AI-enabled Computational Intelligence Approach to Neurodevelopmental Disorders Detection Using rs-fMRI Data

Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning (DeepL) on Functional magnetic resonance imaging (fMRI) data offers enhanced insights, advancing the understanding and diagnostic capabilities of N...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 123; p. 110117
Main Authors Bandyopadhyay, Soham, Sarma, Monalisa, Samanta, Debasis
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning (DeepL) on Functional magnetic resonance imaging (fMRI) data offers enhanced insights, advancing the understanding and diagnostic capabilities of NDDs. Traditionally, researchers extract time series data from predefined brain regions (ROIs) using atlas-based methods and focus on generating brain functional connectivity using Pearson correlation by analyzing changes in signal amplitude over time. This conventional approach assumes that the brain’s structure can be modeled in a simple Euclidean space and predicted with conventional ML/DeepL techniques. However, these traditional methods have several drawbacks. Predefined ROI extraction fails to capture the inherent variability in brain connectivity patterns across individuals, potentially missing crucial information, while relying on Pearson correlation to analyze functional brain connectivity is sensitive to amplitude fluctuations caused by high neural oscillations, leading to inaccurate representations of true neural relationships. Modeling brain functional structure in Euclidean space does not account for the brain’s complex, non-linear neural dynamics, limiting the effectiveness of ML/DeepL models. To address these issues, we propose: 1) An approach that adapts ROIs for each subject using combined grouped Independent Component Analysis (ICA) and Dictionary Learning (DL), better representing individual brain topologies; 2) The application of Phase Locking Value (PLV) to estimate functional connectivity in the frequency domain, reducing sensitivity to amplitude variations while effectively capturing both linear and non-linear signal relationships; 3) The implementation of a Graph Convolutional Network (GCN) to address the brain’s non-Euclidean topological structure with graph architecture, enhancing the classification and diagnosis of neural disorders. This method was tested on the ADHD-200 dataset for ADHD and the ABIDE-I dataset for ASD, achieving high accuracy (94% ±1.3% for ADHD and 89.3% ±2.3% for ASD) through 10-fold cross-validation. The integration of data-driven ROI extraction, frequency-domain connectivity analysis, and non-Euclidean graph-based brain architecture representation collectively represents a novel approach to improving the understanding and prediction of NDDs.
AbstractList Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning (DeepL) on Functional magnetic resonance imaging (fMRI) data offers enhanced insights, advancing the understanding and diagnostic capabilities of NDDs. Traditionally, researchers extract time series data from predefined brain regions (ROIs) using atlas-based methods and focus on generating brain functional connectivity using Pearson correlation by analyzing changes in signal amplitude over time. This conventional approach assumes that the brain’s structure can be modeled in a simple Euclidean space and predicted with conventional ML/DeepL techniques. However, these traditional methods have several drawbacks. Predefined ROI extraction fails to capture the inherent variability in brain connectivity patterns across individuals, potentially missing crucial information, while relying on Pearson correlation to analyze functional brain connectivity is sensitive to amplitude fluctuations caused by high neural oscillations, leading to inaccurate representations of true neural relationships. Modeling brain functional structure in Euclidean space does not account for the brain’s complex, non-linear neural dynamics, limiting the effectiveness of ML/DeepL models. To address these issues, we propose: 1) An approach that adapts ROIs for each subject using combined grouped Independent Component Analysis (ICA) and Dictionary Learning (DL), better representing individual brain topologies; 2) The application of Phase Locking Value (PLV) to estimate functional connectivity in the frequency domain, reducing sensitivity to amplitude variations while effectively capturing both linear and non-linear signal relationships; 3) The implementation of a Graph Convolutional Network (GCN) to address the brain’s non-Euclidean topological structure with graph architecture, enhancing the classification and diagnosis of neural disorders. This method was tested on the ADHD-200 dataset for ADHD and the ABIDE-I dataset for ASD, achieving high accuracy (94% ±1.3% for ADHD and 89.3% ±2.3% for ASD) through 10-fold cross-validation. The integration of data-driven ROI extraction, frequency-domain connectivity analysis, and non-Euclidean graph-based brain architecture representation collectively represents a novel approach to improving the understanding and prediction of NDDs.
ArticleNumber 110117
Author Bandyopadhyay, Soham
Samanta, Debasis
Sarma, Monalisa
Author_xml – sequence: 1
  givenname: Soham
  orcidid: 0000-0003-4062-2034
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Soham
  email: sohamban@gmail.com
  organization: Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
– sequence: 2
  givenname: Monalisa
  surname: Sarma
  fullname: Sarma, Monalisa
  organization: Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, India
– sequence: 3
  givenname: Debasis
  surname: Samanta
  fullname: Samanta, Debasis
  organization: Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
BookMark eNqNkE1OwzAQRr0oEm3hDuYACXYaO8mySvmJVEBCdG059qS4pHZku5W4PYnKgiWr0WjmfZp5CzSzzgJCd5SklFB-f0iVOw7QgwK7TzOSsZSOA1rM0JyQnCVFRfg1WoRwIGPPaTlHX-smASvbHjSuR_oUZTTOyh43NkLfmz1YBXg9DN5J9Ymjw69w8k7DGXo3HMHGcXdjgvMafMAbiKCmBLwLxu6xD0n38t7gjYzyBl11sg9w-1uXaPf48FE_J9u3p6ZebxOVcRaTjDHIOHCpSdnxQuWaaM26kipg7aoqJZMZIW2Vqw4KWWoOKs-qnAFTrOgqvVqi6pKrvAvBQycGb47SfwtKxGRKHMQfU2IyJS6mRra-sDAeeDbgRVBmUqCNHx8T2pl_pPwAEuB-CQ
Cites_doi 10.1002/aur.2894
10.1007/s11682-021-00476-x
10.1371/journal.pone.0194856
10.1186/s12888-019-2031-9
10.1007/s10548-020-00753-w
10.1186/s12888-023-04980-w
10.3389/fenrg.2024.1365538
10.1016/j.jneumeth.2023.109794
10.1186/s40649-019-0069-y
10.1038/s41398-023-02536-w
10.3390/s22083049
10.1142/S012906572150009X
10.1016/j.pscychresns.2023.111689
10.3390/app14020473
10.1007/s11265-022-01812-0
10.1016/j.compbiomed.2024.109240
10.3389/fpsyt.2022.1070142
10.1038/s41598-022-09821-6
10.3390/jcm12041450
10.14445/22315381/IJETT-V70I4P230
10.3390/e25040579
10.1093/brain/awae159
10.1016/j.compbiomed.2022.105854
10.1016/j.asoc.2023.110363
10.1109/TNSRE.2023.3333952
10.3389/fpsyt.2024.1426155
10.1016/j.jksuci.2024.102068
10.1016/j.jad.2023.02.082
10.1016/j.measurement.2022.112169
10.1016/j.compbiomed.2024.109083
10.1007/s11571-021-09683-0
10.1016/j.ins.2019.05.043
10.3390/app11083636
10.1007/s41133-020-00042-y
10.5607/en.2020.29.1.27
10.1016/j.mri.2023.04.002
10.5391/IJFIS.2020.20.4.255
10.3389/fninf.2022.769274
10.1089/cmb.2020.0252
10.1109/JSEN.2023.3274180
10.1016/j.jneumeth.2024.110100
10.1016/j.laa.2021.02.023
10.1016/j.jenvman.2024.121272
10.1016/j.asoc.2019.105905
10.1016/j.compeleceng.2023.108720
10.1002/jmri.28894
10.3389/fnhum.2023.1082722
10.15407/srenergy2024.02.071
10.1038/s41592-023-02034-3
10.1109/TKDE.2019.2912815
10.1016/j.asoc.2024.112031
10.4018/IJEHMC.2021010106
10.1038/s41598-024-74282-y
10.1016/j.schres.2024.06.031
10.1155/2023/8674641
10.1016/j.knosys.2022.109082
10.35414/akufemubid.1239360
10.1016/j.knosys.2024.112615
10.3389/fnins.2019.01325
10.1080/17538157.2017.1399132
10.3389/fnins.2023.1138670
10.3390/s20185212
10.1016/j.artmed.2019.101786
10.3390/s23083952
10.1016/j.neuri.2022.100060
10.1063/5.0084695
10.1016/j.bspc.2024.106496
10.57197/JDR-2023-0053
10.1016/j.engappai.2023.107185
10.1016/j.jfranklin.2022.11.004
10.1016/j.jneumeth.2019.108506
10.3390/math12182886
10.1038/s41598-023-47420-1
10.3389/fpsyt.2023.1096769
10.1016/j.bspc.2023.104686
10.1016/j.neuroimage.2016.10.045
10.1016/j.bspc.2021.103108
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2025.110117
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compeleceng_2025_110117
S0045790625000606
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c265t-255e26e6ad08f67c4d0dd5f81ce5b398a5a200b94cfe7a8d6ec42945e5c57f9d3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Thu Jul 03 08:19:23 EDT 2025
Sat Jun 07 17:00:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain functional connectivity
Graph convolutional networks
Neurodevelopmental disorder
Frequency specific connectivity
Functional magnetic resonance imaging(fMRI)
Data-driven brain topology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-255e26e6ad08f67c4d0dd5f81ce5b398a5a200b94cfe7a8d6ec42945e5c57f9d3
ORCID 0000-0003-4062-2034
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2025_110117
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110117
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kim, Park, Kim, Kwon (b49) 2023
Meng, Wang, Liu, Chen, Wang (b75) 2022; 131
Khullar, Salgotra, Singh, Sharma (b55) 2021; 6
Zhang, Tong, Xu, Maciejewski (b86) 2019; 6
Bahathiq, Banjar, Jarraya, Bamaga, Almoallim (b48) 2024; 14
Uddin, Shahriar, Mahamood, Alnajjar, Pramanik, Ahad (b89) 2024; 127
Vold, Halmøy, Chalabianloo, Pierron, Løberg, Johansson, Fadnes (b1) 2023; 23
Motlaghian, Vahidi, Baker, Belger, Bustillo, Faghiri, Ford, Iraji, Lim, Mathalon (b26) 2023; 389
Thabtah (b28) 2019; 44
Bandyopadhyay, Peddi, Sarma, Samanta (b47) 2024
Sartipi, Kalbkhani, Ghasemzadeh, Shayesteh (b54) 2020; 86
Simeon, Piella, Camara, Pareto (b66) 2022; 16
Liu, Xu, Li, Yu, Yu (b43) 2020; 29
Khalid, Nauman (b70) 2023; 13
Rao MJ. Deep learning approach to predict autism spectrum disorder (asd).
Rizkallah, Amoud, Fraschini, Wendling, Hassan (b15) 2020; 33
Chattopadhyay, Maitra (b19) 2022; 2
Sörös, Hoxhaj, Borel, Sadohara, Feige, Matthies, Müller, Bachmann, Schulze, Philipsen (b64) 2019; 19
Beltukov (b73) 2024
Anvarjon, Mustaqeem, Kwon (b20) 2020; 20
Zheng, Jin, Cao, Lin, Xu, Cheng, Yao, Xu (b25) 2023; 23
Alsharif, Al-Adhaileh, Al-Yaari (b37) 2024; 3
Cao, Martin, Li (b38) 2023; 13
Riaz, Asad, Alonso, Slabaugh (b42) 2020; 335
Surendiran, Thangamani, Narmatha, Iswarya (b32) 2022; 70
Zhang, Huo, Zheng, Huang, Zhao (b81) 2023
Chauhan, Choi (b65) 2020; 20
Taylor, Nicholas, Hoy, Bailey, Tanglay, Young, Dobbin, Doyen, Sughrue, Fitzgerald (b67) 2023; 329
Mittal, Sao, Biswal (b77) 2023; 102
Lu, Zhang, Chen, Zhang, Wang, Peng, Zou (b87) 2023; 23
Sen, Borle, Greiner, Brown (b27) 2018; 13
Jiang, Lu, Yang, Li, Zhao, Zhang, Li, Wang (b2) 2023; 14
Tao, Qiu, Chen, Stojanovic, Cheng (b82) 2023; 360
Graña, Silva (b7) 2021; 31
Chowdhury, Sany, Ahamed, Das, Badal, Das, Tasneem, Hasan, Islam, Ali (b22) 2023; 2023
Liu, Hasan, Gedeon, Hossain (b52) 2024; 182
Zhang, Wei, Liu, Wang, Xi, Pan (b62) 2022; 148
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (b36) 2017; 147
Wong, Yeh (b72) 2019; 32
di Biase, Ricci, Caminiti, Pecoraro, Carbone, Di Lazzaro (b24) 2023; 12
Parui, Samanta, Chakravorty, Ghosh, Rodrigues (b41) 2023; 108
Wang, Wu, Zhou (b18) 2024; 361
Amemiya, Takao, Abe (b5) 2024; 59
Chen, Tang, Wang, Liu, Zhao, Wang (b29) 2020; 103
Liu, Chen, Dong, Wang, Wu, Huang (b71) 2019
Kovtun, Kuts, Malko, Fryz, Shcherbak, Kuts (b74) 2024; 2
Gogula, Edward (b76) 2024; 12
Santana, de Carvalho, Rodrigues, Bastos, de Souza, de Brito (b11) 2022; 12
Yin, Mostafa, Wu (b13) 2021; 28
Sherkatghanad, Akhondzadeh, Salari, Zomorodi-Moghadam, Abdar, Acharya, Khosrowabadi, Salari (b45) 2020; 13
Hsieh, Shaw, Kung, Liang (b56) 2023; 17
Mishra, Pati (b35) 2023; 84
Yu, Gao, Niu, Zhang, Yang, Han, Cheng, Zhang (b83) 2023; 13
Ashraf, Zhao, Bangyal, Iqbal (b44) 2023
Rostami, Farashi, Khosrowabadi, Pouretemad (b39) 2020; 11
Kleven, Bjerke, Clascá, Groenewegen, Bjaalie, Leergaard (b9) 2023; 20
Arévalo, Cano, Benavides, Jurado (b21) 2024; 164
Meng, Iraji, Fu, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson (b69) 2023; 38
Casseus, Kim, Horton (b3) 2023; 16
Huang, Li (b14) 2024; 95
Zuo, Shen, Zhong, Chen, Lei, Wang (b6) 2023; 31
Qin, Lou, Huang, Chen, Yue (b60) 2022; 94
Lin, Haider, Kaltenhauser, Mozayan, Malhotra, Constable, Scheinost, Ment, Konrad, Payabvash (b40) 2023; 17
Li, Wang (b79) 2021; 620
Taşpinar, Özkurt (b59) 2023; vol. 25
Haghighat, Mirzarezaee, Araabi, Khadem (b4) 2022; 71
He, Palaniyappan, Linli, Guo (b84) 2022; 16
Park, Cho (b63) 2023; 142
Pérez-Sienes, Grande, Losada, Borondo (b78) 2023; 25
Subah, Deb, Dhar, Koshiba (b12) 2021; 11
Firouzi, Kazemi, Ahmadi, Helfroush, Aarabi (b61) 2024; 14
Kulkarni, Nemade, Patel, Patel, Velpula (b68) 2024; 15
Yang, Zhang, Zeng (b80) 2022; 204
Mengi, Malhotra (b53) 2024; 305
Al-Selwi, Hassan, Abdulkadir, Muneer, Sumiea, Alqushaibi, Ragab (b88) 2024
Wang, Yang, Ding (b33) 2023
Shao, Fu, You, Fu (b46) 2021; 15
Ahmadi, Fatemizadeh, Motie-Nasrabadi (b17) 2023; 13
Zamanzadeh, Pourhedayat, Bakouie, Hadaeghi (b30) 2024; 183
Kucewicz, Cimbalnik, Garcia-Salinas, Brazdil, Worrell (b16) 2024; 147
He, Long, Song, Li, Niu, Peng, Wei, Zhang (b10) 2024; 270
Ke, Wang, Ma, He (b57) 2022; 250
Lohani, Rana (b31) 2023; 334
Mao, Su, Xu, Wang, Huang, Yue, Sun, Xiong (b50) 2019; 499
De Silva, Dayarathna, Ariyarathne, Meedeniya, Jayarathna (b58) 2021; 12
Guail, Jinsong, Oloulade, Al-Sabri (b23) 2022; 22
Özdemir ŞN, Yıldız K. Detection of autistic spectrum disorder using artificial neural network. In: Afyon kocatepe üniversitesi fen ve mühendislik bilimleri dergisi. vol. 23, p. 955–61, (4).
Gupta, Bhuiyan, Chowa, Montaha, Rahman, Mehedi, Rahman (b51) 2024; 12
Bandyopadhyay, Samanta, Sarma, Samanta (b85) 2024
He (10.1016/j.compeleceng.2025.110117_b10) 2024; 270
Taylor (10.1016/j.compeleceng.2025.110117_b67) 2023; 329
Thabtah (10.1016/j.compeleceng.2025.110117_b28) 2019; 44
Park (10.1016/j.compeleceng.2025.110117_b63) 2023; 142
Meng (10.1016/j.compeleceng.2025.110117_b69) 2023; 38
Surendiran (10.1016/j.compeleceng.2025.110117_b32) 2022; 70
Riaz (10.1016/j.compeleceng.2025.110117_b42) 2020; 335
Liu (10.1016/j.compeleceng.2025.110117_b71) 2019
Yang (10.1016/j.compeleceng.2025.110117_b80) 2022; 204
Bandyopadhyay (10.1016/j.compeleceng.2025.110117_b47) 2024
Kucewicz (10.1016/j.compeleceng.2025.110117_b16) 2024; 147
Zuo (10.1016/j.compeleceng.2025.110117_b6) 2023; 31
Mittal (10.1016/j.compeleceng.2025.110117_b77) 2023; 102
Amemiya (10.1016/j.compeleceng.2025.110117_b5) 2024; 59
Simeon (10.1016/j.compeleceng.2025.110117_b66) 2022; 16
Pérez-Sienes (10.1016/j.compeleceng.2025.110117_b78) 2023; 25
Lu (10.1016/j.compeleceng.2025.110117_b87) 2023; 23
Lin (10.1016/j.compeleceng.2025.110117_b40) 2023; 17
Zhang (10.1016/j.compeleceng.2025.110117_b86) 2019; 6
Sen (10.1016/j.compeleceng.2025.110117_b27) 2018; 13
Zamanzadeh (10.1016/j.compeleceng.2025.110117_b30) 2024; 183
Huang (10.1016/j.compeleceng.2025.110117_b14) 2024; 95
Jiang (10.1016/j.compeleceng.2025.110117_b2) 2023; 14
Gupta (10.1016/j.compeleceng.2025.110117_b51) 2024; 12
Mao (10.1016/j.compeleceng.2025.110117_b50) 2019; 499
Haghighat (10.1016/j.compeleceng.2025.110117_b4) 2022; 71
Ahmadi (10.1016/j.compeleceng.2025.110117_b17) 2023; 13
Yin (10.1016/j.compeleceng.2025.110117_b13) 2021; 28
Anvarjon (10.1016/j.compeleceng.2025.110117_b20) 2020; 20
Graña (10.1016/j.compeleceng.2025.110117_b7) 2021; 31
Khullar (10.1016/j.compeleceng.2025.110117_b55) 2021; 6
Li (10.1016/j.compeleceng.2025.110117_b79) 2021; 620
Kim (10.1016/j.compeleceng.2025.110117_b49) 2023
Vold (10.1016/j.compeleceng.2025.110117_b1) 2023; 23
Chen (10.1016/j.compeleceng.2025.110117_b29) 2020; 103
Mengi (10.1016/j.compeleceng.2025.110117_b53) 2024; 305
Bandyopadhyay (10.1016/j.compeleceng.2025.110117_b85) 2024
Shao (10.1016/j.compeleceng.2025.110117_b46) 2021; 15
Zhang (10.1016/j.compeleceng.2025.110117_b62) 2022; 148
Kulkarni (10.1016/j.compeleceng.2025.110117_b68) 2024; 15
di Biase (10.1016/j.compeleceng.2025.110117_b24) 2023; 12
Wong (10.1016/j.compeleceng.2025.110117_b72) 2019; 32
Alsharif (10.1016/j.compeleceng.2025.110117_b37) 2024; 3
Qin (10.1016/j.compeleceng.2025.110117_b60) 2022; 94
Hsieh (10.1016/j.compeleceng.2025.110117_b56) 2023; 17
Wang (10.1016/j.compeleceng.2025.110117_b18) 2024; 361
Arévalo (10.1016/j.compeleceng.2025.110117_b21) 2024; 164
Sörös (10.1016/j.compeleceng.2025.110117_b64) 2019; 19
Beltukov (10.1016/j.compeleceng.2025.110117_b73) 2024
Liu (10.1016/j.compeleceng.2025.110117_b52) 2024; 182
Kovtun (10.1016/j.compeleceng.2025.110117_b74) 2024; 2
Santana (10.1016/j.compeleceng.2025.110117_b11) 2022; 12
Yu (10.1016/j.compeleceng.2025.110117_b83) 2023; 13
He (10.1016/j.compeleceng.2025.110117_b84) 2022; 16
Bahathiq (10.1016/j.compeleceng.2025.110117_b48) 2024; 14
Ke (10.1016/j.compeleceng.2025.110117_b57) 2022; 250
Zhang (10.1016/j.compeleceng.2025.110117_b81) 2023
Cao (10.1016/j.compeleceng.2025.110117_b38) 2023; 13
Chauhan (10.1016/j.compeleceng.2025.110117_b65) 2020; 20
10.1016/j.compeleceng.2025.110117_b34
Abraham (10.1016/j.compeleceng.2025.110117_b36) 2017; 147
Gogula (10.1016/j.compeleceng.2025.110117_b76) 2024; 12
Chowdhury (10.1016/j.compeleceng.2025.110117_b22) 2023; 2023
Sherkatghanad (10.1016/j.compeleceng.2025.110117_b45) 2020; 13
Motlaghian (10.1016/j.compeleceng.2025.110117_b26) 2023; 389
Parui (10.1016/j.compeleceng.2025.110117_b41) 2023; 108
Wang (10.1016/j.compeleceng.2025.110117_b33) 2023
Ashraf (10.1016/j.compeleceng.2025.110117_b44) 2023
Zheng (10.1016/j.compeleceng.2025.110117_b25) 2023; 23
Liu (10.1016/j.compeleceng.2025.110117_b43) 2020; 29
Al-Selwi (10.1016/j.compeleceng.2025.110117_b88) 2024
Chattopadhyay (10.1016/j.compeleceng.2025.110117_b19) 2022; 2
10.1016/j.compeleceng.2025.110117_b8
Casseus (10.1016/j.compeleceng.2025.110117_b3) 2023; 16
Rostami (10.1016/j.compeleceng.2025.110117_b39) 2020; 11
Mishra (10.1016/j.compeleceng.2025.110117_b35) 2023; 84
Khalid (10.1016/j.compeleceng.2025.110117_b70) 2023; 13
Tao (10.1016/j.compeleceng.2025.110117_b82) 2023; 360
Meng (10.1016/j.compeleceng.2025.110117_b75) 2022; 131
Lohani (10.1016/j.compeleceng.2025.110117_b31) 2023; 334
De Silva (10.1016/j.compeleceng.2025.110117_b58) 2021; 12
Kleven (10.1016/j.compeleceng.2025.110117_b9) 2023; 20
Subah (10.1016/j.compeleceng.2025.110117_b12) 2021; 11
Taşpinar (10.1016/j.compeleceng.2025.110117_b59) 2023; vol. 25
Guail (10.1016/j.compeleceng.2025.110117_b23) 2022; 22
Uddin (10.1016/j.compeleceng.2025.110117_b89) 2024; 127
Rizkallah (10.1016/j.compeleceng.2025.110117_b15) 2020; 33
Sartipi (10.1016/j.compeleceng.2025.110117_b54) 2020; 86
Firouzi (10.1016/j.compeleceng.2025.110117_b61) 2024; 14
References_xml – volume: 13
  start-page: 1325
  year: 2020
  ident: b45
  article-title: Automated detection of autism spectrum disorder using a convolutional neural network
  publication-title: Front Neurosci
– volume: 44
  start-page: 278
  year: 2019
  end-page: 297
  ident: b28
  article-title: Machine learning in autistic spectrum disorder behavioral research: A review and ways forward
  publication-title: Inform Heal Soc Care
– volume: 6
  start-page: 5
  year: 2021
  ident: b55
  article-title: Deep learning-based binary classification of adhd using resting state mr images
  publication-title: Augment Hum Res
– volume: 23
  start-page: 3952
  year: 2023
  ident: b87
  article-title: An indoor fingerprint positioning algorithm based on wknn and improved xgboost
  publication-title: Sensors
– volume: 164
  year: 2024
  ident: b21
  article-title: Fault analysis in clustered microgrids utilizing svm-cnn and differential protection
  publication-title: Appl Soft Comput
– volume: 28
  start-page: 146
  year: 2021
  end-page: 165
  ident: b13
  article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning
  publication-title: J Comput Biol
– volume: 94
  start-page: 1269
  year: 2022
  end-page: 1281
  ident: b60
  article-title: An ensemble deep learning approach combining phenotypic data and fmri for adhd diagnosis
  publication-title: J Signal Process Syst
– volume: 14
  year: 2023
  ident: b2
  article-title: Autism spectrum disorder research: knowledge mapping of progress and focus between 2011 and 2022
  publication-title: Front Psychiatry
– volume: 13
  year: 2023
  ident: b83
  article-title: Meta-analysis of structural and functional alterations of brain in patients with attention-deficit/hyperactivity disorder
  publication-title: Front Psychiatry
– volume: 12
  start-page: 6030
  year: 2022
  ident: b11
  article-title: Rs-fmri and machine learning for asd diagnosis: A systematic review and meta-analysis
  publication-title: Sci Rep
– volume: 6
  start-page: 1
  year: 2019
  end-page: 23
  ident: b86
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput Soc Netw
– volume: 183
  year: 2024
  ident: b30
  article-title: Exploring potential adhd biomarkers through advanced machine learning: An examination of audiovisual integration networks
  publication-title: Comput Biol Med
– volume: 29
  start-page: 27
  year: 2020
  ident: b43
  article-title: Attentional connectivity-based prediction of autism using heterogeneous rs-fmri data from cc200 atlas
  publication-title: Exp Neurobiol
– volume: 17
  year: 2023
  ident: b56
  article-title: Seed correlation analysis based on brain region activation for adhd diagnosis in a large-scale resting state data set
  publication-title: Front Hum Neurosci
– volume: 148
  year: 2022
  ident: b62
  article-title: Identification of autism spectrum disorder based on a novel feature selection method and variational autoencoder
  publication-title: Comput Biol Med
– volume: 142
  year: 2023
  ident: b63
  article-title: A residual graph convolutional network with spatio-temporal features for autism classification from fmri brain images
  publication-title: Appl Soft Comput
– volume: 23
  start-page: 479
  year: 2023
  ident: b1
  article-title: Attention-deficit/hyperactivity disorder (adhd) symptoms and their relation to diagnosed adhd, sociodemographic characteristics, and substance use among patients receiving opioid agonist therapy: a norwegian cohort study
  publication-title: BMC Psychiatry
– volume: 23
  start-page: 13443
  year: 2023
  end-page: 13451
  ident: b25
  article-title: Novel linear and nonlinear features for the analysis of dynamic brain functional connectivity
  publication-title: IEEE Sensors J
– volume: 12
  start-page: 2886
  year: 2024
  ident: b51
  article-title: Enhancing autism spectrum disorder classification with lightweight quantized cnns and federated learning on abide-1 dataset
  publication-title: Math
– volume: 13
  start-page: 125
  year: 2023
  ident: b17
  article-title: A comparative study of correlation methods in functional connectivity analysis using fmri data of alzheimer’s patients
  publication-title: J Biomed Phys Eng
– volume: 389
  year: 2023
  ident: b26
  article-title: A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fmri data
  publication-title: J Neurosci Methods
– reference: Özdemir ŞN, Yıldız K. Detection of autistic spectrum disorder using artificial neural network. In: Afyon kocatepe üniversitesi fen ve mühendislik bilimleri dergisi. vol. 23, p. 955–61, (4).
– start-page: 125
  year: 2024
  end-page: 142
  ident: b73
  article-title: Discrete fourier transform
  publication-title: Differential equations and data analysis
– volume: 250
  year: 2022
  ident: b57
  article-title: Adhd identification and its interpretation of functional connectivity using deep self- attention factorization
  publication-title: Knowl-Based Syst
– volume: 360
  start-page: 1454
  year: 2023
  end-page: 1477
  ident: b82
  article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion
  publication-title: J Franklin Inst
– volume: 16
  year: 2022
  ident: b66
  article-title: Riemannian geometry of functional connectivity matrices for multi-site attention- deficit/hyperactivity disorder data harmonization
  publication-title: Front Neuroinformatics
– volume: 13
  start-page: 20201
  year: 2023
  ident: b70
  article-title: A novel subject-wise dictionary learning approach using multi-subject fmri spatial and temporal components
  publication-title: Sci Rep
– volume: 59
  start-page: 1135
  year: 2024
  end-page: 1148
  ident: b5
  article-title: Resting-state fmri: Emerging concepts for future clinical application
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 3049
  year: 2022
  ident: b23
  article-title: A principal neighborhood aggregation-based graph convolutional network for pneumonia detection
  publication-title: Sensors
– volume: 270
  start-page: 202
  year: 2024
  end-page: 211
  ident: b10
  article-title: A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fmri
  publication-title: Schizophr Res
– volume: 11
  start-page: 3636
  year: 2021
  ident: b12
  article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fmri
  publication-title: Appl Sci
– year: 2023
  ident: b33
  article-title: Autism spectrum disorder (asd) classification with three types of correlations based on abide-i dataset
  publication-title: Mathematical foundations of computing
– volume: 15
  start-page: 961
  year: 2021
  end-page: 974
  ident: b46
  article-title: Classification of asd based on fmri data with deep learning
  publication-title: Cogn Neurodynamics
– volume: 127
  year: 2024
  ident: b89
  article-title: Deep learning with image-based autism spectrum disorder analysis: A systematic review
  publication-title: Eng Appl Artif Intell
– volume: 620
  start-page: 61
  year: 2021
  end-page: 75
  ident: b79
  article-title: Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices
  publication-title: Linear Algebra Appl
– volume: 31
  year: 2021
  ident: b7
  article-title: Impact of machine learning pipeline choices in autism prediction from functional connectivity data
  publication-title: Int J Neural Syst
– year: 2023
  ident: b44
  article-title: Analysis of brain imaging data for the detection of early age autism spectrum disorder using transfer learning approaches for internet of things
  publication-title: IEEE Trans Consum Electron
– volume: 20
  start-page: 1822
  year: 2023
  end-page: 1829
  ident: b9
  article-title: Waxholm space atlas of the rat brain: A 3d atlas supporting data analysis and integration
  publication-title: Nature Methods
– volume: 334
  year: 2023
  ident: b31
  article-title: Adhd diagnosis using structural brain mri and personal characteristic data with machine learning framework
  publication-title: Psychiatry Res: Neuroimaging
– volume: 182
  year: 2024
  ident: b52
  article-title: Made-for-asd: A multi-atlas deep ensemble network for diagnosing autism spectrum disorder
  publication-title: Comput Biol Med
– volume: 16
  start-page: 855
  year: 2023
  end-page: 867
  ident: b3
  article-title: Prevalence and treatment of mental, behavioral, and developmental disorders in children with co-occurring autism spectrum disorder and attention-deficit/hyperactivity disorder: A population-based study
  publication-title: Autism Res
– volume: vol. 25
  start-page: 1
  year: 2023
  end-page: 8
  ident: b59
  article-title: 3D cnn based automatic diagnosis of adhd using fmri volumes
  publication-title: Dokuz eylül üniversitesi mühendislik fakültesi fen ve mühendislik dergisi
– volume: 70
  start-page: 343
  year: 2022
  end-page: 359
  ident: b32
  article-title: Effective autism spectrum disorder prediction to improve the clinical traits using machine learning techniques
  publication-title: Int J Eng Trends Technol
– volume: 84
  year: 2023
  ident: b35
  article-title: A classification framework for autism spectrum disorder detection using smri: Optimizer based ensemble of deep convolution neural network with on-the-fly data augmentation
  publication-title: Biomed Signal Process Control
– volume: 32
  start-page: 1586
  year: 2019
  end-page: 1594
  ident: b72
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans Knowl Data Eng
– volume: 86
  year: 2020
  ident: b54
  article-title: Stockwell transform of time-series of fmri data for diagnoses of attention deficit hyperactive disorder
  publication-title: Appl Soft Comput
– volume: 361
  year: 2024
  ident: b18
  article-title: Measuring urban environmental performance in china: A euclidean distance function approach
  publication-title: J Environ Manag
– volume: 14
  start-page: 473
  year: 2024
  ident: b48
  article-title: Efficient diagnosis of autism spectrum disorder using optimized machine learning models based on structural mri
  publication-title: Appl Sci
– year: 2023
  ident: b81
  article-title: A fault diagnosis method with bitask-based time and frequency domain feature learning
  publication-title: IEEE Trans Instrum Meas
– volume: 71
  year: 2022
  ident: b4
  article-title: An age-dependent connectivity-based computer aided diagnosis system for autism spectrum disorder using resting-state fmri
  publication-title: Biomed Signal Process Control
– volume: 15
  year: 2024
  ident: b68
  article-title: A short report on adhd detection using convolutional neural networks
  publication-title: Front Psychiatry
– volume: 102
  start-page: 26
  year: 2023
  end-page: 37
  ident: b77
  article-title: Impact of amplitude and phase of fmri time series for functional connectivity analysis
  publication-title: Magn Reson Imaging
– volume: 19
  start-page: 1
  year: 2019
  end-page: 11
  ident: b64
  article-title: Hyperactivity/restlessness is associated with increased functional connectivity in adults with adhd: a dimensional analysis of resting state fmri
  publication-title: BMC Psychiatry
– volume: 12
  year: 2024
  ident: b76
  article-title: Advanced signal analysis for high-impedance fault detection in distribution systems: a dynamic hilbert transform method
  publication-title: Front Energy Res
– volume: 12
  start-page: 81
  year: 2021
  end-page: 105
  ident: b58
  article-title: Fmri feature extraction model for adhd classification using convolutional neural network
  publication-title: Int J E- Heal Med Commun (IJEHMC)
– year: 2024
  ident: b88
  article-title: Rnn-lstm: From applications to modeling techniques and beyond—systematic review
  publication-title: J King Saud Univ- Comput Inf Sci
– volume: 335
  year: 2020
  ident: b42
  article-title: Deepfmri: End-to-end deep learning for functional connectivity and classification of adhd using fmri
  publication-title: J Neurosci Methods
– volume: 17
  year: 2023
  ident: b40
  article-title: Population level multimodal neuroimaging correlates of attention-deficit hyperactivity disorder among children
  publication-title: Front Neurosci
– year: 2024
  ident: b47
  article-title: Decoding autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fmri data
  publication-title: J Neurosci Methods
– volume: 499
  start-page: 1
  year: 2019
  end-page: 11
  ident: b50
  article-title: Spatio-temporal deep learning method for adhd fmri classification
  publication-title: Inform Sci
– volume: 20
  start-page: 255
  year: 2020
  end-page: 260
  ident: b65
  article-title: Dnn based classification of adhd fmri data using functional connectivity coefficient
  publication-title: Int J Fuzzy Log Intell Syst
– volume: 204
  year: 2022
  ident: b80
  article-title: Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion
  publication-title: Measurement
– volume: 95
  year: 2024
  ident: b14
  article-title: Enhancing fnirs data analysis with a novel motion artifact detection algorithm and improved correction
  publication-title: Biomed Signal Process Control
– volume: 13
  start-page: 236
  year: 2023
  ident: b38
  article-title: Machine learning in attention-deficit/hyperactivity disorder: new approaches toward understanding the neural mechanisms
  publication-title: Transl Psychiatry
– volume: 25
  start-page: 579
  year: 2023
  ident: b78
  article-title: The hurst exponent as an indicator to anticipate agricultural commodity prices
  publication-title: Entropy
– volume: 31
  start-page: 4601
  year: 2023
  end-page: 4612
  ident: b6
  article-title: Alzheimer’s disease prediction via brain structural-functional deep fusing network
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: b36
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example
  publication-title: NeuroImage
– reference: Rao MJ. Deep learning approach to predict autism spectrum disorder (asd).
– volume: 103
  year: 2020
  ident: b29
  article-title: Adhd classification by dual subspace learning using resting-state functional connectivity
  publication-title: Artif Intell Med
– volume: 12
  start-page: 1450
  year: 2023
  ident: b24
  article-title: Quantitative high density eeg brain connectivity evaluation in parkinson’s disease: The phase locking value (plv)
  publication-title: J Clin Med
– volume: 3
  year: 2024
  ident: b37
  article-title: Accurate identification of attention-deficit/hyperactivity disorder using machine learning approaches
  publication-title: J Disabil Res
– volume: 13
  year: 2018
  ident: b27
  article-title: A general prediction model for the detection of adhd and autism using structural and functional mri
  publication-title: PLoS One
– volume: 16
  start-page: 54
  year: 2022
  end-page: 68
  ident: b84
  article-title: Abnormal hemispheric asymmetry of both brain function and structure in attention deficit/hyperactivity disorder: a meta-analysis of individual participant data
  publication-title: Brain Imaging Behav
– volume: 147
  start-page: 2966
  year: 2024
  end-page: 2982
  ident: b16
  article-title: High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
  publication-title: Brain
– volume: 131
  year: 2022
  ident: b75
  article-title: Phase shifting profilometry based on hilbert transform: An efficient phase unwrapping algorithm
  publication-title: J Appl Phys
– year: 2023
  ident: b49
  article-title: Finding essential parts of the brain in rs-fmri can improve adhd diagnosis using deep learning
  publication-title: IEEE Access
– volume: 14
  start-page: 24473
  year: 2024
  ident: b61
  article-title: Enhanced adhd classification through deep learning and dynamic resting state fmri analysis
  publication-title: Sci Rep
– volume: 33
  start-page: 151
  year: 2020
  end-page: 160
  ident: b15
  article-title: Exploring the correlation between m/eeg source–space and fmri networks at rest
  publication-title: Brain Topogr
– volume: 108
  year: 2023
  ident: b41
  article-title: Artificial intelligence and sensor-based autism spectrum disorder diagnosis using brain connectivity analysis
  publication-title: Comput Electr Eng
– year: 2024
  ident: b85
  article-title: Novel framework of significant risk factor identification and cardiovascular disease prediction
  publication-title: Expert Syst Appl
– volume: 11
  start-page: 359
  year: 2020
  ident: b39
  article-title: Discrimination of adhd subtypes using decision tree on behavioral, neuropsychological, and neural markers
  publication-title: Basic Clin Neurosci
– volume: 38
  year: 2023
  ident: b69
  article-title: Multi-model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from resting data: A large n fmri schizophrenia study
  publication-title: NeuroImage: Clin
– volume: 20
  start-page: 5212
  year: 2020
  ident: b20
  article-title: Deep-net: A lightweight cnn-based speech emotion recognition system using deep frequency features
  publication-title: Sensors
– volume: 2023
  year: 2023
  ident: b22
  article-title: A state-of-the-art computer vision adopting non-euclidean deep-learning models
  publication-title: Int J Intell Syst
– year: 2019
  ident: b71
  article-title: Higher-order weighted graph convolutional networks
– volume: 2
  year: 2022
  ident: b19
  article-title: Mri-based brain tumour image detection using cnn based deep learning method
  publication-title: Neurosci Inform
– volume: 2
  start-page: 71
  year: 2024
  end-page: 83
  ident: b74
  article-title: Application of hilbert transform for power quality indicators monitoring in general purpose grids
  publication-title: Syst Res Energy
– volume: 329
  start-page: 539
  year: 2023
  end-page: 547
  ident: b67
  article-title: Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation
  publication-title: J Affect Disord
– volume: 305
  year: 2024
  ident: b53
  article-title: Usmda: Unsupervised multisource domain adaptive adhd prediction model using neuroimaging
  publication-title: Knowl-Based Syst
– volume: 16
  start-page: 855
  issue: 4
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b3
  article-title: Prevalence and treatment of mental, behavioral, and developmental disorders in children with co-occurring autism spectrum disorder and attention-deficit/hyperactivity disorder: A population-based study
  publication-title: Autism Res
  doi: 10.1002/aur.2894
– volume: 16
  start-page: 54
  issue: 1
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b84
  article-title: Abnormal hemispheric asymmetry of both brain function and structure in attention deficit/hyperactivity disorder: a meta-analysis of individual participant data
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-021-00476-x
– volume: 13
  issue: 4
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110117_b27
  article-title: A general prediction model for the detection of adhd and autism using structural and functional mri
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0194856
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110117_b64
  article-title: Hyperactivity/restlessness is associated with increased functional connectivity in adults with adhd: a dimensional analysis of resting state fmri
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-019-2031-9
– volume: 33
  start-page: 151
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b15
  article-title: Exploring the correlation between m/eeg source–space and fmri networks at rest
  publication-title: Brain Topogr
  doi: 10.1007/s10548-020-00753-w
– volume: 23
  start-page: 479
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b1
  article-title: Attention-deficit/hyperactivity disorder (adhd) symptoms and their relation to diagnosed adhd, sociodemographic characteristics, and substance use among patients receiving opioid agonist therapy: a norwegian cohort study
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-023-04980-w
– year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b81
  article-title: A fault diagnosis method with bitask-based time and frequency domain feature learning
  publication-title: IEEE Trans Instrum Meas
– volume: 12
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b76
  article-title: Advanced signal analysis for high-impedance fault detection in distribution systems: a dynamic hilbert transform method
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2024.1365538
– volume: 389
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b26
  article-title: A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fmri data
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2023.109794
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110117_b86
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput Soc Netw
  doi: 10.1186/s40649-019-0069-y
– volume: 13
  start-page: 236
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b38
  article-title: Machine learning in attention-deficit/hyperactivity disorder: new approaches toward understanding the neural mechanisms
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-023-02536-w
– year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b49
  article-title: Finding essential parts of the brain in rs-fmri can improve adhd diagnosis using deep learning
  publication-title: IEEE Access
– volume: 22
  start-page: 3049
  issue: 8
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b23
  article-title: A principal neighborhood aggregation-based graph convolutional network for pneumonia detection
  publication-title: Sensors
  doi: 10.3390/s22083049
– volume: 31
  issue: 04
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110117_b7
  article-title: Impact of machine learning pipeline choices in autism prediction from functional connectivity data
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906572150009X
– volume: 334
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b31
  article-title: Adhd diagnosis using structural brain mri and personal characteristic data with machine learning framework
  publication-title: Psychiatry Res: Neuroimaging
  doi: 10.1016/j.pscychresns.2023.111689
– volume: 14
  start-page: 473
  issue: 2
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b48
  article-title: Efficient diagnosis of autism spectrum disorder using optimized machine learning models based on structural mri
  publication-title: Appl Sci
  doi: 10.3390/app14020473
– volume: 94
  start-page: 1269
  issue: 11
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b60
  article-title: An ensemble deep learning approach combining phenotypic data and fmri for adhd diagnosis
  publication-title: J Signal Process Syst
  doi: 10.1007/s11265-022-01812-0
– volume: 183
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b30
  article-title: Exploring potential adhd biomarkers through advanced machine learning: An examination of audiovisual integration networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2024.109240
– volume: 13
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b83
  article-title: Meta-analysis of structural and functional alterations of brain in patients with attention-deficit/hyperactivity disorder
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2022.1070142
– volume: 12
  start-page: 6030
  issue: 1
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b11
  article-title: Rs-fmri and machine learning for asd diagnosis: A systematic review and meta-analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09821-6
– volume: 12
  start-page: 1450
  issue: 4
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b24
  article-title: Quantitative high density eeg brain connectivity evaluation in parkinson’s disease: The phase locking value (plv)
  publication-title: J Clin Med
  doi: 10.3390/jcm12041450
– year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b44
  article-title: Analysis of brain imaging data for the detection of early age autism spectrum disorder using transfer learning approaches for internet of things
  publication-title: IEEE Trans Consum Electron
– volume: 70
  start-page: 343
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b32
  article-title: Effective autism spectrum disorder prediction to improve the clinical traits using machine learning techniques
  publication-title: Int J Eng Trends Technol
  doi: 10.14445/22315381/IJETT-V70I4P230
– volume: 25
  start-page: 579
  issue: 4
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b78
  article-title: The hurst exponent as an indicator to anticipate agricultural commodity prices
  publication-title: Entropy
  doi: 10.3390/e25040579
– volume: 147
  start-page: 2966
  issue: 9
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b16
  article-title: High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
  publication-title: Brain
  doi: 10.1093/brain/awae159
– volume: 148
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b62
  article-title: Identification of autism spectrum disorder based on a novel feature selection method and variational autoencoder
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105854
– volume: 142
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b63
  article-title: A residual graph convolutional network with spatio-temporal features for autism classification from fmri brain images
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110363
– volume: 31
  start-page: 4601
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b6
  article-title: Alzheimer’s disease prediction via brain structural-functional deep fusing network
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2023.3333952
– volume: 38
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b69
  article-title: Multi-model order spatially constrained ica reveals highly replicable group differences and consistent predictive results from resting data: A large n fmri schizophrenia study
  publication-title: NeuroImage: Clin
– volume: 15
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b68
  article-title: A short report on adhd detection using convolutional neural networks
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2024.1426155
– year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b88
  article-title: Rnn-lstm: From applications to modeling techniques and beyond—systematic review
  publication-title: J King Saud Univ- Comput Inf Sci
  doi: 10.1016/j.jksuci.2024.102068
– ident: 10.1016/j.compeleceng.2025.110117_b8
– volume: 329
  start-page: 539
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b67
  article-title: Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2023.02.082
– volume: 204
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b80
  article-title: Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112169
– volume: 182
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b52
  article-title: Made-for-asd: A multi-atlas deep ensemble network for diagnosing autism spectrum disorder
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2024.109083
– volume: 15
  start-page: 961
  issue: 6
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110117_b46
  article-title: Classification of asd based on fmri data with deep learning
  publication-title: Cogn Neurodynamics
  doi: 10.1007/s11571-021-09683-0
– volume: 499
  start-page: 1
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110117_b50
  article-title: Spatio-temporal deep learning method for adhd fmri classification
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.05.043
– volume: 13
  start-page: 125
  issue: 2
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b17
  article-title: A comparative study of correlation methods in functional connectivity analysis using fmri data of alzheimer’s patients
  publication-title: J Biomed Phys Eng
– volume: 11
  start-page: 3636
  issue: 8
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110117_b12
  article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fmri
  publication-title: Appl Sci
  doi: 10.3390/app11083636
– volume: 6
  start-page: 5
  issue: 1
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110117_b55
  article-title: Deep learning-based binary classification of adhd using resting state mr images
  publication-title: Augment Hum Res
  doi: 10.1007/s41133-020-00042-y
– volume: 29
  start-page: 27
  issue: 1
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b43
  article-title: Attentional connectivity-based prediction of autism using heterogeneous rs-fmri data from cc200 atlas
  publication-title: Exp Neurobiol
  doi: 10.5607/en.2020.29.1.27
– volume: 102
  start-page: 26
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b77
  article-title: Impact of amplitude and phase of fmri time series for functional connectivity analysis
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2023.04.002
– volume: 20
  start-page: 255
  issue: 4
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b65
  article-title: Dnn based classification of adhd fmri data using functional connectivity coefficient
  publication-title: Int J Fuzzy Log Intell Syst
  doi: 10.5391/IJFIS.2020.20.4.255
– volume: 16
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b66
  article-title: Riemannian geometry of functional connectivity matrices for multi-site attention- deficit/hyperactivity disorder data harmonization
  publication-title: Front Neuroinformatics
  doi: 10.3389/fninf.2022.769274
– volume: vol. 25
  start-page: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b59
  article-title: 3D cnn based automatic diagnosis of adhd using fmri volumes
– volume: 28
  start-page: 146
  issue: 2
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110117_b13
  article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2020.0252
– volume: 23
  start-page: 13443
  issue: 12
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b25
  article-title: Novel linear and nonlinear features for the analysis of dynamic brain functional connectivity
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2023.3274180
– year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b47
  article-title: Decoding autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fmri data
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2024.110100
– volume: 620
  start-page: 61
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110117_b79
  article-title: Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices
  publication-title: Linear Algebra Appl
  doi: 10.1016/j.laa.2021.02.023
– volume: 361
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b18
  article-title: Measuring urban environmental performance in china: A euclidean distance function approach
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2024.121272
– volume: 86
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b54
  article-title: Stockwell transform of time-series of fmri data for diagnoses of attention deficit hyperactive disorder
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105905
– volume: 108
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b41
  article-title: Artificial intelligence and sensor-based autism spectrum disorder diagnosis using brain connectivity analysis
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2023.108720
– volume: 59
  start-page: 1135
  issue: 4
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b5
  article-title: Resting-state fmri: Emerging concepts for future clinical application
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28894
– volume: 17
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b56
  article-title: Seed correlation analysis based on brain region activation for adhd diagnosis in a large-scale resting state data set
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2023.1082722
– volume: 2
  start-page: 71
  issue: 77
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b74
  article-title: Application of hilbert transform for power quality indicators monitoring in general purpose grids
  publication-title: Syst Res Energy
  doi: 10.15407/srenergy2024.02.071
– volume: 20
  start-page: 1822
  issue: 11
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b9
  article-title: Waxholm space atlas of the rat brain: A 3d atlas supporting data analysis and integration
  publication-title: Nature Methods
  doi: 10.1038/s41592-023-02034-3
– volume: 32
  start-page: 1586
  issue: 8
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110117_b72
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2912815
– volume: 164
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b21
  article-title: Fault analysis in clustered microgrids utilizing svm-cnn and differential protection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2024.112031
– volume: 12
  start-page: 81
  issue: 1
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110117_b58
  article-title: Fmri feature extraction model for adhd classification using convolutional neural network
  publication-title: Int J E- Heal Med Commun (IJEHMC)
  doi: 10.4018/IJEHMC.2021010106
– year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b85
  article-title: Novel framework of significant risk factor identification and cardiovascular disease prediction
  publication-title: Expert Syst Appl
– year: 2019
  ident: 10.1016/j.compeleceng.2025.110117_b71
– volume: 14
  start-page: 24473
  issue: 1
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b61
  article-title: Enhanced adhd classification through deep learning and dynamic resting state fmri analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-74282-y
– volume: 270
  start-page: 202
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b10
  article-title: A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fmri
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2024.06.031
– volume: 2023
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b22
  article-title: A state-of-the-art computer vision adopting non-euclidean deep-learning models
  publication-title: Int J Intell Syst
  doi: 10.1155/2023/8674641
– volume: 250
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b57
  article-title: Adhd identification and its interpretation of functional connectivity using deep self- attention factorization
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109082
– ident: 10.1016/j.compeleceng.2025.110117_b34
  doi: 10.35414/akufemubid.1239360
– volume: 305
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b53
  article-title: Usmda: Unsupervised multisource domain adaptive adhd prediction model using neuroimaging
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2024.112615
– volume: 13
  start-page: 1325
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b45
  article-title: Automated detection of autism spectrum disorder using a convolutional neural network
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.01325
– start-page: 125
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b73
  article-title: Discrete fourier transform
– volume: 44
  start-page: 278
  issue: 3
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110117_b28
  article-title: Machine learning in autistic spectrum disorder behavioral research: A review and ways forward
  publication-title: Inform Heal Soc Care
  doi: 10.1080/17538157.2017.1399132
– volume: 17
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b40
  article-title: Population level multimodal neuroimaging correlates of attention-deficit hyperactivity disorder among children
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2023.1138670
– volume: 20
  start-page: 5212
  issue: 18
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b20
  article-title: Deep-net: A lightweight cnn-based speech emotion recognition system using deep frequency features
  publication-title: Sensors
  doi: 10.3390/s20185212
– volume: 103
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b29
  article-title: Adhd classification by dual subspace learning using resting-state functional connectivity
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101786
– volume: 11
  start-page: 359
  issue: 3
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b39
  article-title: Discrimination of adhd subtypes using decision tree on behavioral, neuropsychological, and neural markers
  publication-title: Basic Clin Neurosci
– volume: 23
  start-page: 3952
  issue: 8
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b87
  article-title: An indoor fingerprint positioning algorithm based on wknn and improved xgboost
  publication-title: Sensors
  doi: 10.3390/s23083952
– volume: 2
  issue: 4
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b19
  article-title: Mri-based brain tumour image detection using cnn based deep learning method
  publication-title: Neurosci Inform
  doi: 10.1016/j.neuri.2022.100060
– volume: 131
  issue: 19
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b75
  article-title: Phase shifting profilometry based on hilbert transform: An efficient phase unwrapping algorithm
  publication-title: J Appl Phys
  doi: 10.1063/5.0084695
– volume: 95
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b14
  article-title: Enhancing fnirs data analysis with a novel motion artifact detection algorithm and improved correction
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.106496
– volume: 3
  issue: 1
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b37
  article-title: Accurate identification of attention-deficit/hyperactivity disorder using machine learning approaches
  publication-title: J Disabil Res
  doi: 10.57197/JDR-2023-0053
– volume: 127
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b89
  article-title: Deep learning with image-based autism spectrum disorder analysis: A systematic review
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107185
– year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b33
  article-title: Autism spectrum disorder (asd) classification with three types of correlations based on abide-i dataset
– volume: 360
  start-page: 1454
  issue: 2
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b82
  article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.11.004
– volume: 335
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110117_b42
  article-title: Deepfmri: End-to-end deep learning for functional connectivity and classification of adhd using fmri
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.108506
– volume: 12
  start-page: 2886
  issue: 18
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110117_b51
  article-title: Enhancing autism spectrum disorder classification with lightweight quantized cnns and federated learning on abide-1 dataset
  publication-title: Math
  doi: 10.3390/math12182886
– volume: 13
  start-page: 20201
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b70
  article-title: A novel subject-wise dictionary learning approach using multi-subject fmri spatial and temporal components
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-47420-1
– volume: 14
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b2
  article-title: Autism spectrum disorder research: knowledge mapping of progress and focus between 2011 and 2022
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2023.1096769
– volume: 84
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110117_b35
  article-title: A classification framework for autism spectrum disorder detection using smri: Optimizer based ensemble of deep convolution neural network with on-the-fly data augmentation
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104686
– volume: 147
  start-page: 736
  year: 2017
  ident: 10.1016/j.compeleceng.2025.110117_b36
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 71
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110117_b4
  article-title: An age-dependent connectivity-based computer aided diagnosis system for autism spectrum disorder using resting-state fmri
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103108
SSID ssj0004618
Score 2.3767996
Snippet Neurodevelopmental disorders (NDDs), including ADHD and ASD, profoundly impact children and adolescents. Leveraging Machine Learning (ML), Deep Learning...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110117
SubjectTerms Brain functional connectivity
Data-driven brain topology
Frequency specific connectivity
Functional magnetic resonance imaging(fMRI)
Graph convolutional networks
Neurodevelopmental disorder
Title AI-enabled Computational Intelligence Approach to Neurodevelopmental Disorders Detection Using rs-fMRI Data
URI https://dx.doi.org/10.1016/j.compeleceng.2025.110117
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwHA5jguhBfOJ8EcFrXB9JmoCXsjlWZTuIg91KmodMoRtbvfq3m_TBKggePLY0UL6mv0f7fd8PgDsVYoqlkijiXohsSa0RCxVDkjMjjG2gM-LEyZMpHc_w05zMO2DQaGEcrbKO_VVML6N1faZfo9lfLRZO44tJ5Gx2Sekq4my3MY7cLr__8lvaSL-KxthZM3p0F9xuOV6Otu3Gzej8zbaKAXGkeL-cXfZLjmrlndEhOKgLRhhX93QEOjo_BvstG8ET8BEnSJcaKAWrKQ31Fz6YtAw3YVzbh8NiCUtPDrUlDNlrGx_ODRzqoiRo5bAkFMD1BpnJSwKHohCnYDZ6fB2MUT1EAcmAkgLZlkEHVFOhPGZoJLHylCKG-VKTLORMEGFflIxjaXQkmKJa2hSFiSaSRIar8Ax082WuzwFkzDcBp1y5n3c4DIUxoRZEMcExZ0HUA0EDW7qqvDLShkT2nrawTh3WaYV1Dzw0AKc_HnxqY_rfyy_-t_wS7LmjiopzBbrF-lNf2yqjyG7KbXQDduLkeTz9BsuN1Ck
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAGP3QFlwO4oq7I3gd2iYzkxnwUlpLorYHaaG3MJ1FqpCKxv_vTBaMIHjwmmQgvEy-JXnvfQA3OiSMKK1wJLohdiW1wTzUHCvBrbSugV5QL04eT1g8I_dzOl-DQa2F8bTKKvaXMb2I1tWRToVm52259BpfQiNvs0sLVxG2Dm3vTkVb0O4nD_GkIY_slQGZeHfGLtuA62-al2du-4kzJnt23WJAPS--V4wv-yVNNVLPaBd2qpoR9cvb2oM1k-3DdsNJ8ABe-wk2hQxKo3JQQ_WRDyUNz03UrxzEUb5ChS2H_uYMuWtrK84PNDR5wdHKUMEpQO8f2I6fEjSUuTyE2ehuOohxNUcBq4DRHLuuwQTMMKm73LJIEd3VmlreU4YuQsElle5dWQiirIkk18wol6UINVTRyAodHkErW2XmGBDnPRsIJrT_f0fCUFobGkk1l4IIHkQnENSwpW-lXUZa88he0gbWqcc6LbE-gdsa4PTHs09dWP97-en_ll_BZjwdP6aPyeThDLb8mZKZcw6t_P3TXLiiI19cVpvqCxne1to
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-enabled+Computational+Intelligence+Approach+to+Neurodevelopmental+Disorders+Detection+Using+rs-fMRI+Data&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Bandyopadhyay%2C+Soham&rft.au=Sarma%2C+Monalisa&rft.au=Samanta%2C+Debasis&rft.date=2025-04-01&rft.issn=0045-7906&rft.volume=123&rft.spage=110117&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2025_110117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon