Edge modes in finite-size systems with different edge terminals

We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model crystals with two different types of structures (type I: “…– P – Q – P – Q –…” and type II: “… = P – Q = P – Q = …”), where P and Q represent crys...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 10; pp. 107302 - 439
Main Authors Wang, Huiping, Ren, Li, Zhang, Xiuli, Qin, Liguo
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.09.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad6a05

Cover

Abstract We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model crystals with two different types of structures (type I: “…– P – Q – P – Q –…” and type II: “… = P – Q = P – Q = …”), where P and Q represent crystal lines (CLs), while the symbols “–” and “=” denote the distance between the nearest neighbor (NN) CLs. Based on the lattice model Hamiltonian with LR hopping, the existence of edge modes is determined analytically by using the transfer matrix method (TMM) when different edge terminals are taken into consideration. Our findings are consistent with the numerical results obtained by the exact diagonalization method. We also notice that edge modes can exhibit different behaviors under different edge terminals. Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals.
AbstractList We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model crystals with two different types of structures (type I: “…– P – Q – P – Q –…” and type II: “… = P – Q = P – Q = …”), where P and Q represent crystal lines (CLs), while the symbols “–” and “=” denote the distance between the nearest neighbor (NN) CLs. Based on the lattice model Hamiltonian with LR hopping, the existence of edge modes is determined analytically by using the transfer matrix method (TMM) when different edge terminals are taken into consideration. Our findings are consistent with the numerical results obtained by the exact diagonalization method. We also notice that edge modes can exhibit different behaviors under different edge terminals. Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals.
We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type Ⅰ:"…-P-Q-P-Q-…"and type Ⅱ:"…=P-Q=P-Q=…"),where P and Q represent crystal lines(CLs),while the symbols"-"and"="denote the distance between the nearest neighbor(NN)CLs.Based on the lattice model Hamiltonian with LR hopping,the existence of edge modes is determined analytically by using the transfer matrix method(TMM)when different edge terminals are taken into consideration.Our findings are consistent with the numerical results obtained by the exact diagonalization method.We also notice that edge modes can exhibit different behaviors under different edge terminals.Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals.
Author Zhang, Xiuli
Wang, Huiping
Ren, Li
Qin, Liguo
Author_xml – sequence: 1
  givenname: Huiping
  surname: Wang
  fullname: Wang, Huiping
  organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China
– sequence: 2
  givenname: Li
  surname: Ren
  fullname: Ren, Li
  organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China
– sequence: 3
  givenname: Xiuli
  surname: Zhang
  fullname: Zhang, Xiuli
  organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China
– sequence: 4
  givenname: Liguo
  surname: Qin
  fullname: Qin, Liguo
  organization: Shanghai University of Engineering Science School of Mathematics, Physics and Statistics, Shanghai 201620, China
BookMark eNp1kDFPwzAUhC1UJNLCzuiNhdBnJ3aTCaGqBaRKLDBbTvwcXDVOZQdV7a-nURBMLO-Gd3c6fVMy8Z1HQm4ZPDAoijmTizxlIORcG6lBXJCEgyjSrMjyCUl-31dkGuMWQDLgWUIeV6ZB2nYGI3WeWuddj2l0J6TxGHtsIz24_pMaZy0G9D3FIdBjaJ3Xu3hNLu1Z8OZHZ-RjvXpfvqSbt-fX5dMmrbkUfcoXMrOo81JqtLYCbjjTvGJlCbIWmWVFaarhlrwCJg0wwaACLGVRS5Qim5G7sfegvdW-UdvuKwwD1Kk57BRy4DkDEPzshNFZhy7GgFbtg2t1OCoGakClBhZqYKFGVOfI_Rhx3f6v-F_7N5v7avA
Cites_doi 10.1103/PhysRevLett.119.023001
10.1126/science.1133734
10.1103/PhysRevB.55.1142
10.1088/1674-1056/abe9a5
10.1103/PhysRevLett.49.405
10.1088/0268-1242/25/3/033003
10.1103/PhysRevLett.124.236404
10.1038/s41598-017-08364-5
10.1021/acsnano.8b07631
10.1103/PhysRevB.97.041109
10.1088/1674-1056/24/11/117301
10.1103/PhysRevB.83.045414
10.1103/PhysRevA.90.023634
10.1016/j.physe.2023.115655
10.1103/RevModPhys.58.519
10.1103/PhysRevB.54.17954
10.1038/s41598-023-40059-y
10.1021/ja805545x
10.1038/nphys2513
10.1126/science.1166862
10.1103/PhysRevB.103.125411
10.1103/PhysRevB.23.4988
10.1016/j.physb.2011.12.009
10.1143/JPSJ.65.1920
10.1088/2053-1583/acaa45
10.1038/srep08679
10.1103/PhysRevLett.106.106802
10.1103/PhysRevLett.120.017001
10.1103/PhysRevLett.116.250402
10.1103/PhysRevB.76.205402
10.1103/PhysRevB.88.121401
10.1103/PhysRevB.88.165111
10.7566/JPSJ.89.074705
10.1080/01442350701611991
10.1039/c2jm15906f
10.1103/PhysRevLett.95.226801
10.1103/PhysRevB.107.115403
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad6a05
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 439
ExternalDocumentID zgwl_e202410052
10_1088_1674_1056_ad6a05
cpb_33_10_107302
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c265t-2763fea496aeffb02d21a2b19906c53f189dbf18992b016d01510b0e968c6e653
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:15 EDT 2025
Wed Sep 25 08:11:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords long-range hopping
edge modes
different edge terminals
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-2763fea496aeffb02d21a2b19906c53f189dbf18992b016d01510b0e968c6e653
PageCount 7
ParticipantIDs crossref_primary_10_1088_1674_1056_ad6a05
iop_journals_10_1088_1674_1056_ad6a05
wanfang_journals_zgwl_e202410052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Viyuela (cpb_33_10_107302bib19) 2019; 13
Sadeghizadeh (cpb_33_10_107302bib22) 2023; 13
Fu (cpb_33_10_107302bib7) 2011; 106
Jia (cpb_33_10_107302bib17) 2009; 323
DeGottardi (cpb_33_10_107302bib26) 2013; 88
Di Liberto (cpb_33_10_107302bib27) 2014; 90
Kunstmann (cpb_33_10_107302bib12) 2011; 83
Salehitaleghani (cpb_33_10_107302bib23) 2023; 10
Xu (cpb_33_10_107302bib31) 2021; 103
Bernevig (cpb_33_10_107302bib5) 2006; 314
Wang (cpb_33_10_107302bib32) 2020; 89
Lepori (cpb_33_10_107302bib28) 2018; 97
Maghrebi (cpb_33_10_107302bib29) 2017; 119
García-Fuente (cpb_33_10_107302bib21) 2023; 107
Thouless (cpb_33_10_107302bib3) 1982; 49
Viyuela (cpb_33_10_107302bib25) 2018; 120
Deng (cpb_33_10_107302bib14) 2017; 7
Altland (cpb_33_10_107302bib2) 1997; 55
Fujita (cpb_33_10_107302bib11) 1996; 65
Wang (cpb_33_10_107302bib36) 2015; 24
Li (cpb_33_10_107302bib16) 2008; 130
Wang (cpb_33_10_107302bib33) 2021; 10
Nakada (cpb_33_10_107302bib10) 1996; 54
Slager (cpb_33_10_107302bib6) 2013; 9
Gao (cpb_33_10_107302bib24) 2023; 148
Palacios (cpb_33_10_107302bib9) 2010; 25
Santos (cpb_33_10_107302bib30) 2016; 116
Ezawa (cpb_33_10_107302bib20) 2013; 88
Pan (cpb_33_10_107302bib8) 2012; 22
Kohmoto (cpb_33_10_107302bib13) 2007; 76
Von Klitzing (cpb_33_10_107302bib1) 1986; 58
Enoki (cpb_33_10_107302bib18) 2007; 26
Kane (cpb_33_10_107302bib4) 2005; 95
Freeney (cpb_33_10_107302bib15) 2020; 124
Wang (cpb_33_10_107302bib37) 2015; 5
Lee (cpb_33_10_107302bib34) 1981; 23
Zhao (cpb_33_10_107302bib35) 2012; 407
References_xml – volume: 119
  year: 2017
  ident: cpb_33_10_107302bib29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.023001
– volume: 314
  start-page: 1757
  year: 2006
  ident: cpb_33_10_107302bib5
  publication-title: Science
  doi: 10.1126/science.1133734
– volume: 55
  start-page: 1142
  year: 1997
  ident: cpb_33_10_107302bib2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.1142
– volume: 10
  year: 2021
  ident: cpb_33_10_107302bib33
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/abe9a5
– volume: 49
  start-page: 405
  year: 1982
  ident: cpb_33_10_107302bib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– volume: 25
  year: 2010
  ident: cpb_33_10_107302bib9
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/25/3/033003
– volume: 124
  year: 2020
  ident: cpb_33_10_107302bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.236404
– volume: 7
  start-page: 7855
  year: 2017
  ident: cpb_33_10_107302bib14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08364-5
– volume: 13
  start-page: 1635
  year: 2019
  ident: cpb_33_10_107302bib19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07631
– volume: 97
  year: 2018
  ident: cpb_33_10_107302bib28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.041109
– volume: 24
  year: 2015
  ident: cpb_33_10_107302bib36
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/24/11/117301
– volume: 83
  year: 2011
  ident: cpb_33_10_107302bib12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.045414
– volume: 90
  year: 2014
  ident: cpb_33_10_107302bib27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.023634
– volume: 148
  year: 2023
  ident: cpb_33_10_107302bib24
  publication-title: Physica E
  doi: 10.1016/j.physe.2023.115655
– volume: 58
  start-page: 519
  year: 1986
  ident: cpb_33_10_107302bib1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.58.519
– volume: 54
  year: 1996
  ident: cpb_33_10_107302bib10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.17954
– volume: 13
  year: 2023
  ident: cpb_33_10_107302bib22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-40059-y
– volume: 130
  year: 2008
  ident: cpb_33_10_107302bib16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805545x
– volume: 9
  start-page: 98
  year: 2013
  ident: cpb_33_10_107302bib6
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2513
– volume: 323
  start-page: 1701
  year: 2009
  ident: cpb_33_10_107302bib17
  publication-title: Science
  doi: 10.1126/science.1166862
– volume: 103
  year: 2021
  ident: cpb_33_10_107302bib31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.125411
– volume: 23
  start-page: 4988
  year: 1981
  ident: cpb_33_10_107302bib34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.4988
– volume: 407
  start-page: 724
  year: 2012
  ident: cpb_33_10_107302bib35
  publication-title: Physica B
  doi: 10.1016/j.physb.2011.12.009
– volume: 65
  start-page: 1920
  year: 1996
  ident: cpb_33_10_107302bib11
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.65.1920
– volume: 10
  year: 2023
  ident: cpb_33_10_107302bib23
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/acaa45
– volume: 5
  start-page: 8679
  year: 2015
  ident: cpb_33_10_107302bib37
  publication-title: Sci. Rep.
  doi: 10.1038/srep08679
– volume: 106
  year: 2011
  ident: cpb_33_10_107302bib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106802
– volume: 120
  year: 2018
  ident: cpb_33_10_107302bib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.017001
– volume: 116
  year: 2016
  ident: cpb_33_10_107302bib30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.250402
– volume: 76
  year: 2007
  ident: cpb_33_10_107302bib13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.205402
– volume: 88
  year: 2013
  ident: cpb_33_10_107302bib20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.121401
– volume: 88
  year: 2013
  ident: cpb_33_10_107302bib26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.165111
– volume: 89
  year: 2020
  ident: cpb_33_10_107302bib32
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.89.074705
– volume: 26
  start-page: 609
  year: 2007
  ident: cpb_33_10_107302bib18
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350701611991
– volume: 22
  start-page: 7280
  year: 2012
  ident: cpb_33_10_107302bib8
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15906f
– volume: 95
  year: 2005
  ident: cpb_33_10_107302bib4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.226801
– volume: 107
  year: 2023
  ident: cpb_33_10_107302bib21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.115403
SSID ssj0061023
Score 2.342257
Snippet We investigate the behavior of edge modes in the presence of different edge terminations and long-range (LR) hopping. Here, we mainly focus on such model...
We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 107302
SubjectTerms different edge terminals
edge modes
long-range hopping
Title Edge modes in finite-size systems with different edge terminals
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad6a05
https://d.wanfangdata.com.cn/periodical/zgwl-e202410052
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5xf5KAHD93WtM0aPIjIxhT8ODjYQShJk4zh6IbtEPbXm9ekfiEiXkIPr2n7kr73y8sv7yF0YlAAF2GHeIKYJmS67QkWC4_SyBc0ILHPIQ55e0f7g_BmGA1r6Pz9LMx05kx_01zaRMFWhY4QF7eAN-9BwfgWl5RD_tJlKFwJ0_v6_qEywxRyEsBqq5J2e5Q_9fDFJy2Z55YneDLNs9EnZ9NbR0_Va1qOyXNzXohmuviWwfGf37GB1hwIxZdWdBPVVLaFVkoyaJpvo4uuHCkMNXJyPM6wHgMu9fLxQmGb-DnHEL7FVXGVAkNQDjtezSTfQYNe9_Gq77lCC15KaFR4xBgZrXjIKFdaizaRxOdE-MZT0TQKtB8zKaBlRBiIKA2E8NuirRiNU6poFOyiejbN1B7CTHMuzYjLlPEw4oITFkoayoCknQ4PaQOdVapOZjafRlLug8dxAgpJQCGJVUgDnRrdJe6nyn-Rw260PmQXo9dJoohBID5Evvf_2NUBWoV7LInsENWLl7k6MqijEMfl7HoDWUPNLg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEYiFN6I8PcDA4DZxEjeeEIJWLY_SgUrdgh3bVUWVViQVUn89duKIhxBCYrEynJ3knNx9Pn--A-BMowDG_SZGHOvGp8pBnIYcERK4nHg4dJmJQz70SGfg3w6Doa1zmp-Fmc6s6a_ryyJRcKFCS4gLG4Y3j0zB-AYThDlBYyZUBSwH2hQbTlf3sV-aYmLyEpgVV9nD7lP-NMoXv1TR985P8SSKJaNPDqe9AZ7LRy14Ji_1ecbr8eJbFsd_vMsmWLdgFF4V4ltgSSbbYCUnhcbpDrhsiZGEplZOCscJVGODT1E6XkhYJIBOoQnjwrLISgZNcA5afs0k3QWDduvpuoNswQUUYxJkCGtjoyTzKWFSKe5ggV2Guas9FokDT7khFdy0FHMNFYWGEq7DHUlJGBNJAm8PVJNpIvcBpIoxoWdexJT5AeMMU18QX3g4bjaZT2rgolR3NCvyakT5fngYRkYpkVFKVCilBs61_iL7c6W_yEE7Yx-yi9HbJJJYIxHXRMAP_jjUKVjt37Sj-27v7hCsme4Fr-wIVLPXuTzWQCTjJ_nH9g7zPNKS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+modes+in+finite-size+systems+with+different+edge+terminals&rft.jtitle=Chinese+physics+B&rft.au=Wang%2C+Huiping&rft.au=Ren%2C+Li&rft.au=Zhang%2C+Xiuli&rft.au=Qin%2C+Liguo&rft.date=2024-09-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=33&rft.issue=10&rft_id=info:doi/10.1088%2F1674-1056%2Fad6a05&rft.externalDocID=cpb_33_10_107302
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg