Real-Time City-Scale Taxi Ridesharing

We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick up them via ride sharing, subject to time, capacity, and monetary constraints. The monetary constraints provide incentives for both pas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 27; no. 7; pp. 1782 - 1795
Main Authors Shuo Ma, Yu Zheng, Wolfson, Ouri
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2015
Subjects
Online AccessGet full text
ISSN1041-4347
DOI10.1109/TKDE.2014.2334313

Cover

Loading…
Abstract We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick up them via ride sharing, subject to time, capacity, and monetary constraints. The monetary constraints provide incentives for both passengers and taxi drivers: passengers will not pay more compared with no ride sharing and get compensated if their travel time is lengthened due to ride sharing; taxi drivers will make money for all the detour distance due to ride sharing. While such a system is of significant social and environmental benefit, e.g., saving energy consumption and satisfying people's commute, real-time taxi-sharing has not been well studied yet. To this end, we devise a mobile-cloud architecture based taxi-sharing system. Taxi riders and taxi drivers use the taxi-sharing service provided by the system via a smart phone App. The Cloud first finds candidate taxis quickly for a taxi ride request using a taxi searching algorithm supported by a spatio-temporal index. A scheduling process is then performed in the cloud to select a taxi that satisfies the request with minimum increase in travel distance. We built an experimental platform using the GPS trajectories generated by over 33,000 taxis over a period of three months. A ride request generator is developed (available at http://cs.uic.edu/~sma/ridesharing) in terms of the stochastic process modelling real ride requests learned from the data set. Tested on this platform with extensive experiments, our proposed system demonstrated its efficiency, effectiveness and scalability. For example, when the ratio of the number of ride requests to the number of taxis is 6, our proposed system serves three times as many taxi riders as that when no ridesharing is performed while saving 11 percent in total travel distance and 7 percent taxi fare per rider.
AbstractList We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick up them via ride sharing, subject to time, capacity, and monetary constraints. The monetary constraints provide incentives for both passengers and taxi drivers: passengers will not pay more compared with no ride sharing and get compensated if their travel time is lengthened due to ride sharing; taxi drivers will make money for all the detour distance due to ride sharing. While such a system is of significant social and environmental benefit, e.g., saving energy consumption and satisfying people's commute, real-time taxi-sharing has not been well studied yet. To this end, we devise a mobile-cloud architecture based taxi-sharing system. Taxi riders and taxi drivers use the taxi-sharing service provided by the system via a smart phone App. The Cloud first finds candidate taxis quickly for a taxi ride request using a taxi searching algorithm supported by a spatio-temporal index. A scheduling process is then performed in the cloud to select a taxi that satisfies the request with minimum increase in travel distance. We built an experimental platform using the GPS trajectories generated by over 33,000 taxis over a period of three months. A ride request generator is developed (available at http://cs.uic.edu/~sma/ridesharing) in terms of the stochastic process modelling real ride requests learned from the data set. Tested on this platform with extensive experiments, our proposed system demonstrated its efficiency, effectiveness and scalability. For example, when the ratio of the number of ride requests to the number of taxis is 6, our proposed system serves three times as many taxi riders as that when no ridesharing is performed while saving 11 percent in total travel distance and 7 percent taxi fare per rider.
Author Shuo Ma
Wolfson, Ouri
Yu Zheng
Author_xml – sequence: 1
  surname: Shuo Ma
  fullname: Shuo Ma
  email: sma@cs.uic.edu
  organization: Comput. Sci. Dept., Univ. of Illinois at Chicago, Chicago, IL, USA
– sequence: 2
  surname: Yu Zheng
  fullname: Yu Zheng
  email: yuzheng@microsoft.com
  organization: Microsoft Res., Beijing, China
– sequence: 3
  givenname: Ouri
  surname: Wolfson
  fullname: Wolfson, Ouri
  email: wolfson@cs.uic.edu
  organization: Comput. Sci. Dept., Univ. of Illinois at Chicago, Chicago, IL, USA
BookMark eNp9j7FOwzAURT0UibbwAYglC2OCn_0SpyMKpSAqIZUwW477DEZpguwM9O9p1IqBgeku91zdM2OTru-IsSvgGQBf3NbP98tMcMBMSIkS5IRNgSOkKFGds1mMn5zzUpUwZTcbMm1a-x0llR_26as1LSW1-fbJxm8pfpjgu_cLduZMG-nylHP29rCsq8d0_bJ6qu7WqRVFPqQiF41FA8ohYQ6lbdxCIliDYEqDTjRYKAFi63JHynLhDn-Fy6lpOBXg5Jyp464NfYyBnLZ-MIPvuyEY32rgejTUo6EeDfXJ8EDCH_Ir-J0J-3-Z6yPjiei3X5SoQHH5A8qZXqQ
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_comnet_2021_108676
crossref_primary_10_14778_3339490_3339493
crossref_primary_10_1109_TKDE_2016_2604806
crossref_primary_10_1016_j_tra_2023_103819
crossref_primary_10_1016_j_trc_2021_103413
crossref_primary_10_1109_TMC_2023_3310591
crossref_primary_10_1109_TITS_2020_3032473
crossref_primary_10_1016_j_heliyon_2024_e29888
crossref_primary_10_1177_03611981231175890
crossref_primary_10_1155_2019_9545102
crossref_primary_10_1016_j_jairtraman_2021_102043
crossref_primary_10_1016_j_jmse_2020_09_003
crossref_primary_10_1016_j_trb_2024_103013
crossref_primary_10_1109_MITS_2021_3137224
crossref_primary_10_1109_TMC_2024_3493974
crossref_primary_10_1109_TIFS_2017_2707334
crossref_primary_10_1109_TDSC_2019_2931295
crossref_primary_10_1016_j_tre_2022_102615
crossref_primary_10_1109_TITS_2019_2934423
crossref_primary_10_1109_TITS_2019_2931830
crossref_primary_10_1109_TITS_2019_2931798
crossref_primary_10_1007_s10707_019_00369_8
crossref_primary_10_1016_j_trpro_2017_03_082
crossref_primary_10_1155_2018_3853012
crossref_primary_10_14778_3424573_3424574
crossref_primary_10_1109_ACCESS_2018_2876595
crossref_primary_10_1109_ACCESS_2020_2997102
crossref_primary_10_1109_TKDE_2017_2772907
crossref_primary_10_1109_TKDE_2021_3079880
crossref_primary_10_1109_TICPS_2024_3446957
crossref_primary_10_1109_TKDE_2021_3117986
crossref_primary_10_1016_j_trc_2020_02_008
crossref_primary_10_4018_IJSWIS_2017070105
crossref_primary_10_1371_journal_pone_0227702
crossref_primary_10_3233_JIFS_220327
crossref_primary_10_1016_j_multra_2022_100003
crossref_primary_10_1145_3501295
crossref_primary_10_1109_TKDE_2019_2961341
crossref_primary_10_1109_JIOT_2021_3102638
crossref_primary_10_1109_TITS_2021_3083740
crossref_primary_10_1109_TKDE_2019_2937031
crossref_primary_10_1007_s10458_024_09650_z
crossref_primary_10_1109_TKDE_2018_2827047
crossref_primary_10_1007_s11116_018_9960_x
crossref_primary_10_1016_j_trc_2018_10_007
crossref_primary_10_1080_21680566_2022_2092231
crossref_primary_10_2139_ssrn_4754397
crossref_primary_10_1016_j_heliyon_2024_e33332
crossref_primary_10_1109_TITS_2021_3096537
crossref_primary_10_14778_3384345_3384348
crossref_primary_10_1016_j_eswa_2023_120442
crossref_primary_10_1016_j_tcs_2018_06_006
crossref_primary_10_1109_ACCESS_2023_3243264
crossref_primary_10_1016_j_trb_2023_01_005
crossref_primary_10_1109_TITS_2022_3204644
crossref_primary_10_1002_cpe_7475
crossref_primary_10_1007_s12652_019_01625_3
crossref_primary_10_1080_17483107_2019_1650298
crossref_primary_10_3390_fi15100333
crossref_primary_10_3141_2597_03
crossref_primary_10_1007_s00521_024_09631_z
crossref_primary_10_1038_s41598_020_68810_9
crossref_primary_10_1109_TKDE_2019_2914206
crossref_primary_10_1016_j_ejor_2022_06_057
crossref_primary_10_1109_TBDATA_2016_2627223
crossref_primary_10_1109_TBDATA_2018_2872450
crossref_primary_10_1109_TSC_2019_2905564
crossref_primary_10_1109_MITS_2019_2962159
crossref_primary_10_14778_3654621_3654633
crossref_primary_10_1016_j_ejor_2024_07_040
crossref_primary_10_1016_j_trc_2019_04_018
crossref_primary_10_1016_j_heliyon_2022_e11138
crossref_primary_10_1016_j_tcs_2021_04_009
crossref_primary_10_1080_13658816_2018_1458984
crossref_primary_10_1109_COMST_2017_2736886
crossref_primary_10_14778_3236187_3236211
crossref_primary_10_1109_JSEN_2021_3074785
crossref_primary_10_1109_TBDATA_2023_3342619
crossref_primary_10_1109_TKDE_2024_3418433
crossref_primary_10_1093_comjnl_bxad092
crossref_primary_10_1109_TITS_2021_3128877
crossref_primary_10_1109_TMC_2022_3208566
crossref_primary_10_1109_TITS_2020_2990202
crossref_primary_10_14778_3415478_3415505
crossref_primary_10_1016_j_eswa_2024_123377
crossref_primary_10_1177_03611981211036363
crossref_primary_10_3390_electronics11071164
crossref_primary_10_1109_TITS_2021_3113661
crossref_primary_10_1016_j_tre_2020_102124
crossref_primary_10_1145_3161194
crossref_primary_10_1016_j_ijpe_2022_108751
crossref_primary_10_1016_j_trc_2017_02_020
crossref_primary_10_1109_TITS_2022_3162609
crossref_primary_10_1109_TNNLS_2018_2854833
crossref_primary_10_26636_jtit_2019_131119
crossref_primary_10_1016_j_compenvurbsys_2018_01_006
crossref_primary_10_1109_TITS_2024_3414504
crossref_primary_10_1016_j_apenergy_2022_118923
crossref_primary_10_1007_s11116_022_10268_x
crossref_primary_10_1109_TITS_2018_2821003
crossref_primary_10_1109_TITS_2024_3353545
crossref_primary_10_1016_j_dss_2022_113869
crossref_primary_10_1155_2018_8919721
crossref_primary_10_1016_j_trc_2018_04_022
crossref_primary_10_1109_ACCESS_2018_2824319
crossref_primary_10_1016_j_trf_2020_09_017
crossref_primary_10_1007_s41019_020_00151_z
crossref_primary_10_1080_19427867_2022_2133364
crossref_primary_10_1155_2019_8035167
crossref_primary_10_1109_ACCESS_2018_2881419
crossref_primary_10_1145_3488723
crossref_primary_10_1109_TMC_2018_2861864
crossref_primary_10_1186_s13634_023_01082_3
crossref_primary_10_1016_j_jss_2016_09_025
crossref_primary_10_1016_j_trb_2024_103106
crossref_primary_10_1109_TKDE_2021_3124232
crossref_primary_10_1145_3360048
crossref_primary_10_1016_j_tre_2020_102090
crossref_primary_10_1145_3721434
crossref_primary_10_1007_s11067_021_09523_y
crossref_primary_10_14778_3565838_3565849
crossref_primary_10_1016_j_trb_2017_03_001
crossref_primary_10_1080_13675567_2019_1663162
crossref_primary_10_1109_TMC_2022_3232215
crossref_primary_10_1287_trsc_2021_1069
crossref_primary_10_1109_TITS_2021_3095765
crossref_primary_10_1016_j_trpro_2017_03_075
crossref_primary_10_1080_17477778_2019_1707130
crossref_primary_10_1109_ACCESS_2017_2778221
crossref_primary_10_1016_j_cor_2023_106317
crossref_primary_10_1016_j_ejor_2022_04_035
crossref_primary_10_1016_j_tra_2020_02_017
crossref_primary_10_3390_s17020342
crossref_primary_10_1007_s10707_019_00379_6
crossref_primary_10_1109_TITS_2020_3019791
crossref_primary_10_1007_s11116_020_10093_0
crossref_primary_10_1016_j_ejor_2020_06_038
crossref_primary_10_1080_19427867_2022_2070091
crossref_primary_10_3233_WEB_230401
crossref_primary_10_3390_su16229699
crossref_primary_10_1109_TKDE_2017_2760880
crossref_primary_10_1080_21680566_2024_2417252
crossref_primary_10_1109_TVT_2019_2932869
crossref_primary_10_1109_TCCN_2023_3327578
crossref_primary_10_1109_TKDE_2022_3162220
crossref_primary_10_1109_ACCESS_2020_3017132
crossref_primary_10_1109_TBDATA_2018_2875524
crossref_primary_10_1080_15568318_2018_1490468
crossref_primary_10_3390_app10217431
crossref_primary_10_1287_opre_2018_1763
crossref_primary_10_14778_3368289_3368297
crossref_primary_10_1016_j_tra_2021_01_004
crossref_primary_10_1177_0361198118801352
crossref_primary_10_1080_03081060_2017_1283159
crossref_primary_10_1007_s13177_024_00455_8
crossref_primary_10_1109_TTE_2023_3284423
crossref_primary_10_1145_3317639
crossref_primary_10_1016_j_trb_2021_01_004
crossref_primary_10_1109_TVT_2020_3028497
crossref_primary_10_1109_TITS_2019_2896708
crossref_primary_10_1109_ACCESS_2024_3485221
crossref_primary_10_1109_TKDE_2018_2808971
crossref_primary_10_1145_3314402
crossref_primary_10_1080_15472450_2018_1484739
crossref_primary_10_1007_s10479_022_04560_3
crossref_primary_10_1016_j_dcan_2022_12_008
crossref_primary_10_1145_3409797
crossref_primary_10_3934_mbe_2022048
crossref_primary_10_1109_ACCESS_2020_2968150
crossref_primary_10_1371_journal_pone_0207697
crossref_primary_10_3390_su14020876
crossref_primary_10_1016_j_procs_2019_04_063
crossref_primary_10_1016_j_trb_2019_07_009
crossref_primary_10_1016_j_procs_2019_04_069
crossref_primary_10_1109_TKDE_2019_2906188
Cites_doi 10.1007/3-540-48521-X_9
10.1002/net.20182
10.1016/S0191-2615(02)00045-0
10.1016/S0305-0548(03)00186-2
10.1287/opre.1030.0106
10.1109/VETECF.2010.5594422
10.1145/1869790.1869807
10.1145/2629592
10.1287/opre.1060.0283
10.1016/j.parco.2003.12.001
10.1145/2525314.2525365
10.1145/2020408.2020462
10.1109/MDM.2012.55
10.1016/0377-2217(91)90319-Q
10.1109/MDM.2010.14
10.1145/1999995.2000006
10.1007/s00291-008-0135-6
10.1016/S0968-090X(01)00003-1
10.1111/j.1475-3995.2006.00544.x
10.1109/ITSC.2012.6338703
10.1145/2623330.2623656
10.1145/2030112.2030128
10.1145/1352431.1352513
10.1109/BigData.2013.6691605
10.1007/s10479-007-0170-8
10.1145/1835804.1835918
10.1016/j.ejor.2004.09.060
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2014.2334313
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 1795
ExternalDocumentID 10_1109_TKDE_2014_2334313
6847170
Genre orig-research
GrantInformation_xml – fundername: Illinois Department of Transportation
– fundername: US Department of Transportation National University Rail Center
– fundername: US National Science Foundation
  grantid: IIS-1213013; CCF-1216096; DGE-0549489; IIP-1315169
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c265t-252bc4a17f4e4518cbf9341ca41a8a4f2b467212df5fe7c02f1102f5ebb0e61f3
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Tue Jul 01 03:14:34 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Aug 27 02:52:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords urban computing
GPS trajectory
intelliegent transportation systems
Spatial databases and GIS
taxi-sharing
ridesharing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-252bc4a17f4e4518cbf9341ca41a8a4f2b467212df5fe7c02f1102f5ebb0e61f3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2014_2334313
ieee_primary_6847170
crossref_primary_10_1109_TKDE_2014_2334313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-July-1
2015-7-1
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-July-1
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref31
ref11
ref32
ref10
ref2
ref1
ref17
ref16
yamamoto (ref14) 0
ref19
ref18
ma (ref3) 0
gidofalvi (ref30) 0
ref24
ref23
kamar (ref4) 0
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref6
ref5
santani (ref15) 2008
References_xml – ident: ref9
  doi: 10.1007/3-540-48521-X_9
– ident: ref21
  doi: 10.1002/net.20182
– ident: ref23
  doi: 10.1016/S0191-2615(02)00045-0
– ident: ref2
  doi: 10.1016/S0305-0548(03)00186-2
– ident: ref1
  doi: 10.1287/opre.1030.0106
– ident: ref26
  doi: 10.1109/VETECF.2010.5594422
– start-page: 559
  year: 0
  ident: ref14
  article-title: Adaptive routing of cruising taxis by mutual exchange of pathways
  publication-title: Proc 12th Int Conf Knowledge-Based Intell Inf Eng Syst Part II
– ident: ref7
  doi: 10.1145/1869790.1869807
– ident: ref31
  doi: 10.1145/2629592
– ident: ref20
  doi: 10.1287/opre.1060.0283
– ident: ref24
  doi: 10.1016/j.parco.2003.12.001
– ident: ref29
  doi: 10.1145/2525314.2525365
– year: 0
  ident: ref30
  article-title: Cab-sharing: An effective, door-to-door, on-demand transportation service
  publication-title: Proc 6th Eur Congr Intell Transp Syst Serv
– ident: ref8
  doi: 10.1145/2020408.2020462
– ident: ref17
  doi: 10.1109/MDM.2012.55
– start-page: 187
  year: 0
  ident: ref4
  article-title: Collaboration and shared plans in the open world: Studies of ridesharing
  publication-title: Proc 21st Int Jont Conf Artif Intell
– start-page: 410
  year: 0
  ident: ref3
  article-title: T-Share: A large-scale dynamic ridesharing service
  publication-title: Proc 29th IEEE Int Conf Data Eng
– ident: ref18
  doi: 10.1016/0377-2217(91)90319-Q
– ident: ref10
  doi: 10.1109/MDM.2010.14
– ident: ref13
  doi: 10.1145/1999995.2000006
– ident: ref19
  doi: 10.1007/s00291-008-0135-6
– ident: ref25
  doi: 10.1016/S0968-090X(01)00003-1
– year: 2008
  ident: ref15
  article-title: Spatio-temporal efficiency in a taxi dispatch system
– ident: ref5
  doi: 10.1111/j.1475-3995.2006.00544.x
– ident: ref27
  doi: 10.1109/ITSC.2012.6338703
– ident: ref32
  doi: 10.1145/2623330.2623656
– ident: ref11
  doi: 10.1145/2030112.2030128
– ident: ref28
  doi: 10.1145/1352431.1352513
– ident: ref16
  doi: 10.1109/BigData.2013.6691605
– ident: ref22
  doi: 10.1007/s10479-007-0170-8
– ident: ref12
  doi: 10.1145/1835804.1835918
– ident: ref6
  doi: 10.1016/j.ejor.2004.09.060
SSID ssj0008781
Score 2.5964887
Snippet We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1782
SubjectTerms GPS trajectory
Indexes
intelliegent transportation systems
Real-time systems
ridesharing
Roads
Schedules
Servers
Smart phones
Spatial databases and GIS
taxi-sharing
urban computing
Vehicles
Title Real-Time City-Scale Taxi Ridesharing
URI https://ieeexplore.ieee.org/document/6847170
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3qw2irWFznoRdw02UceR6ktRamH2kJvYZ9QlFYkBfHXO5ukoYqItxBmYJnZzMyXeSF0pTXTTGmKOU0jzKjlOI3TGBOtRKQoM6ooohk_RaMZe5jzeQPd1r0wxpii-Mz47rHI5euVWrtfZb3ImdIYAPoOALeyV6u2uklcLCQFdAGYiLK4ymCGQdqbPt4PXBEX8wml4DDpNx-0tVSl8CnDFhpvTlOWkrz461z66vPHoMb_HvcA7VfBpXdX3oZD1DDLNmptFjd41XfcRntbUwg76HoCwSJ2vSBeH2Jy_AxqM95UfCy8yUK7lJCjO0Kz4WDaH-FqewJWJOI5JpxIxUQYW2YYDxMlbQouSwkWikQwSyTYSHBc2nJrYhUQC8IilhspAxOFlh6j5nK1NCfIo4HVQgJPlCYM_L0UFlAGhehAUmrCoIuCjTwzVY0WdxsuXrMCYgRp5lSQORVklQq66KZmeSvnavxF3HHSrQkrwZ7-_voM7QIzL2tqz1Ezf1-bC4gccnlZXJkvTOi8oA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6KHtSD1VaxPnPQi7htkt1NmqPUlmofh9pCbyH7gqK0IimIv97ZJC1VRLyFMBuWmd35ZjIvgGulmGJSUcJpFBBGDSdRGIXEVzIJJGVaZkk0g2HQnbCnKZ-W4G5dC6O1zpLPdN0-ZrF8tZBL-6usEVhVGqKDvo24z6K8Wmutd5thNpIU_Qv0iigLixim50aNce-hbdO4WN2nFCGTfkOhjbEqGap0yjBY7SdPJnmpL1NRl58_WjX-d8MHsF-Yl859fh4OoaTnFSivRjc4xU2uwN5GH8Iq3IzQXCS2GsRpoVVOnlFw2hknHzNnNFM2KGTpjmDSaY9bXVLMTyDSD3hKfO4LyRIvNEwz7jWlMBGClkyYlzQTZnyBWhKhSxludChd3yCzfMO1EK4OPEOPYWu-mOsTcKhrVCJwTRA1GSK-SAz6GRTtA0Gp9twauCt-xrJoLm5nXLzGmZPhRrEVQWxFEBciqMHteslb3lnjL-Kq5e6asGDs6e-vr2CnOx704_7jsHcGu_ghnmfYnsNW-r7UF2hHpOIyOz5fZz6_8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+City-Scale+Taxi+Ridesharing&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Ma%2C+Shuo&rft.au=Zheng%2C+Yu&rft.au=Wolfson%2C+Ouri&rft.date=2015-07-01&rft.issn=1041-4347&rft.volume=27&rft.issue=7&rft.spage=1782&rft.epage=1795&rft_id=info:doi/10.1109%2FTKDE.2014.2334313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2014_2334313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon