AI-enabled Computational Intelligence Approach to Neurodevelopmental Disorders Detection Using rs-fMRI Data
Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning (DeepL) on Functional magnetic resonance imaging (fMRI) data offers enhanced insights, advancing the understanding and diagnostic capabilities of N...
Saved in:
Published in | Computers & electrical engineering Vol. 123; p. 110117 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning (DeepL) on Functional magnetic resonance imaging (fMRI) data offers enhanced insights, advancing the understanding and diagnostic capabilities of NDDs. Traditionally, researchers extract time series data from predefined brain regions (ROIs) using atlas-based methods and focus on generating brain functional connectivity using Pearson correlation by analyzing changes in signal amplitude over time. This conventional approach assumes that the brain’s structure can be modeled in a simple Euclidean space and predicted with conventional ML/DeepL techniques. However, these traditional methods have several drawbacks. Predefined ROI extraction fails to capture the inherent variability in brain connectivity patterns across individuals, potentially missing crucial information, while relying on Pearson correlation to analyze functional brain connectivity is sensitive to amplitude fluctuations caused by high neural oscillations, leading to inaccurate representations of true neural relationships. Modeling brain functional structure in Euclidean space does not account for the brain’s complex, non-linear neural dynamics, limiting the effectiveness of ML/DeepL models. To address these issues, we propose: 1) An approach that adapts ROIs for each subject using combined grouped Independent Component Analysis (ICA) and Dictionary Learning (DL), better representing individual brain topologies; 2) The application of Phase Locking Value (PLV) to estimate functional connectivity in the frequency domain, reducing sensitivity to amplitude variations while effectively capturing both linear and non-linear signal relationships; 3) The implementation of a Graph Convolutional Network (GCN) to address the brain’s non-Euclidean topological structure with graph architecture, enhancing the classification and diagnosis of neural disorders. This method was tested on the ADHD-200 dataset for ADHD and the ABIDE-I dataset for ASD, achieving high accuracy (94% ±1.3% for ADHD and 89.3% ±2.3% for ASD) through 10-fold cross-validation. The integration of data-driven ROI extraction, frequency-domain connectivity analysis, and non-Euclidean graph-based brain architecture representation collectively represents a novel approach to improving the understanding and prediction of NDDs. |
---|---|
AbstractList | Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning (DeepL) on Functional magnetic resonance imaging (fMRI) data offers enhanced insights, advancing the understanding and diagnostic capabilities of NDDs. Traditionally, researchers extract time series data from predefined brain regions (ROIs) using atlas-based methods and focus on generating brain functional connectivity using Pearson correlation by analyzing changes in signal amplitude over time. This conventional approach assumes that the brain’s structure can be modeled in a simple Euclidean space and predicted with conventional ML/DeepL techniques. However, these traditional methods have several drawbacks. Predefined ROI extraction fails to capture the inherent variability in brain connectivity patterns across individuals, potentially missing crucial information, while relying on Pearson correlation to analyze functional brain connectivity is sensitive to amplitude fluctuations caused by high neural oscillations, leading to inaccurate representations of true neural relationships. Modeling brain functional structure in Euclidean space does not account for the brain’s complex, non-linear neural dynamics, limiting the effectiveness of ML/DeepL models. To address these issues, we propose: 1) An approach that adapts ROIs for each subject using combined grouped Independent Component Analysis (ICA) and Dictionary Learning (DL), better representing individual brain topologies; 2) The application of Phase Locking Value (PLV) to estimate functional connectivity in the frequency domain, reducing sensitivity to amplitude variations while effectively capturing both linear and non-linear signal relationships; 3) The implementation of a Graph Convolutional Network (GCN) to address the brain’s non-Euclidean topological structure with graph architecture, enhancing the classification and diagnosis of neural disorders. This method was tested on the ADHD-200 dataset for ADHD and the ABIDE-I dataset for ASD, achieving high accuracy (94% ±1.3% for ADHD and 89.3% ±2.3% for ASD) through 10-fold cross-validation. The integration of data-driven ROI extraction, frequency-domain connectivity analysis, and non-Euclidean graph-based brain architecture representation collectively represents a novel approach to improving the understanding and prediction of NDDs. |
ArticleNumber | 110117 |
Author | Bandyopadhyay, Soham Samanta, Debasis Sarma, Monalisa |
Author_xml | – sequence: 1 givenname: Soham orcidid: 0000-0003-4062-2034 surname: Bandyopadhyay fullname: Bandyopadhyay, Soham email: sohamban@gmail.com organization: Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India – sequence: 2 givenname: Monalisa surname: Sarma fullname: Sarma, Monalisa organization: Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, India – sequence: 3 givenname: Debasis surname: Samanta fullname: Samanta, Debasis organization: Computer Science and Engineering, Indian Institute of Technology Kharagpur, India |
BookMark | eNqNkE1OwzAQRr0oEm3hDuYACXYaO8mySvmJVEBCdG059qS4pHZku5W4PYnKgiWr0WjmfZp5CzSzzgJCd5SklFB-f0iVOw7QgwK7TzOSsZSOA1rM0JyQnCVFRfg1WoRwIGPPaTlHX-smASvbHjSuR_oUZTTOyh43NkLfmz1YBXg9DN5J9Ymjw69w8k7DGXo3HMHGcXdjgvMafMAbiKCmBLwLxu6xD0n38t7gjYzyBl11sg9w-1uXaPf48FE_J9u3p6ZebxOVcRaTjDHIOHCpSdnxQuWaaM26kipg7aoqJZMZIW2Vqw4KWWoOKs-qnAFTrOgqvVqi6pKrvAvBQycGb47SfwtKxGRKHMQfU2IyJS6mRra-sDAeeDbgRVBmUqCNHx8T2pl_pPwAEuB-CQ |
Cites_doi | 10.1002/aur.2894 10.1007/s11682-021-00476-x 10.1371/journal.pone.0194856 10.1186/s12888-019-2031-9 10.1007/s10548-020-00753-w 10.1186/s12888-023-04980-w 10.3389/fenrg.2024.1365538 10.1016/j.jneumeth.2023.109794 10.1186/s40649-019-0069-y 10.1038/s41398-023-02536-w 10.3390/s22083049 10.1142/S012906572150009X 10.1016/j.pscychresns.2023.111689 10.3390/app14020473 10.1007/s11265-022-01812-0 10.1016/j.compbiomed.2024.109240 10.3389/fpsyt.2022.1070142 10.1038/s41598-022-09821-6 10.3390/jcm12041450 10.14445/22315381/IJETT-V70I4P230 10.3390/e25040579 10.1093/brain/awae159 10.1016/j.compbiomed.2022.105854 10.1016/j.asoc.2023.110363 10.1109/TNSRE.2023.3333952 10.3389/fpsyt.2024.1426155 10.1016/j.jksuci.2024.102068 10.1016/j.jad.2023.02.082 10.1016/j.measurement.2022.112169 10.1016/j.compbiomed.2024.109083 10.1007/s11571-021-09683-0 10.1016/j.ins.2019.05.043 10.3390/app11083636 10.1007/s41133-020-00042-y 10.5607/en.2020.29.1.27 10.1016/j.mri.2023.04.002 10.5391/IJFIS.2020.20.4.255 10.3389/fninf.2022.769274 10.1089/cmb.2020.0252 10.1109/JSEN.2023.3274180 10.1016/j.jneumeth.2024.110100 10.1016/j.laa.2021.02.023 10.1016/j.jenvman.2024.121272 10.1016/j.asoc.2019.105905 10.1016/j.compeleceng.2023.108720 10.1002/jmri.28894 10.3389/fnhum.2023.1082722 10.15407/srenergy2024.02.071 10.1038/s41592-023-02034-3 10.1109/TKDE.2019.2912815 10.1016/j.asoc.2024.112031 10.4018/IJEHMC.2021010106 10.1038/s41598-024-74282-y 10.1016/j.schres.2024.06.031 10.1155/2023/8674641 10.1016/j.knosys.2022.109082 10.35414/akufemubid.1239360 10.1016/j.knosys.2024.112615 10.3389/fnins.2019.01325 10.1080/17538157.2017.1399132 10.3389/fnins.2023.1138670 10.3390/s20185212 10.1016/j.artmed.2019.101786 10.3390/s23083952 10.1016/j.neuri.2022.100060 10.1063/5.0084695 10.1016/j.bspc.2024.106496 10.57197/JDR-2023-0053 10.1016/j.engappai.2023.107185 10.1016/j.jfranklin.2022.11.004 10.1016/j.jneumeth.2019.108506 10.3390/math12182886 10.1038/s41598-023-47420-1 10.3389/fpsyt.2023.1096769 10.1016/j.bspc.2023.104686 10.1016/j.neuroimage.2016.10.045 10.1016/j.bspc.2021.103108 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compeleceng.2025.110117 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compeleceng_2025_110117 S0045790625000606 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c265t-255e26e6ad08f67c4d0dd5f81ce5b398a5a200b94cfe7a8d6ec42945e5c57f9d3 |
IEDL.DBID | .~1 |
ISSN | 0045-7906 |
IngestDate | Thu Jul 03 08:19:23 EDT 2025 Sat Jun 07 17:00:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain functional connectivity Graph convolutional networks Neurodevelopmental disorder Frequency specific connectivity Functional magnetic resonance imaging(fMRI) Data-driven brain topology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-255e26e6ad08f67c4d0dd5f81ce5b398a5a200b94cfe7a8d6ec42945e5c57f9d3 |
ORCID | 0000-0003-4062-2034 |
ParticipantIDs | crossref_primary_10_1016_j_compeleceng_2025_110117 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110117 |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kim, Park, Kim, Kwon (b49) 2023 Meng, Wang, Liu, Chen, Wang (b75) 2022; 131 Khullar, Salgotra, Singh, Sharma (b55) 2021; 6 Zhang, Tong, Xu, Maciejewski (b86) 2019; 6 Bahathiq, Banjar, Jarraya, Bamaga, Almoallim (b48) 2024; 14 Uddin, Shahriar, Mahamood, Alnajjar, Pramanik, Ahad (b89) 2024; 127 Vold, Halmøy, Chalabianloo, Pierron, Løberg, Johansson, Fadnes (b1) 2023; 23 Motlaghian, Vahidi, Baker, Belger, Bustillo, Faghiri, Ford, Iraji, Lim, Mathalon (b26) 2023; 389 Thabtah (b28) 2019; 44 Bandyopadhyay, Peddi, Sarma, Samanta (b47) 2024 Sartipi, Kalbkhani, Ghasemzadeh, Shayesteh (b54) 2020; 86 Simeon, Piella, Camara, Pareto (b66) 2022; 16 Liu, Xu, Li, Yu, Yu (b43) 2020; 29 Khalid, Nauman (b70) 2023; 13 Rao MJ. Deep learning approach to predict autism spectrum disorder (asd). Rizkallah, Amoud, Fraschini, Wendling, Hassan (b15) 2020; 33 Chattopadhyay, Maitra (b19) 2022; 2 Sörös, Hoxhaj, Borel, Sadohara, Feige, Matthies, Müller, Bachmann, Schulze, Philipsen (b64) 2019; 19 Beltukov (b73) 2024 Anvarjon, Mustaqeem, Kwon (b20) 2020; 20 Zheng, Jin, Cao, Lin, Xu, Cheng, Yao, Xu (b25) 2023; 23 Alsharif, Al-Adhaileh, Al-Yaari (b37) 2024; 3 Cao, Martin, Li (b38) 2023; 13 Riaz, Asad, Alonso, Slabaugh (b42) 2020; 335 Surendiran, Thangamani, Narmatha, Iswarya (b32) 2022; 70 Zhang, Huo, Zheng, Huang, Zhao (b81) 2023 Chauhan, Choi (b65) 2020; 20 Taylor, Nicholas, Hoy, Bailey, Tanglay, Young, Dobbin, Doyen, Sughrue, Fitzgerald (b67) 2023; 329 Mittal, Sao, Biswal (b77) 2023; 102 Lu, Zhang, Chen, Zhang, Wang, Peng, Zou (b87) 2023; 23 Sen, Borle, Greiner, Brown (b27) 2018; 13 Jiang, Lu, Yang, Li, Zhao, Zhang, Li, Wang (b2) 2023; 14 Tao, Qiu, Chen, Stojanovic, Cheng (b82) 2023; 360 Graña, Silva (b7) 2021; 31 Chowdhury, Sany, Ahamed, Das, Badal, Das, Tasneem, Hasan, Islam, Ali (b22) 2023; 2023 Liu, Hasan, Gedeon, Hossain (b52) 2024; 182 Zhang, Wei, Liu, Wang, Xi, Pan (b62) 2022; 148 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (b36) 2017; 147 Wong, Yeh (b72) 2019; 32 di Biase, Ricci, Caminiti, Pecoraro, Carbone, Di Lazzaro (b24) 2023; 12 Parui, Samanta, Chakravorty, Ghosh, Rodrigues (b41) 2023; 108 Wang, Wu, Zhou (b18) 2024; 361 Amemiya, Takao, Abe (b5) 2024; 59 Chen, Tang, Wang, Liu, Zhao, Wang (b29) 2020; 103 Liu, Chen, Dong, Wang, Wu, Huang (b71) 2019 Kovtun, Kuts, Malko, Fryz, Shcherbak, Kuts (b74) 2024; 2 Gogula, Edward (b76) 2024; 12 Santana, de Carvalho, Rodrigues, Bastos, de Souza, de Brito (b11) 2022; 12 Yin, Mostafa, Wu (b13) 2021; 28 Sherkatghanad, Akhondzadeh, Salari, Zomorodi-Moghadam, Abdar, Acharya, Khosrowabadi, Salari (b45) 2020; 13 Hsieh, Shaw, Kung, Liang (b56) 2023; 17 Mishra, Pati (b35) 2023; 84 Yu, Gao, Niu, Zhang, Yang, Han, Cheng, Zhang (b83) 2023; 13 Ashraf, Zhao, Bangyal, Iqbal (b44) 2023 Rostami, Farashi, Khosrowabadi, Pouretemad (b39) 2020; 11 Kleven, Bjerke, Clascá, Groenewegen, Bjaalie, Leergaard (b9) 2023; 20 Arévalo, Cano, Benavides, Jurado (b21) 2024; 164 Meng, Iraji, Fu, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson (b69) 2023; 38 Casseus, Kim, Horton (b3) 2023; 16 Huang, Li (b14) 2024; 95 Zuo, Shen, Zhong, Chen, Lei, Wang (b6) 2023; 31 Qin, Lou, Huang, Chen, Yue (b60) 2022; 94 Lin, Haider, Kaltenhauser, Mozayan, Malhotra, Constable, Scheinost, Ment, Konrad, Payabvash (b40) 2023; 17 Li, Wang (b79) 2021; 620 Taşpinar, Özkurt (b59) 2023; vol. 25 Haghighat, Mirzarezaee, Araabi, Khadem (b4) 2022; 71 He, Palaniyappan, Linli, Guo (b84) 2022; 16 Park, Cho (b63) 2023; 142 Pérez-Sienes, Grande, Losada, Borondo (b78) 2023; 25 Subah, Deb, Dhar, Koshiba (b12) 2021; 11 Firouzi, Kazemi, Ahmadi, Helfroush, Aarabi (b61) 2024; 14 Kulkarni, Nemade, Patel, Patel, Velpula (b68) 2024; 15 Yang, Zhang, Zeng (b80) 2022; 204 Mengi, Malhotra (b53) 2024; 305 Al-Selwi, Hassan, Abdulkadir, Muneer, Sumiea, Alqushaibi, Ragab (b88) 2024 Wang, Yang, Ding (b33) 2023 Shao, Fu, You, Fu (b46) 2021; 15 Ahmadi, Fatemizadeh, Motie-Nasrabadi (b17) 2023; 13 Zamanzadeh, Pourhedayat, Bakouie, Hadaeghi (b30) 2024; 183 Kucewicz, Cimbalnik, Garcia-Salinas, Brazdil, Worrell (b16) 2024; 147 He, Long, Song, Li, Niu, Peng, Wei, Zhang (b10) 2024; 270 Ke, Wang, Ma, He (b57) 2022; 250 Lohani, Rana (b31) 2023; 334 Mao, Su, Xu, Wang, Huang, Yue, Sun, Xiong (b50) 2019; 499 De Silva, Dayarathna, Ariyarathne, Meedeniya, Jayarathna (b58) 2021; 12 Guail, Jinsong, Oloulade, Al-Sabri (b23) 2022; 22 Özdemir ŞN, Yıldız K. Detection of autistic spectrum disorder using artificial neural network. In: Afyon kocatepe üniversitesi fen ve mühendislik bilimleri dergisi. vol. 23, p. 955–61, (4). Gupta, Bhuiyan, Chowa, Montaha, Rahman, Mehedi, Rahman (b51) 2024; 12 Bandyopadhyay, Samanta, Sarma, Samanta (b85) 2024 He (10.1016/j.compeleceng.2025.110117_b10) 2024; 270 Taylor (10.1016/j.compeleceng.2025.110117_b67) 2023; 329 Thabtah (10.1016/j.compeleceng.2025.110117_b28) 2019; 44 Park (10.1016/j.compeleceng.2025.110117_b63) 2023; 142 Meng (10.1016/j.compeleceng.2025.110117_b69) 2023; 38 Surendiran (10.1016/j.compeleceng.2025.110117_b32) 2022; 70 Riaz (10.1016/j.compeleceng.2025.110117_b42) 2020; 335 Liu (10.1016/j.compeleceng.2025.110117_b71) 2019 Yang (10.1016/j.compeleceng.2025.110117_b80) 2022; 204 Bandyopadhyay (10.1016/j.compeleceng.2025.110117_b47) 2024 Kucewicz (10.1016/j.compeleceng.2025.110117_b16) 2024; 147 Zuo (10.1016/j.compeleceng.2025.110117_b6) 2023; 31 Mittal (10.1016/j.compeleceng.2025.110117_b77) 2023; 102 Amemiya (10.1016/j.compeleceng.2025.110117_b5) 2024; 59 Simeon (10.1016/j.compeleceng.2025.110117_b66) 2022; 16 Pérez-Sienes (10.1016/j.compeleceng.2025.110117_b78) 2023; 25 Lu (10.1016/j.compeleceng.2025.110117_b87) 2023; 23 Lin (10.1016/j.compeleceng.2025.110117_b40) 2023; 17 Zhang (10.1016/j.compeleceng.2025.110117_b86) 2019; 6 Sen (10.1016/j.compeleceng.2025.110117_b27) 2018; 13 Zamanzadeh (10.1016/j.compeleceng.2025.110117_b30) 2024; 183 Huang (10.1016/j.compeleceng.2025.110117_b14) 2024; 95 Jiang (10.1016/j.compeleceng.2025.110117_b2) 2023; 14 Gupta (10.1016/j.compeleceng.2025.110117_b51) 2024; 12 Mao (10.1016/j.compeleceng.2025.110117_b50) 2019; 499 Haghighat (10.1016/j.compeleceng.2025.110117_b4) 2022; 71 Ahmadi (10.1016/j.compeleceng.2025.110117_b17) 2023; 13 Yin (10.1016/j.compeleceng.2025.110117_b13) 2021; 28 Anvarjon (10.1016/j.compeleceng.2025.110117_b20) 2020; 20 Graña (10.1016/j.compeleceng.2025.110117_b7) 2021; 31 Khullar (10.1016/j.compeleceng.2025.110117_b55) 2021; 6 Li (10.1016/j.compeleceng.2025.110117_b79) 2021; 620 Kim (10.1016/j.compeleceng.2025.110117_b49) 2023 Vold (10.1016/j.compeleceng.2025.110117_b1) 2023; 23 Chen (10.1016/j.compeleceng.2025.110117_b29) 2020; 103 Mengi (10.1016/j.compeleceng.2025.110117_b53) 2024; 305 Bandyopadhyay (10.1016/j.compeleceng.2025.110117_b85) 2024 Shao (10.1016/j.compeleceng.2025.110117_b46) 2021; 15 Zhang (10.1016/j.compeleceng.2025.110117_b62) 2022; 148 Kulkarni (10.1016/j.compeleceng.2025.110117_b68) 2024; 15 di Biase (10.1016/j.compeleceng.2025.110117_b24) 2023; 12 Wong (10.1016/j.compeleceng.2025.110117_b72) 2019; 32 Alsharif (10.1016/j.compeleceng.2025.110117_b37) 2024; 3 Qin (10.1016/j.compeleceng.2025.110117_b60) 2022; 94 Hsieh (10.1016/j.compeleceng.2025.110117_b56) 2023; 17 Wang (10.1016/j.compeleceng.2025.110117_b18) 2024; 361 Arévalo (10.1016/j.compeleceng.2025.110117_b21) 2024; 164 Sörös (10.1016/j.compeleceng.2025.110117_b64) 2019; 19 Beltukov (10.1016/j.compeleceng.2025.110117_b73) 2024 Liu (10.1016/j.compeleceng.2025.110117_b52) 2024; 182 Kovtun (10.1016/j.compeleceng.2025.110117_b74) 2024; 2 Santana (10.1016/j.compeleceng.2025.110117_b11) 2022; 12 Yu (10.1016/j.compeleceng.2025.110117_b83) 2023; 13 He (10.1016/j.compeleceng.2025.110117_b84) 2022; 16 Bahathiq (10.1016/j.compeleceng.2025.110117_b48) 2024; 14 Ke (10.1016/j.compeleceng.2025.110117_b57) 2022; 250 Zhang (10.1016/j.compeleceng.2025.110117_b81) 2023 Cao (10.1016/j.compeleceng.2025.110117_b38) 2023; 13 Chauhan (10.1016/j.compeleceng.2025.110117_b65) 2020; 20 10.1016/j.compeleceng.2025.110117_b34 Abraham (10.1016/j.compeleceng.2025.110117_b36) 2017; 147 Gogula (10.1016/j.compeleceng.2025.110117_b76) 2024; 12 Chowdhury (10.1016/j.compeleceng.2025.110117_b22) 2023; 2023 Sherkatghanad (10.1016/j.compeleceng.2025.110117_b45) 2020; 13 Motlaghian (10.1016/j.compeleceng.2025.110117_b26) 2023; 389 Parui (10.1016/j.compeleceng.2025.110117_b41) 2023; 108 Wang (10.1016/j.compeleceng.2025.110117_b33) 2023 Ashraf (10.1016/j.compeleceng.2025.110117_b44) 2023 Zheng (10.1016/j.compeleceng.2025.110117_b25) 2023; 23 Liu (10.1016/j.compeleceng.2025.110117_b43) 2020; 29 Al-Selwi (10.1016/j.compeleceng.2025.110117_b88) 2024 Chattopadhyay (10.1016/j.compeleceng.2025.110117_b19) 2022; 2 10.1016/j.compeleceng.2025.110117_b8 Casseus (10.1016/j.compeleceng.2025.110117_b3) 2023; 16 Rostami (10.1016/j.compeleceng.2025.110117_b39) 2020; 11 Mishra (10.1016/j.compeleceng.2025.110117_b35) 2023; 84 Khalid (10.1016/j.compeleceng.2025.110117_b70) 2023; 13 Tao (10.1016/j.compeleceng.2025.110117_b82) 2023; 360 Meng (10.1016/j.compeleceng.2025.110117_b75) 2022; 131 Lohani (10.1016/j.compeleceng.2025.110117_b31) 2023; 334 De Silva (10.1016/j.compeleceng.2025.110117_b58) 2021; 12 Kleven (10.1016/j.compeleceng.2025.110117_b9) 2023; 20 Subah (10.1016/j.compeleceng.2025.110117_b12) 2021; 11 Taşpinar (10.1016/j.compeleceng.2025.110117_b59) 2023; vol. 25 Guail (10.1016/j.compeleceng.2025.110117_b23) 2022; 22 Uddin (10.1016/j.compeleceng.2025.110117_b89) 2024; 127 Rizkallah (10.1016/j.compeleceng.2025.110117_b15) 2020; 33 Sartipi (10.1016/j.compeleceng.2025.110117_b54) 2020; 86 Firouzi (10.1016/j.compeleceng.2025.110117_b61) 2024; 14 |
References_xml | – volume: 13 start-page: 1325 year: 2020 ident: b45 article-title: Automated detection of autism spectrum disorder using a convolutional neural network publication-title: Front Neurosci – volume: 44 start-page: 278 year: 2019 end-page: 297 ident: b28 article-title: Machine learning in autistic spectrum disorder behavioral research: A review and ways forward publication-title: Inform Heal Soc Care – volume: 6 start-page: 5 year: 2021 ident: b55 article-title: Deep learning-based binary classification of adhd using resting state mr images publication-title: Augment Hum Res – volume: 23 start-page: 3952 year: 2023 ident: b87 article-title: An indoor fingerprint positioning algorithm based on wknn and improved xgboost publication-title: Sensors – volume: 164 year: 2024 ident: b21 article-title: Fault analysis in clustered microgrids utilizing svm-cnn and differential protection publication-title: Appl Soft Comput – volume: 28 start-page: 146 year: 2021 end-page: 165 ident: b13 article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning publication-title: J Comput Biol – volume: 94 start-page: 1269 year: 2022 end-page: 1281 ident: b60 article-title: An ensemble deep learning approach combining phenotypic data and fmri for adhd diagnosis publication-title: J Signal Process Syst – volume: 14 year: 2023 ident: b2 article-title: Autism spectrum disorder research: knowledge mapping of progress and focus between 2011 and 2022 publication-title: Front Psychiatry – volume: 13 year: 2023 ident: b83 article-title: Meta-analysis of structural and functional alterations of brain in patients with attention-deficit/hyperactivity disorder publication-title: Front Psychiatry – volume: 12 start-page: 6030 year: 2022 ident: b11 article-title: Rs-fmri and machine learning for asd diagnosis: A systematic review and meta-analysis publication-title: Sci Rep – volume: 6 start-page: 1 year: 2019 end-page: 23 ident: b86 article-title: Graph convolutional networks: a comprehensive review publication-title: Comput Soc Netw – volume: 183 year: 2024 ident: b30 article-title: Exploring potential adhd biomarkers through advanced machine learning: An examination of audiovisual integration networks publication-title: Comput Biol Med – volume: 29 start-page: 27 year: 2020 ident: b43 article-title: Attentional connectivity-based prediction of autism using heterogeneous rs-fmri data from cc200 atlas publication-title: Exp Neurobiol – volume: 17 year: 2023 ident: b56 article-title: Seed correlation analysis based on brain region activation for adhd diagnosis in a large-scale resting state data set publication-title: Front Hum Neurosci – volume: 148 year: 2022 ident: b62 article-title: Identification of autism spectrum disorder based on a novel feature selection method and variational autoencoder publication-title: Comput Biol Med – volume: 142 year: 2023 ident: b63 article-title: A residual graph convolutional network with spatio-temporal features for autism classification from fmri brain images publication-title: Appl Soft Comput – volume: 23 start-page: 479 year: 2023 ident: b1 article-title: Attention-deficit/hyperactivity disorder (adhd) symptoms and their relation to diagnosed adhd, sociodemographic characteristics, and substance use among patients receiving opioid agonist therapy: a norwegian cohort study publication-title: BMC Psychiatry – volume: 23 start-page: 13443 year: 2023 end-page: 13451 ident: b25 article-title: Novel linear and nonlinear features for the analysis of dynamic brain functional connectivity publication-title: IEEE Sensors J – volume: 12 start-page: 2886 year: 2024 ident: b51 article-title: Enhancing autism spectrum disorder classification with lightweight quantized cnns and federated learning on abide-1 dataset publication-title: Math – volume: 13 start-page: 125 year: 2023 ident: b17 article-title: A comparative study of correlation methods in functional connectivity analysis using fmri data of alzheimer’s patients publication-title: J Biomed Phys Eng – volume: 389 year: 2023 ident: b26 article-title: A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fmri data publication-title: J Neurosci Methods – reference: Özdemir ŞN, Yıldız K. Detection of autistic spectrum disorder using artificial neural network. In: Afyon kocatepe üniversitesi fen ve mühendislik bilimleri dergisi. vol. 23, p. 955–61, (4). – start-page: 125 year: 2024 end-page: 142 ident: b73 article-title: Discrete fourier transform publication-title: Differential equations and data analysis – volume: 250 year: 2022 ident: b57 article-title: Adhd identification and its interpretation of functional connectivity using deep self- attention factorization publication-title: Knowl-Based Syst – volume: 360 start-page: 1454 year: 2023 end-page: 1477 ident: b82 article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion publication-title: J Franklin Inst – volume: 16 year: 2022 ident: b66 article-title: Riemannian geometry of functional connectivity matrices for multi-site attention- deficit/hyperactivity disorder data harmonization publication-title: Front Neuroinformatics – volume: 13 start-page: 20201 year: 2023 ident: b70 article-title: A novel subject-wise dictionary learning approach using multi-subject fmri spatial and temporal components publication-title: Sci Rep – volume: 59 start-page: 1135 year: 2024 end-page: 1148 ident: b5 article-title: Resting-state fmri: Emerging concepts for future clinical application publication-title: J Magn Reson Imaging – volume: 22 start-page: 3049 year: 2022 ident: b23 article-title: A principal neighborhood aggregation-based graph convolutional network for pneumonia detection publication-title: Sensors – volume: 270 start-page: 202 year: 2024 end-page: 211 ident: b10 article-title: A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fmri publication-title: Schizophr Res – volume: 11 start-page: 3636 year: 2021 ident: b12 article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fmri publication-title: Appl Sci – year: 2023 ident: b33 article-title: Autism spectrum disorder (asd) classification with three types of correlations based on abide-i dataset publication-title: Mathematical foundations of computing – volume: 15 start-page: 961 year: 2021 end-page: 974 ident: b46 article-title: Classification of asd based on fmri data with deep learning publication-title: Cogn Neurodynamics – volume: 127 year: 2024 ident: b89 article-title: Deep learning with image-based autism spectrum disorder analysis: A systematic review publication-title: Eng Appl Artif Intell – volume: 620 start-page: 61 year: 2021 end-page: 75 ident: b79 article-title: Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices publication-title: Linear Algebra Appl – volume: 31 year: 2021 ident: b7 article-title: Impact of machine learning pipeline choices in autism prediction from functional connectivity data publication-title: Int J Neural Syst – year: 2023 ident: b44 article-title: Analysis of brain imaging data for the detection of early age autism spectrum disorder using transfer learning approaches for internet of things publication-title: IEEE Trans Consum Electron – volume: 20 start-page: 1822 year: 2023 end-page: 1829 ident: b9 article-title: Waxholm space atlas of the rat brain: A 3d atlas supporting data analysis and integration publication-title: Nature Methods – volume: 334 year: 2023 ident: b31 article-title: Adhd diagnosis using structural brain mri and personal characteristic data with machine learning framework publication-title: Psychiatry Res: Neuroimaging – volume: 182 year: 2024 ident: b52 article-title: Made-for-asd: A multi-atlas deep ensemble network for diagnosing autism spectrum disorder publication-title: Comput Biol Med – volume: 16 start-page: 855 year: 2023 end-page: 867 ident: b3 article-title: Prevalence and treatment of mental, behavioral, and developmental disorders in children with co-occurring autism spectrum disorder and attention-deficit/hyperactivity disorder: A population-based study publication-title: Autism Res – volume: vol. 25 start-page: 1 year: 2023 end-page: 8 ident: b59 article-title: 3D cnn based automatic diagnosis of adhd using fmri volumes publication-title: Dokuz eylül üniversitesi mühendislik fakültesi fen ve mühendislik dergisi – volume: 70 start-page: 343 year: 2022 end-page: 359 ident: b32 article-title: Effective autism spectrum disorder prediction to improve the clinical traits using machine learning techniques publication-title: Int J Eng Trends Technol – volume: 84 year: 2023 ident: b35 article-title: A classification framework for autism spectrum disorder detection using smri: Optimizer based ensemble of deep convolution neural network with on-the-fly data augmentation publication-title: Biomed Signal Process Control – volume: 32 start-page: 1586 year: 2019 end-page: 1594 ident: b72 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans Knowl Data Eng – volume: 86 year: 2020 ident: b54 article-title: Stockwell transform of time-series of fmri data for diagnoses of attention deficit hyperactive disorder publication-title: Appl Soft Comput – volume: 361 year: 2024 ident: b18 article-title: Measuring urban environmental performance in china: A euclidean distance function approach publication-title: J Environ Manag – volume: 14 start-page: 473 year: 2024 ident: b48 article-title: Efficient diagnosis of autism spectrum disorder using optimized machine learning models based on structural mri publication-title: Appl Sci – year: 2023 ident: b81 article-title: A fault diagnosis method with bitask-based time and frequency domain feature learning publication-title: IEEE Trans Instrum Meas – volume: 71 year: 2022 ident: b4 article-title: An age-dependent connectivity-based computer aided diagnosis system for autism spectrum disorder using resting-state fmri publication-title: Biomed Signal Process Control – volume: 15 year: 2024 ident: b68 article-title: A short report on adhd detection using convolutional neural networks publication-title: Front Psychiatry – volume: 102 start-page: 26 year: 2023 end-page: 37 ident: b77 article-title: Impact of amplitude and phase of fmri time series for functional connectivity analysis publication-title: Magn Reson Imaging – volume: 19 start-page: 1 year: 2019 end-page: 11 ident: b64 article-title: Hyperactivity/restlessness is associated with increased functional connectivity in adults with adhd: a dimensional analysis of resting state fmri publication-title: BMC Psychiatry – volume: 12 year: 2024 ident: b76 article-title: Advanced signal analysis for high-impedance fault detection in distribution systems: a dynamic hilbert transform method publication-title: Front Energy Res – volume: 12 start-page: 81 year: 2021 end-page: 105 ident: b58 article-title: Fmri feature extraction model for adhd classification using convolutional neural network publication-title: Int J E- Heal Med Commun (IJEHMC) – year: 2024 ident: b88 article-title: Rnn-lstm: From applications to modeling techniques and beyond—systematic review publication-title: J King Saud Univ- Comput Inf Sci – volume: 335 year: 2020 ident: b42 article-title: Deepfmri: End-to-end deep learning for functional connectivity and classification of adhd using fmri publication-title: J Neurosci Methods – volume: 17 year: 2023 ident: b40 article-title: Population level multimodal neuroimaging correlates of attention-deficit hyperactivity disorder among children publication-title: Front Neurosci – year: 2024 ident: b47 article-title: Decoding autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fmri data publication-title: J Neurosci Methods – volume: 499 start-page: 1 year: 2019 end-page: 11 ident: b50 article-title: Spatio-temporal deep learning method for adhd fmri classification publication-title: Inform Sci – volume: 20 start-page: 255 year: 2020 end-page: 260 ident: b65 article-title: Dnn based classification of adhd fmri data using functional connectivity coefficient publication-title: Int J Fuzzy Log Intell Syst – volume: 204 year: 2022 ident: b80 article-title: Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion publication-title: Measurement – volume: 95 year: 2024 ident: b14 article-title: Enhancing fnirs data analysis with a novel motion artifact detection algorithm and improved correction publication-title: Biomed Signal Process Control – volume: 13 start-page: 236 year: 2023 ident: b38 article-title: Machine learning in attention-deficit/hyperactivity disorder: new approaches toward understanding the neural mechanisms publication-title: Transl Psychiatry – volume: 25 start-page: 579 year: 2023 ident: b78 article-title: The hurst exponent as an indicator to anticipate agricultural commodity prices publication-title: Entropy – volume: 31 start-page: 4601 year: 2023 end-page: 4612 ident: b6 article-title: Alzheimer’s disease prediction via brain structural-functional deep fusing network publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: b36 article-title: Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example publication-title: NeuroImage – reference: Rao MJ. Deep learning approach to predict autism spectrum disorder (asd). – volume: 103 year: 2020 ident: b29 article-title: Adhd classification by dual subspace learning using resting-state functional connectivity publication-title: Artif Intell Med – volume: 12 start-page: 1450 year: 2023 ident: b24 article-title: Quantitative high density eeg brain connectivity evaluation in parkinson’s disease: The phase locking value (plv) publication-title: J Clin Med – volume: 3 year: 2024 ident: b37 article-title: Accurate identification of attention-deficit/hyperactivity disorder using machine learning approaches publication-title: J Disabil Res – volume: 13 year: 2018 ident: b27 article-title: A general prediction model for the detection of adhd and autism using structural and functional mri publication-title: PLoS One – volume: 16 start-page: 54 year: 2022 end-page: 68 ident: b84 article-title: Abnormal hemispheric asymmetry of both brain function and structure in attention deficit/hyperactivity disorder: a meta-analysis of individual participant data publication-title: Brain Imaging Behav – volume: 147 start-page: 2966 year: 2024 end-page: 2982 ident: b16 article-title: High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? publication-title: Brain – volume: 131 year: 2022 ident: b75 article-title: Phase shifting profilometry based on hilbert transform: An efficient phase unwrapping algorithm publication-title: J Appl Phys – year: 2023 ident: b49 article-title: Finding essential parts of the brain in rs-fmri can improve adhd diagnosis using deep learning publication-title: IEEE Access – volume: 14 start-page: 24473 year: 2024 ident: b61 article-title: Enhanced adhd classification through deep learning and dynamic resting state fmri analysis publication-title: Sci Rep – volume: 33 start-page: 151 year: 2020 end-page: 160 ident: b15 article-title: Exploring the correlation between m/eeg source–space and fmri networks at rest publication-title: Brain Topogr – volume: 108 year: 2023 ident: b41 article-title: Artificial intelligence and sensor-based autism spectrum disorder diagnosis using brain connectivity analysis publication-title: Comput Electr Eng – year: 2024 ident: b85 article-title: Novel framework of significant risk factor identification and cardiovascular disease prediction publication-title: Expert Syst Appl – volume: 11 start-page: 359 year: 2020 ident: b39 article-title: Discrimination of adhd subtypes using decision tree on behavioral, neuropsychological, and neural markers publication-title: Basic Clin Neurosci – volume: 38 year: 2023 ident: b69 article-title: Multi-model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from resting data: A large n fmri schizophrenia study publication-title: NeuroImage: Clin – volume: 20 start-page: 5212 year: 2020 ident: b20 article-title: Deep-net: A lightweight cnn-based speech emotion recognition system using deep frequency features publication-title: Sensors – volume: 2023 year: 2023 ident: b22 article-title: A state-of-the-art computer vision adopting non-euclidean deep-learning models publication-title: Int J Intell Syst – year: 2019 ident: b71 article-title: Higher-order weighted graph convolutional networks – volume: 2 year: 2022 ident: b19 article-title: Mri-based brain tumour image detection using cnn based deep learning method publication-title: Neurosci Inform – volume: 2 start-page: 71 year: 2024 end-page: 83 ident: b74 article-title: Application of hilbert transform for power quality indicators monitoring in general purpose grids publication-title: Syst Res Energy – volume: 329 start-page: 539 year: 2023 end-page: 547 ident: b67 article-title: Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation publication-title: J Affect Disord – volume: 305 year: 2024 ident: b53 article-title: Usmda: Unsupervised multisource domain adaptive adhd prediction model using neuroimaging publication-title: Knowl-Based Syst – volume: 16 start-page: 855 issue: 4 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b3 article-title: Prevalence and treatment of mental, behavioral, and developmental disorders in children with co-occurring autism spectrum disorder and attention-deficit/hyperactivity disorder: A population-based study publication-title: Autism Res doi: 10.1002/aur.2894 – volume: 16 start-page: 54 issue: 1 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b84 article-title: Abnormal hemispheric asymmetry of both brain function and structure in attention deficit/hyperactivity disorder: a meta-analysis of individual participant data publication-title: Brain Imaging Behav doi: 10.1007/s11682-021-00476-x – volume: 13 issue: 4 year: 2018 ident: 10.1016/j.compeleceng.2025.110117_b27 article-title: A general prediction model for the detection of adhd and autism using structural and functional mri publication-title: PLoS One doi: 10.1371/journal.pone.0194856 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.compeleceng.2025.110117_b64 article-title: Hyperactivity/restlessness is associated with increased functional connectivity in adults with adhd: a dimensional analysis of resting state fmri publication-title: BMC Psychiatry doi: 10.1186/s12888-019-2031-9 – volume: 33 start-page: 151 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b15 article-title: Exploring the correlation between m/eeg source–space and fmri networks at rest publication-title: Brain Topogr doi: 10.1007/s10548-020-00753-w – volume: 23 start-page: 479 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b1 article-title: Attention-deficit/hyperactivity disorder (adhd) symptoms and their relation to diagnosed adhd, sociodemographic characteristics, and substance use among patients receiving opioid agonist therapy: a norwegian cohort study publication-title: BMC Psychiatry doi: 10.1186/s12888-023-04980-w – year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b81 article-title: A fault diagnosis method with bitask-based time and frequency domain feature learning publication-title: IEEE Trans Instrum Meas – volume: 12 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b76 article-title: Advanced signal analysis for high-impedance fault detection in distribution systems: a dynamic hilbert transform method publication-title: Front Energy Res doi: 10.3389/fenrg.2024.1365538 – volume: 389 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b26 article-title: A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fmri data publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2023.109794 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compeleceng.2025.110117_b86 article-title: Graph convolutional networks: a comprehensive review publication-title: Comput Soc Netw doi: 10.1186/s40649-019-0069-y – volume: 13 start-page: 236 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b38 article-title: Machine learning in attention-deficit/hyperactivity disorder: new approaches toward understanding the neural mechanisms publication-title: Transl Psychiatry doi: 10.1038/s41398-023-02536-w – year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b49 article-title: Finding essential parts of the brain in rs-fmri can improve adhd diagnosis using deep learning publication-title: IEEE Access – volume: 22 start-page: 3049 issue: 8 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b23 article-title: A principal neighborhood aggregation-based graph convolutional network for pneumonia detection publication-title: Sensors doi: 10.3390/s22083049 – volume: 31 issue: 04 year: 2021 ident: 10.1016/j.compeleceng.2025.110117_b7 article-title: Impact of machine learning pipeline choices in autism prediction from functional connectivity data publication-title: Int J Neural Syst doi: 10.1142/S012906572150009X – volume: 334 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b31 article-title: Adhd diagnosis using structural brain mri and personal characteristic data with machine learning framework publication-title: Psychiatry Res: Neuroimaging doi: 10.1016/j.pscychresns.2023.111689 – volume: 14 start-page: 473 issue: 2 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b48 article-title: Efficient diagnosis of autism spectrum disorder using optimized machine learning models based on structural mri publication-title: Appl Sci doi: 10.3390/app14020473 – volume: 94 start-page: 1269 issue: 11 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b60 article-title: An ensemble deep learning approach combining phenotypic data and fmri for adhd diagnosis publication-title: J Signal Process Syst doi: 10.1007/s11265-022-01812-0 – volume: 183 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b30 article-title: Exploring potential adhd biomarkers through advanced machine learning: An examination of audiovisual integration networks publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2024.109240 – volume: 13 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b83 article-title: Meta-analysis of structural and functional alterations of brain in patients with attention-deficit/hyperactivity disorder publication-title: Front Psychiatry doi: 10.3389/fpsyt.2022.1070142 – volume: 12 start-page: 6030 issue: 1 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b11 article-title: Rs-fmri and machine learning for asd diagnosis: A systematic review and meta-analysis publication-title: Sci Rep doi: 10.1038/s41598-022-09821-6 – volume: 12 start-page: 1450 issue: 4 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b24 article-title: Quantitative high density eeg brain connectivity evaluation in parkinson’s disease: The phase locking value (plv) publication-title: J Clin Med doi: 10.3390/jcm12041450 – year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b44 article-title: Analysis of brain imaging data for the detection of early age autism spectrum disorder using transfer learning approaches for internet of things publication-title: IEEE Trans Consum Electron – volume: 70 start-page: 343 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b32 article-title: Effective autism spectrum disorder prediction to improve the clinical traits using machine learning techniques publication-title: Int J Eng Trends Technol doi: 10.14445/22315381/IJETT-V70I4P230 – volume: 25 start-page: 579 issue: 4 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b78 article-title: The hurst exponent as an indicator to anticipate agricultural commodity prices publication-title: Entropy doi: 10.3390/e25040579 – volume: 147 start-page: 2966 issue: 9 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b16 article-title: High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? publication-title: Brain doi: 10.1093/brain/awae159 – volume: 148 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b62 article-title: Identification of autism spectrum disorder based on a novel feature selection method and variational autoencoder publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105854 – volume: 142 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b63 article-title: A residual graph convolutional network with spatio-temporal features for autism classification from fmri brain images publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110363 – volume: 31 start-page: 4601 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b6 article-title: Alzheimer’s disease prediction via brain structural-functional deep fusing network publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2023.3333952 – volume: 38 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b69 article-title: Multi-model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from resting data: A large n fmri schizophrenia study publication-title: NeuroImage: Clin – volume: 15 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b68 article-title: A short report on adhd detection using convolutional neural networks publication-title: Front Psychiatry doi: 10.3389/fpsyt.2024.1426155 – year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b88 article-title: Rnn-lstm: From applications to modeling techniques and beyond—systematic review publication-title: J King Saud Univ- Comput Inf Sci doi: 10.1016/j.jksuci.2024.102068 – ident: 10.1016/j.compeleceng.2025.110117_b8 – volume: 329 start-page: 539 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b67 article-title: Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation publication-title: J Affect Disord doi: 10.1016/j.jad.2023.02.082 – volume: 204 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b80 article-title: Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion publication-title: Measurement doi: 10.1016/j.measurement.2022.112169 – volume: 182 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b52 article-title: Made-for-asd: A multi-atlas deep ensemble network for diagnosing autism spectrum disorder publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2024.109083 – volume: 15 start-page: 961 issue: 6 year: 2021 ident: 10.1016/j.compeleceng.2025.110117_b46 article-title: Classification of asd based on fmri data with deep learning publication-title: Cogn Neurodynamics doi: 10.1007/s11571-021-09683-0 – volume: 499 start-page: 1 year: 2019 ident: 10.1016/j.compeleceng.2025.110117_b50 article-title: Spatio-temporal deep learning method for adhd fmri classification publication-title: Inform Sci doi: 10.1016/j.ins.2019.05.043 – volume: 13 start-page: 125 issue: 2 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b17 article-title: A comparative study of correlation methods in functional connectivity analysis using fmri data of alzheimer’s patients publication-title: J Biomed Phys Eng – volume: 11 start-page: 3636 issue: 8 year: 2021 ident: 10.1016/j.compeleceng.2025.110117_b12 article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fmri publication-title: Appl Sci doi: 10.3390/app11083636 – volume: 6 start-page: 5 issue: 1 year: 2021 ident: 10.1016/j.compeleceng.2025.110117_b55 article-title: Deep learning-based binary classification of adhd using resting state mr images publication-title: Augment Hum Res doi: 10.1007/s41133-020-00042-y – volume: 29 start-page: 27 issue: 1 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b43 article-title: Attentional connectivity-based prediction of autism using heterogeneous rs-fmri data from cc200 atlas publication-title: Exp Neurobiol doi: 10.5607/en.2020.29.1.27 – volume: 102 start-page: 26 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b77 article-title: Impact of amplitude and phase of fmri time series for functional connectivity analysis publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2023.04.002 – volume: 20 start-page: 255 issue: 4 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b65 article-title: Dnn based classification of adhd fmri data using functional connectivity coefficient publication-title: Int J Fuzzy Log Intell Syst doi: 10.5391/IJFIS.2020.20.4.255 – volume: 16 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b66 article-title: Riemannian geometry of functional connectivity matrices for multi-site attention- deficit/hyperactivity disorder data harmonization publication-title: Front Neuroinformatics doi: 10.3389/fninf.2022.769274 – volume: vol. 25 start-page: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b59 article-title: 3D cnn based automatic diagnosis of adhd using fmri volumes – volume: 28 start-page: 146 issue: 2 year: 2021 ident: 10.1016/j.compeleceng.2025.110117_b13 article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning publication-title: J Comput Biol doi: 10.1089/cmb.2020.0252 – volume: 23 start-page: 13443 issue: 12 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b25 article-title: Novel linear and nonlinear features for the analysis of dynamic brain functional connectivity publication-title: IEEE Sensors J doi: 10.1109/JSEN.2023.3274180 – year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b47 article-title: Decoding autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fmri data publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2024.110100 – volume: 620 start-page: 61 year: 2021 ident: 10.1016/j.compeleceng.2025.110117_b79 article-title: Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices publication-title: Linear Algebra Appl doi: 10.1016/j.laa.2021.02.023 – volume: 361 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b18 article-title: Measuring urban environmental performance in china: A euclidean distance function approach publication-title: J Environ Manag doi: 10.1016/j.jenvman.2024.121272 – volume: 86 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b54 article-title: Stockwell transform of time-series of fmri data for diagnoses of attention deficit hyperactive disorder publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105905 – volume: 108 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b41 article-title: Artificial intelligence and sensor-based autism spectrum disorder diagnosis using brain connectivity analysis publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2023.108720 – volume: 59 start-page: 1135 issue: 4 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b5 article-title: Resting-state fmri: Emerging concepts for future clinical application publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28894 – volume: 17 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b56 article-title: Seed correlation analysis based on brain region activation for adhd diagnosis in a large-scale resting state data set publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2023.1082722 – volume: 2 start-page: 71 issue: 77 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b74 article-title: Application of hilbert transform for power quality indicators monitoring in general purpose grids publication-title: Syst Res Energy doi: 10.15407/srenergy2024.02.071 – volume: 20 start-page: 1822 issue: 11 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b9 article-title: Waxholm space atlas of the rat brain: A 3d atlas supporting data analysis and integration publication-title: Nature Methods doi: 10.1038/s41592-023-02034-3 – volume: 32 start-page: 1586 issue: 8 year: 2019 ident: 10.1016/j.compeleceng.2025.110117_b72 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2912815 – volume: 164 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b21 article-title: Fault analysis in clustered microgrids utilizing svm-cnn and differential protection publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2024.112031 – volume: 12 start-page: 81 issue: 1 year: 2021 ident: 10.1016/j.compeleceng.2025.110117_b58 article-title: Fmri feature extraction model for adhd classification using convolutional neural network publication-title: Int J E- Heal Med Commun (IJEHMC) doi: 10.4018/IJEHMC.2021010106 – year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b85 article-title: Novel framework of significant risk factor identification and cardiovascular disease prediction publication-title: Expert Syst Appl – year: 2019 ident: 10.1016/j.compeleceng.2025.110117_b71 – volume: 14 start-page: 24473 issue: 1 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b61 article-title: Enhanced adhd classification through deep learning and dynamic resting state fmri analysis publication-title: Sci Rep doi: 10.1038/s41598-024-74282-y – volume: 270 start-page: 202 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b10 article-title: A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fmri publication-title: Schizophr Res doi: 10.1016/j.schres.2024.06.031 – volume: 2023 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b22 article-title: A state-of-the-art computer vision adopting non-euclidean deep-learning models publication-title: Int J Intell Syst doi: 10.1155/2023/8674641 – volume: 250 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b57 article-title: Adhd identification and its interpretation of functional connectivity using deep self- attention factorization publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.109082 – ident: 10.1016/j.compeleceng.2025.110117_b34 doi: 10.35414/akufemubid.1239360 – volume: 305 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b53 article-title: Usmda: Unsupervised multisource domain adaptive adhd prediction model using neuroimaging publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2024.112615 – volume: 13 start-page: 1325 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b45 article-title: Automated detection of autism spectrum disorder using a convolutional neural network publication-title: Front Neurosci doi: 10.3389/fnins.2019.01325 – start-page: 125 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b73 article-title: Discrete fourier transform – volume: 44 start-page: 278 issue: 3 year: 2019 ident: 10.1016/j.compeleceng.2025.110117_b28 article-title: Machine learning in autistic spectrum disorder behavioral research: A review and ways forward publication-title: Inform Heal Soc Care doi: 10.1080/17538157.2017.1399132 – volume: 17 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b40 article-title: Population level multimodal neuroimaging correlates of attention-deficit hyperactivity disorder among children publication-title: Front Neurosci doi: 10.3389/fnins.2023.1138670 – volume: 20 start-page: 5212 issue: 18 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b20 article-title: Deep-net: A lightweight cnn-based speech emotion recognition system using deep frequency features publication-title: Sensors doi: 10.3390/s20185212 – volume: 103 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b29 article-title: Adhd classification by dual subspace learning using resting-state functional connectivity publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101786 – volume: 11 start-page: 359 issue: 3 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b39 article-title: Discrimination of adhd subtypes using decision tree on behavioral, neuropsychological, and neural markers publication-title: Basic Clin Neurosci – volume: 23 start-page: 3952 issue: 8 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b87 article-title: An indoor fingerprint positioning algorithm based on wknn and improved xgboost publication-title: Sensors doi: 10.3390/s23083952 – volume: 2 issue: 4 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b19 article-title: Mri-based brain tumour image detection using cnn based deep learning method publication-title: Neurosci Inform doi: 10.1016/j.neuri.2022.100060 – volume: 131 issue: 19 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b75 article-title: Phase shifting profilometry based on hilbert transform: An efficient phase unwrapping algorithm publication-title: J Appl Phys doi: 10.1063/5.0084695 – volume: 95 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b14 article-title: Enhancing fnirs data analysis with a novel motion artifact detection algorithm and improved correction publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.106496 – volume: 3 issue: 1 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b37 article-title: Accurate identification of attention-deficit/hyperactivity disorder using machine learning approaches publication-title: J Disabil Res doi: 10.57197/JDR-2023-0053 – volume: 127 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b89 article-title: Deep learning with image-based autism spectrum disorder analysis: A systematic review publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107185 – year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b33 article-title: Autism spectrum disorder (asd) classification with three types of correlations based on abide-i dataset – volume: 360 start-page: 1454 issue: 2 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b82 article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2022.11.004 – volume: 335 year: 2020 ident: 10.1016/j.compeleceng.2025.110117_b42 article-title: Deepfmri: End-to-end deep learning for functional connectivity and classification of adhd using fmri publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.108506 – volume: 12 start-page: 2886 issue: 18 year: 2024 ident: 10.1016/j.compeleceng.2025.110117_b51 article-title: Enhancing autism spectrum disorder classification with lightweight quantized cnns and federated learning on abide-1 dataset publication-title: Math doi: 10.3390/math12182886 – volume: 13 start-page: 20201 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b70 article-title: A novel subject-wise dictionary learning approach using multi-subject fmri spatial and temporal components publication-title: Sci Rep doi: 10.1038/s41598-023-47420-1 – volume: 14 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b2 article-title: Autism spectrum disorder research: knowledge mapping of progress and focus between 2011 and 2022 publication-title: Front Psychiatry doi: 10.3389/fpsyt.2023.1096769 – volume: 84 year: 2023 ident: 10.1016/j.compeleceng.2025.110117_b35 article-title: A classification framework for autism spectrum disorder detection using smri: Optimizer based ensemble of deep convolution neural network with on-the-fly data augmentation publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104686 – volume: 147 start-page: 736 year: 2017 ident: 10.1016/j.compeleceng.2025.110117_b36 article-title: Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 71 year: 2022 ident: 10.1016/j.compeleceng.2025.110117_b4 article-title: An age-dependent connectivity-based computer aided diagnosis system for autism spectrum disorder using resting-state fmri publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103108 |
SSID | ssj0004618 |
Score | 2.3767996 |
Snippet | Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 110117 |
SubjectTerms | Brain functional connectivity Data-driven brain topology Frequency specific connectivity Functional magnetic resonance imaging(fMRI) Graph convolutional networks Neurodevelopmental disorder |
Title | AI-enabled Computational Intelligence Approach to Neurodevelopmental Disorders Detection Using rs-fMRI Data |
URI | https://dx.doi.org/10.1016/j.compeleceng.2025.110117 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwHA5jguhBfOJ8EcFrXB9JmoCXsjlWZTuIg91KmodMoRtbvfq3m_TBKggePLY0UL6mv0f7fd8PgDsVYoqlkijiXohsSa0RCxVDkjMjjG2gM-LEyZMpHc_w05zMO2DQaGEcrbKO_VVML6N1faZfo9lfLRZO44tJ5Gx2Sekq4my3MY7cLr__8lvaSL-KxthZM3p0F9xuOV6Otu3Gzej8zbaKAXGkeL-cXfZLjmrlndEhOKgLRhhX93QEOjo_BvstG8ET8BEnSJcaKAWrKQ31Fz6YtAw3YVzbh8NiCUtPDrUlDNlrGx_ODRzqoiRo5bAkFMD1BpnJSwKHohCnYDZ6fB2MUT1EAcmAkgLZlkEHVFOhPGZoJLHylCKG-VKTLORMEGFflIxjaXQkmKJa2hSFiSaSRIar8Ax082WuzwFkzDcBp1y5n3c4DIUxoRZEMcExZ0HUA0EDW7qqvDLShkT2nrawTh3WaYV1Dzw0AKc_HnxqY_rfyy_-t_wS7LmjiopzBbrF-lNf2yqjyG7KbXQDduLkeTz9BsuN1Ck |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAGP3QFlwO4oq7I3gd2iYzkxnwUlpLorYHaaG3MJ1FqpCKxv_vTBaMIHjwmmQgvEy-JXnvfQA3OiSMKK1wJLohdiW1wTzUHCvBrbSugV5QL04eT1g8I_dzOl-DQa2F8bTKKvaXMb2I1tWRToVm52259BpfQiNvs0sLVxG2Dm3vTkVb0O4nD_GkIY_slQGZeHfGLtuA62-al2du-4kzJnt23WJAPS--V4wv-yVNNVLPaBd2qpoR9cvb2oM1k-3DdsNJ8ABe-wk2hQxKo3JQQ_WRDyUNz03UrxzEUb5ChS2H_uYMuWtrK84PNDR5wdHKUMEpQO8f2I6fEjSUuTyE2ehuOohxNUcBq4DRHLuuwQTMMKm73LJIEd3VmlreU4YuQsElle5dWQiirIkk18wol6UINVTRyAodHkErW2XmGBDnPRsIJrT_f0fCUFobGkk1l4IIHkQnENSwpW-lXUZa88he0gbWqcc6LbE-gdsa4PTHs09dWP97-en_ll_BZjwdP6aPyeThDLb8mZKZcw6t_P3TXLiiI19cVpvqCxne1to |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-enabled+Computational+Intelligence+Approach+to+Neurodevelopmental+Disorders+Detection+Using+rs-fMRI+Data&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Bandyopadhyay%2C+Soham&rft.au=Sarma%2C+Monalisa&rft.au=Samanta%2C+Debasis&rft.date=2025-04-01&rft.issn=0045-7906&rft.volume=123&rft.spage=110117&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2025_110117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |