Edge modes in finite-size systems with different edge terminals
We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model crystals with two different types of structures (type I: “…– P – Q – P – Q –…” and type II: “… = P – Q = P – Q = …”), where P and Q represent crys...
Saved in:
Published in | Chinese physics B Vol. 33; no. 10; pp. 107302 - 439 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad6a05 |
Cover
Abstract | We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model crystals with two different types of structures (type I: “…–
P
–
Q
–
P
–
Q
–…” and type II: “… =
P
–
Q
=
P
–
Q
= …”), where
P
and
Q
represent crystal lines (CLs), while the symbols “–” and “=” denote the distance between the nearest neighbor (NN) CLs. Based on the lattice model Hamiltonian with LR hopping, the existence of edge modes is determined analytically by using the transfer matrix method (TMM) when different edge terminals are taken into consideration. Our findings are consistent with the numerical results obtained by the exact diagonalization method. We also notice that edge modes can exhibit different behaviors under different edge terminals. Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals. |
---|---|
AbstractList | We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model crystals with two different types of structures (type I: “…–
P
–
Q
–
P
–
Q
–…” and type II: “… =
P
–
Q
=
P
–
Q
= …”), where
P
and
Q
represent crystal lines (CLs), while the symbols “–” and “=” denote the distance between the nearest neighbor (NN) CLs. Based on the lattice model Hamiltonian with LR hopping, the existence of edge modes is determined analytically by using the transfer matrix method (TMM) when different edge terminals are taken into consideration. Our findings are consistent with the numerical results obtained by the exact diagonalization method. We also notice that edge modes can exhibit different behaviors under different edge terminals. Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals. We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type Ⅰ:"…-P-Q-P-Q-…"and type Ⅱ:"…=P-Q=P-Q=…"),where P and Q represent crystal lines(CLs),while the symbols"-"and"="denote the distance between the nearest neighbor(NN)CLs.Based on the lattice model Hamiltonian with LR hopping,the existence of edge modes is determined analytically by using the transfer matrix method(TMM)when different edge terminals are taken into consideration.Our findings are consistent with the numerical results obtained by the exact diagonalization method.We also notice that edge modes can exhibit different behaviors under different edge terminals.Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals. |
Author | Zhang, Xiuli Wang, Huiping Ren, Li Qin, Liguo |
Author_xml | – sequence: 1 givenname: Huiping surname: Wang fullname: Wang, Huiping organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China – sequence: 2 givenname: Li surname: Ren fullname: Ren, Li organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China – sequence: 3 givenname: Xiuli surname: Zhang fullname: Zhang, Xiuli organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China – sequence: 4 givenname: Liguo surname: Qin fullname: Qin, Liguo organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China |
BookMark | eNp1kDFPwzAUhC1UJNLCzuiNhdBnJ3aTCaGqBaRKLDBbTvwcXDVOZQdV7a-nURBMLO-Gd3c6fVMy8Z1HQm4ZPDAoijmTizxlIORcG6lBXJCEgyjSrMjyCUl-31dkGuMWQDLgWUIeV6ZB2nYGI3WeWuddj2l0J6TxGHtsIz24_pMaZy0G9D3FIdBjaJ3Xu3hNLu1Z8OZHZ-RjvXpfvqSbt-fX5dMmrbkUfcoXMrOo81JqtLYCbjjTvGJlCbIWmWVFaarhlrwCJg0wwaACLGVRS5Qim5G7sfegvdW-UdvuKwwD1Kk57BRy4DkDEPzshNFZhy7GgFbtg2t1OCoGakClBhZqYKFGVOfI_Rhx3f6v-F_7N5v7avA |
Cites_doi | 10.1103/PhysRevLett.119.023001 10.1126/science.1133734 10.1103/PhysRevB.55.1142 10.1088/1674-1056/abe9a5 10.1103/PhysRevLett.49.405 10.1088/0268-1242/25/3/033003 10.1103/PhysRevLett.124.236404 10.1038/s41598-017-08364-5 10.1021/acsnano.8b07631 10.1103/PhysRevB.97.041109 10.1088/1674-1056/24/11/117301 10.1103/PhysRevB.83.045414 10.1103/PhysRevA.90.023634 10.1016/j.physe.2023.115655 10.1103/RevModPhys.58.519 10.1103/PhysRevB.54.17954 10.1038/s41598-023-40059-y 10.1021/ja805545x 10.1038/nphys2513 10.1126/science.1166862 10.1103/PhysRevB.103.125411 10.1103/PhysRevB.23.4988 10.1016/j.physb.2011.12.009 10.1143/JPSJ.65.1920 10.1088/2053-1583/acaa45 10.1038/srep08679 10.1103/PhysRevLett.106.106802 10.1103/PhysRevLett.120.017001 10.1103/PhysRevLett.116.250402 10.1103/PhysRevB.76.205402 10.1103/PhysRevB.88.121401 10.1103/PhysRevB.88.165111 10.7566/JPSJ.89.074705 10.1080/01442350701611991 10.1039/c2jm15906f 10.1103/PhysRevLett.95.226801 10.1103/PhysRevB.107.115403 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad6a05 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 439 |
ExternalDocumentID | zgwl_e202410052 10_1088_1674_1056_ad6a05 cpb_33_10_107302 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c265t-2763fea496aeffb02d21a2b19906c53f189dbf18992b016d01510b0e968c6e653 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:15 EDT 2025 Wed Sep 25 08:11:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | long-range hopping edge modes different edge terminals |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-2763fea496aeffb02d21a2b19906c53f189dbf18992b016d01510b0e968c6e653 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_ad6a05 iop_journals_10_1088_1674_1056_ad6a05 wanfang_journals_zgwl_e202410052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Viyuela (cpb_33_10_107302bib19) 2019; 13 Sadeghizadeh (cpb_33_10_107302bib22) 2023; 13 Fu (cpb_33_10_107302bib7) 2011; 106 Jia (cpb_33_10_107302bib17) 2009; 323 DeGottardi (cpb_33_10_107302bib26) 2013; 88 Di Liberto (cpb_33_10_107302bib27) 2014; 90 Kunstmann (cpb_33_10_107302bib12) 2011; 83 Salehitaleghani (cpb_33_10_107302bib23) 2023; 10 Xu (cpb_33_10_107302bib31) 2021; 103 Bernevig (cpb_33_10_107302bib5) 2006; 314 Wang (cpb_33_10_107302bib32) 2020; 89 Lepori (cpb_33_10_107302bib28) 2018; 97 Maghrebi (cpb_33_10_107302bib29) 2017; 119 García-Fuente (cpb_33_10_107302bib21) 2023; 107 Thouless (cpb_33_10_107302bib3) 1982; 49 Viyuela (cpb_33_10_107302bib25) 2018; 120 Deng (cpb_33_10_107302bib14) 2017; 7 Altland (cpb_33_10_107302bib2) 1997; 55 Fujita (cpb_33_10_107302bib11) 1996; 65 Wang (cpb_33_10_107302bib36) 2015; 24 Li (cpb_33_10_107302bib16) 2008; 130 Wang (cpb_33_10_107302bib33) 2021; 10 Nakada (cpb_33_10_107302bib10) 1996; 54 Slager (cpb_33_10_107302bib6) 2013; 9 Gao (cpb_33_10_107302bib24) 2023; 148 Palacios (cpb_33_10_107302bib9) 2010; 25 Santos (cpb_33_10_107302bib30) 2016; 116 Ezawa (cpb_33_10_107302bib20) 2013; 88 Pan (cpb_33_10_107302bib8) 2012; 22 Kohmoto (cpb_33_10_107302bib13) 2007; 76 Von Klitzing (cpb_33_10_107302bib1) 1986; 58 Enoki (cpb_33_10_107302bib18) 2007; 26 Kane (cpb_33_10_107302bib4) 2005; 95 Freeney (cpb_33_10_107302bib15) 2020; 124 Wang (cpb_33_10_107302bib37) 2015; 5 Lee (cpb_33_10_107302bib34) 1981; 23 Zhao (cpb_33_10_107302bib35) 2012; 407 |
References_xml | – volume: 119 year: 2017 ident: cpb_33_10_107302bib29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.023001 – volume: 314 start-page: 1757 year: 2006 ident: cpb_33_10_107302bib5 publication-title: Science doi: 10.1126/science.1133734 – volume: 55 start-page: 1142 year: 1997 ident: cpb_33_10_107302bib2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.1142 – volume: 10 year: 2021 ident: cpb_33_10_107302bib33 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/abe9a5 – volume: 49 start-page: 405 year: 1982 ident: cpb_33_10_107302bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.405 – volume: 25 year: 2010 ident: cpb_33_10_107302bib9 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/25/3/033003 – volume: 124 year: 2020 ident: cpb_33_10_107302bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.236404 – volume: 7 start-page: 7855 year: 2017 ident: cpb_33_10_107302bib14 publication-title: Sci. Rep. doi: 10.1038/s41598-017-08364-5 – volume: 13 start-page: 1635 year: 2019 ident: cpb_33_10_107302bib19 publication-title: ACS Nano doi: 10.1021/acsnano.8b07631 – volume: 97 year: 2018 ident: cpb_33_10_107302bib28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.041109 – volume: 24 year: 2015 ident: cpb_33_10_107302bib36 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/24/11/117301 – volume: 83 year: 2011 ident: cpb_33_10_107302bib12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.045414 – volume: 90 year: 2014 ident: cpb_33_10_107302bib27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.023634 – volume: 148 year: 2023 ident: cpb_33_10_107302bib24 publication-title: Physica E doi: 10.1016/j.physe.2023.115655 – volume: 58 start-page: 519 year: 1986 ident: cpb_33_10_107302bib1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.58.519 – volume: 54 year: 1996 ident: cpb_33_10_107302bib10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.17954 – volume: 13 year: 2023 ident: cpb_33_10_107302bib22 publication-title: Sci. Rep. doi: 10.1038/s41598-023-40059-y – volume: 130 year: 2008 ident: cpb_33_10_107302bib16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805545x – volume: 9 start-page: 98 year: 2013 ident: cpb_33_10_107302bib6 publication-title: Nat. Phys. doi: 10.1038/nphys2513 – volume: 323 start-page: 1701 year: 2009 ident: cpb_33_10_107302bib17 publication-title: Science doi: 10.1126/science.1166862 – volume: 103 year: 2021 ident: cpb_33_10_107302bib31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.125411 – volume: 23 start-page: 4988 year: 1981 ident: cpb_33_10_107302bib34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.4988 – volume: 407 start-page: 724 year: 2012 ident: cpb_33_10_107302bib35 publication-title: Physica B doi: 10.1016/j.physb.2011.12.009 – volume: 65 start-page: 1920 year: 1996 ident: cpb_33_10_107302bib11 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.65.1920 – volume: 10 year: 2023 ident: cpb_33_10_107302bib23 publication-title: 2D Mater. doi: 10.1088/2053-1583/acaa45 – volume: 5 start-page: 8679 year: 2015 ident: cpb_33_10_107302bib37 publication-title: Sci. Rep. doi: 10.1038/srep08679 – volume: 106 year: 2011 ident: cpb_33_10_107302bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.106802 – volume: 120 year: 2018 ident: cpb_33_10_107302bib25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.017001 – volume: 116 year: 2016 ident: cpb_33_10_107302bib30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.250402 – volume: 76 year: 2007 ident: cpb_33_10_107302bib13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.205402 – volume: 88 year: 2013 ident: cpb_33_10_107302bib20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.121401 – volume: 88 year: 2013 ident: cpb_33_10_107302bib26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.165111 – volume: 89 year: 2020 ident: cpb_33_10_107302bib32 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.89.074705 – volume: 26 start-page: 609 year: 2007 ident: cpb_33_10_107302bib18 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/01442350701611991 – volume: 22 start-page: 7280 year: 2012 ident: cpb_33_10_107302bib8 publication-title: J. Mater. Chem. doi: 10.1039/c2jm15906f – volume: 95 year: 2005 ident: cpb_33_10_107302bib4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.226801 – volume: 107 year: 2023 ident: cpb_33_10_107302bib21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.115403 |
SSID | ssj0061023 |
Score | 2.342257 |
Snippet | We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model... We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 107302 |
SubjectTerms | different edge terminals edge modes long-range hopping |
Title | Edge modes in finite-size systems with different edge terminals |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad6a05 https://d.wanfangdata.com.cn/periodical/zgwl-e202410052 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5xf5KAHD93WtM0aPIjIxhT8ODjYQShJk4zh6IbtEPbXm9ekfiEiXkIPr2n7kr73y8sv7yF0YlAAF2GHeIKYJmS67QkWC4_SyBc0ILHPIQ55e0f7g_BmGA1r6Pz9LMx05kx_01zaRMFWhY4QF7eAN-9BwfgWl5RD_tJlKFwJ0_v6_qEywxRyEsBqq5J2e5Q_9fDFJy2Z55YneDLNs9EnZ9NbR0_Va1qOyXNzXohmuviWwfGf37GB1hwIxZdWdBPVVLaFVkoyaJpvo4uuHCkMNXJyPM6wHgMu9fLxQmGb-DnHEL7FVXGVAkNQDjtezSTfQYNe9_Gq77lCC15KaFR4xBgZrXjIKFdaizaRxOdE-MZT0TQKtB8zKaBlRBiIKA2E8NuirRiNU6poFOyiejbN1B7CTHMuzYjLlPEw4oITFkoayoCknQ4PaQOdVapOZjafRlLug8dxAgpJQCGJVUgDnRrdJe6nyn-Rw260PmQXo9dJoohBID5Evvf_2NUBWoV7LInsENWLl7k6MqijEMfl7HoDWUPNLg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEYiFN6I8PcDA4DZxEjeeEIJWLY_SgUrdgh3bVUWVViQVUn89duKIhxBCYrEynJ3knNx9Pn--A-BMowDG_SZGHOvGp8pBnIYcERK4nHg4dJmJQz70SGfg3w6Doa1zmp-Fmc6s6a_ryyJRcKFCS4gLG4Y3j0zB-AYThDlBYyZUBSwH2hQbTlf3sV-aYmLyEpgVV9nD7lP-NMoXv1TR985P8SSKJaNPDqe9AZ7LRy14Ji_1ecbr8eJbFsd_vMsmWLdgFF4V4ltgSSbbYCUnhcbpDrhsiZGEplZOCscJVGODT1E6XkhYJIBOoQnjwrLISgZNcA5afs0k3QWDduvpuoNswQUUYxJkCGtjoyTzKWFSKe5ggV2Guas9FokDT7khFdy0FHMNFYWGEq7DHUlJGBNJAm8PVJNpIvcBpIoxoWdexJT5AeMMU18QX3g4bjaZT2rgolR3NCvyakT5fngYRkYpkVFKVCilBs61_iL7c6W_yEE7Yx-yi9HbJJJYIxHXRMAP_jjUKVjt37Sj-27v7hCsme4Fr-wIVLPXuTzWQCTjJ_nH9g7zPNKS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+modes+in+finite-size+systems+with+different+edge+terminals&rft.jtitle=Chinese+physics+B&rft.au=Wang%2C+Huiping&rft.au=Ren%2C+Li&rft.au=Zhang%2C+Xiuli&rft.au=Qin%2C+Liguo&rft.date=2024-09-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=33&rft.issue=10&rft_id=info:doi/10.1088%2F1674-1056%2Fad6a05&rft.externalDocID=cpb_33_10_107302 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |