1ln74FLf0czZfjc_Pjr9vY5m_fRYsbiBpqrHod0E06VSW-F4vgCeqOZz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+features+induced+by+a+rod-shaped+microswimmer+and+its+swimming+efficiency%3A+A+two-dimensional+numerical+study&rft.jtitle=Chinese+physics+B&rft.au=Li+%E6%9D%8E%2C+Siwen+%E6%96%AF%E6%96%87&rft.au=Ying+%E5%BA%94%2C+Yuxiang+%E5%AE%87%E7%BF%94&rft.au=Jiang+%E5%A7%9C%2C+Tongxiao+%E7%AB%A5%E6%99%93&rft.au=Nie+%E8%81%82%2C+Deming+%E5%BE%B7%E6%98%8E&rft.date=2024-11-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=12&rft.spage=124701&rft_id=info:doi/10.1088%2F1674-1056%2Fad84c3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad84c3 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |