Real-Time City-Scale Taxi Ridesharing
We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick up them via ride sharing, subject to time, capacity, and monetary constraints. The monetary constraints provide incentives for both pas...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 27; no. 7; pp. 1782 - 1795 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1041-4347 |
DOI | 10.1109/TKDE.2014.2334313 |
Cover
Loading…
Abstract | We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick up them via ride sharing, subject to time, capacity, and monetary constraints. The monetary constraints provide incentives for both passengers and taxi drivers: passengers will not pay more compared with no ride sharing and get compensated if their travel time is lengthened due to ride sharing; taxi drivers will make money for all the detour distance due to ride sharing. While such a system is of significant social and environmental benefit, e.g., saving energy consumption and satisfying people's commute, real-time taxi-sharing has not been well studied yet. To this end, we devise a mobile-cloud architecture based taxi-sharing system. Taxi riders and taxi drivers use the taxi-sharing service provided by the system via a smart phone App. The Cloud first finds candidate taxis quickly for a taxi ride request using a taxi searching algorithm supported by a spatio-temporal index. A scheduling process is then performed in the cloud to select a taxi that satisfies the request with minimum increase in travel distance. We built an experimental platform using the GPS trajectories generated by over 33,000 taxis over a period of three months. A ride request generator is developed (available at http://cs.uic.edu/~sma/ridesharing) in terms of the stochastic process modelling real ride requests learned from the data set. Tested on this platform with extensive experiments, our proposed system demonstrated its efficiency, effectiveness and scalability. For example, when the ratio of the number of ride requests to the number of taxis is 6, our proposed system serves three times as many taxi riders as that when no ridesharing is performed while saving 11 percent in total travel distance and 7 percent taxi fare per rider. |
---|---|
AbstractList | We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick up them via ride sharing, subject to time, capacity, and monetary constraints. The monetary constraints provide incentives for both passengers and taxi drivers: passengers will not pay more compared with no ride sharing and get compensated if their travel time is lengthened due to ride sharing; taxi drivers will make money for all the detour distance due to ride sharing. While such a system is of significant social and environmental benefit, e.g., saving energy consumption and satisfying people's commute, real-time taxi-sharing has not been well studied yet. To this end, we devise a mobile-cloud architecture based taxi-sharing system. Taxi riders and taxi drivers use the taxi-sharing service provided by the system via a smart phone App. The Cloud first finds candidate taxis quickly for a taxi ride request using a taxi searching algorithm supported by a spatio-temporal index. A scheduling process is then performed in the cloud to select a taxi that satisfies the request with minimum increase in travel distance. We built an experimental platform using the GPS trajectories generated by over 33,000 taxis over a period of three months. A ride request generator is developed (available at http://cs.uic.edu/~sma/ridesharing) in terms of the stochastic process modelling real ride requests learned from the data set. Tested on this platform with extensive experiments, our proposed system demonstrated its efficiency, effectiveness and scalability. For example, when the ratio of the number of ride requests to the number of taxis is 6, our proposed system serves three times as many taxi riders as that when no ridesharing is performed while saving 11 percent in total travel distance and 7 percent taxi fare per rider. |
Author | Shuo Ma Wolfson, Ouri Yu Zheng |
Author_xml | – sequence: 1 surname: Shuo Ma fullname: Shuo Ma email: sma@cs.uic.edu organization: Comput. Sci. Dept., Univ. of Illinois at Chicago, Chicago, IL, USA – sequence: 2 surname: Yu Zheng fullname: Yu Zheng email: yuzheng@microsoft.com organization: Microsoft Res., Beijing, China – sequence: 3 givenname: Ouri surname: Wolfson fullname: Wolfson, Ouri email: wolfson@cs.uic.edu organization: Comput. Sci. Dept., Univ. of Illinois at Chicago, Chicago, IL, USA |
BookMark | eNp9j7FOwzAURT0UibbwAYglC2OCn_0SpyMKpSAqIZUwW477DEZpguwM9O9p1IqBgeku91zdM2OTru-IsSvgGQBf3NbP98tMcMBMSIkS5IRNgSOkKFGds1mMn5zzUpUwZTcbMm1a-x0llR_26as1LSW1-fbJxm8pfpjgu_cLduZMG-nylHP29rCsq8d0_bJ6qu7WqRVFPqQiF41FA8ohYQ6lbdxCIliDYEqDTjRYKAFi63JHynLhDn-Fy6lpOBXg5Jyp464NfYyBnLZ-MIPvuyEY32rgejTUo6EeDfXJ8EDCH_Ir-J0J-3-Z6yPjiei3X5SoQHH5A8qZXqQ |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_comnet_2021_108676 crossref_primary_10_14778_3339490_3339493 crossref_primary_10_1109_TKDE_2016_2604806 crossref_primary_10_1016_j_tra_2023_103819 crossref_primary_10_1016_j_trc_2021_103413 crossref_primary_10_1109_TMC_2023_3310591 crossref_primary_10_1109_TITS_2020_3032473 crossref_primary_10_1016_j_heliyon_2024_e29888 crossref_primary_10_1177_03611981231175890 crossref_primary_10_1155_2019_9545102 crossref_primary_10_1016_j_jairtraman_2021_102043 crossref_primary_10_1016_j_jmse_2020_09_003 crossref_primary_10_1016_j_trb_2024_103013 crossref_primary_10_1109_MITS_2021_3137224 crossref_primary_10_1109_TMC_2024_3493974 crossref_primary_10_1109_TIFS_2017_2707334 crossref_primary_10_1109_TDSC_2019_2931295 crossref_primary_10_1016_j_tre_2022_102615 crossref_primary_10_1109_TITS_2019_2934423 crossref_primary_10_1109_TITS_2019_2931830 crossref_primary_10_1109_TITS_2019_2931798 crossref_primary_10_1007_s10707_019_00369_8 crossref_primary_10_1016_j_trpro_2017_03_082 crossref_primary_10_1155_2018_3853012 crossref_primary_10_14778_3424573_3424574 crossref_primary_10_1109_ACCESS_2018_2876595 crossref_primary_10_1109_ACCESS_2020_2997102 crossref_primary_10_1109_TKDE_2017_2772907 crossref_primary_10_1109_TKDE_2021_3079880 crossref_primary_10_1109_TICPS_2024_3446957 crossref_primary_10_1109_TKDE_2021_3117986 crossref_primary_10_1016_j_trc_2020_02_008 crossref_primary_10_4018_IJSWIS_2017070105 crossref_primary_10_1371_journal_pone_0227702 crossref_primary_10_3233_JIFS_220327 crossref_primary_10_1016_j_multra_2022_100003 crossref_primary_10_1145_3501295 crossref_primary_10_1109_TKDE_2019_2961341 crossref_primary_10_1109_JIOT_2021_3102638 crossref_primary_10_1109_TITS_2021_3083740 crossref_primary_10_1109_TKDE_2019_2937031 crossref_primary_10_1007_s10458_024_09650_z crossref_primary_10_1109_TKDE_2018_2827047 crossref_primary_10_1007_s11116_018_9960_x crossref_primary_10_1016_j_trc_2018_10_007 crossref_primary_10_1080_21680566_2022_2092231 crossref_primary_10_2139_ssrn_4754397 crossref_primary_10_1016_j_heliyon_2024_e33332 crossref_primary_10_1109_TITS_2021_3096537 crossref_primary_10_14778_3384345_3384348 crossref_primary_10_1016_j_eswa_2023_120442 crossref_primary_10_1016_j_tcs_2018_06_006 crossref_primary_10_1109_ACCESS_2023_3243264 crossref_primary_10_1016_j_trb_2023_01_005 crossref_primary_10_1109_TITS_2022_3204644 crossref_primary_10_1002_cpe_7475 crossref_primary_10_1007_s12652_019_01625_3 crossref_primary_10_1080_17483107_2019_1650298 crossref_primary_10_3390_fi15100333 crossref_primary_10_3141_2597_03 crossref_primary_10_1007_s00521_024_09631_z crossref_primary_10_1038_s41598_020_68810_9 crossref_primary_10_1109_TKDE_2019_2914206 crossref_primary_10_1016_j_ejor_2022_06_057 crossref_primary_10_1109_TBDATA_2016_2627223 crossref_primary_10_1109_TBDATA_2018_2872450 crossref_primary_10_1109_TSC_2019_2905564 crossref_primary_10_1109_MITS_2019_2962159 crossref_primary_10_14778_3654621_3654633 crossref_primary_10_1016_j_ejor_2024_07_040 crossref_primary_10_1016_j_trc_2019_04_018 crossref_primary_10_1016_j_heliyon_2022_e11138 crossref_primary_10_1016_j_tcs_2021_04_009 crossref_primary_10_1080_13658816_2018_1458984 crossref_primary_10_1109_COMST_2017_2736886 crossref_primary_10_14778_3236187_3236211 crossref_primary_10_1109_JSEN_2021_3074785 crossref_primary_10_1109_TBDATA_2023_3342619 crossref_primary_10_1109_TKDE_2024_3418433 crossref_primary_10_1093_comjnl_bxad092 crossref_primary_10_1109_TITS_2021_3128877 crossref_primary_10_1109_TMC_2022_3208566 crossref_primary_10_1109_TITS_2020_2990202 crossref_primary_10_14778_3415478_3415505 crossref_primary_10_1016_j_eswa_2024_123377 crossref_primary_10_1177_03611981211036363 crossref_primary_10_3390_electronics11071164 crossref_primary_10_1109_TITS_2021_3113661 crossref_primary_10_1016_j_tre_2020_102124 crossref_primary_10_1145_3161194 crossref_primary_10_1016_j_ijpe_2022_108751 crossref_primary_10_1016_j_trc_2017_02_020 crossref_primary_10_1109_TITS_2022_3162609 crossref_primary_10_1109_TNNLS_2018_2854833 crossref_primary_10_26636_jtit_2019_131119 crossref_primary_10_1016_j_compenvurbsys_2018_01_006 crossref_primary_10_1109_TITS_2024_3414504 crossref_primary_10_1016_j_apenergy_2022_118923 crossref_primary_10_1007_s11116_022_10268_x crossref_primary_10_1109_TITS_2018_2821003 crossref_primary_10_1109_TITS_2024_3353545 crossref_primary_10_1016_j_dss_2022_113869 crossref_primary_10_1155_2018_8919721 crossref_primary_10_1016_j_trc_2018_04_022 crossref_primary_10_1109_ACCESS_2018_2824319 crossref_primary_10_1016_j_trf_2020_09_017 crossref_primary_10_1007_s41019_020_00151_z crossref_primary_10_1080_19427867_2022_2133364 crossref_primary_10_1155_2019_8035167 crossref_primary_10_1109_ACCESS_2018_2881419 crossref_primary_10_1145_3488723 crossref_primary_10_1109_TMC_2018_2861864 crossref_primary_10_1186_s13634_023_01082_3 crossref_primary_10_1016_j_jss_2016_09_025 crossref_primary_10_1016_j_trb_2024_103106 crossref_primary_10_1109_TKDE_2021_3124232 crossref_primary_10_1145_3360048 crossref_primary_10_1016_j_tre_2020_102090 crossref_primary_10_1145_3721434 crossref_primary_10_1007_s11067_021_09523_y crossref_primary_10_14778_3565838_3565849 crossref_primary_10_1016_j_trb_2017_03_001 crossref_primary_10_1080_13675567_2019_1663162 crossref_primary_10_1109_TMC_2022_3232215 crossref_primary_10_1287_trsc_2021_1069 crossref_primary_10_1109_TITS_2021_3095765 crossref_primary_10_1016_j_trpro_2017_03_075 crossref_primary_10_1080_17477778_2019_1707130 crossref_primary_10_1109_ACCESS_2017_2778221 crossref_primary_10_1016_j_cor_2023_106317 crossref_primary_10_1016_j_ejor_2022_04_035 crossref_primary_10_1016_j_tra_2020_02_017 crossref_primary_10_3390_s17020342 crossref_primary_10_1007_s10707_019_00379_6 crossref_primary_10_1109_TITS_2020_3019791 crossref_primary_10_1007_s11116_020_10093_0 crossref_primary_10_1016_j_ejor_2020_06_038 crossref_primary_10_1080_19427867_2022_2070091 crossref_primary_10_3233_WEB_230401 crossref_primary_10_3390_su16229699 crossref_primary_10_1109_TKDE_2017_2760880 crossref_primary_10_1080_21680566_2024_2417252 crossref_primary_10_1109_TVT_2019_2932869 crossref_primary_10_1109_TCCN_2023_3327578 crossref_primary_10_1109_TKDE_2022_3162220 crossref_primary_10_1109_ACCESS_2020_3017132 crossref_primary_10_1109_TBDATA_2018_2875524 crossref_primary_10_1080_15568318_2018_1490468 crossref_primary_10_3390_app10217431 crossref_primary_10_1287_opre_2018_1763 crossref_primary_10_14778_3368289_3368297 crossref_primary_10_1016_j_tra_2021_01_004 crossref_primary_10_1177_0361198118801352 crossref_primary_10_1080_03081060_2017_1283159 crossref_primary_10_1007_s13177_024_00455_8 crossref_primary_10_1109_TTE_2023_3284423 crossref_primary_10_1145_3317639 crossref_primary_10_1016_j_trb_2021_01_004 crossref_primary_10_1109_TVT_2020_3028497 crossref_primary_10_1109_TITS_2019_2896708 crossref_primary_10_1109_ACCESS_2024_3485221 crossref_primary_10_1109_TKDE_2018_2808971 crossref_primary_10_1145_3314402 crossref_primary_10_1080_15472450_2018_1484739 crossref_primary_10_1007_s10479_022_04560_3 crossref_primary_10_1016_j_dcan_2022_12_008 crossref_primary_10_1145_3409797 crossref_primary_10_3934_mbe_2022048 crossref_primary_10_1109_ACCESS_2020_2968150 crossref_primary_10_1371_journal_pone_0207697 crossref_primary_10_3390_su14020876 crossref_primary_10_1016_j_procs_2019_04_063 crossref_primary_10_1016_j_trb_2019_07_009 crossref_primary_10_1016_j_procs_2019_04_069 crossref_primary_10_1109_TKDE_2019_2906188 |
Cites_doi | 10.1007/3-540-48521-X_9 10.1002/net.20182 10.1016/S0191-2615(02)00045-0 10.1016/S0305-0548(03)00186-2 10.1287/opre.1030.0106 10.1109/VETECF.2010.5594422 10.1145/1869790.1869807 10.1145/2629592 10.1287/opre.1060.0283 10.1016/j.parco.2003.12.001 10.1145/2525314.2525365 10.1145/2020408.2020462 10.1109/MDM.2012.55 10.1016/0377-2217(91)90319-Q 10.1109/MDM.2010.14 10.1145/1999995.2000006 10.1007/s00291-008-0135-6 10.1016/S0968-090X(01)00003-1 10.1111/j.1475-3995.2006.00544.x 10.1109/ITSC.2012.6338703 10.1145/2623330.2623656 10.1145/2030112.2030128 10.1145/1352431.1352513 10.1109/BigData.2013.6691605 10.1007/s10479-007-0170-8 10.1145/1835804.1835918 10.1016/j.ejor.2004.09.060 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TKDE.2014.2334313 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EndPage | 1795 |
ExternalDocumentID | 10_1109_TKDE_2014_2334313 6847170 |
Genre | orig-research |
GrantInformation_xml | – fundername: Illinois Department of Transportation – fundername: US Department of Transportation National University Rail Center – fundername: US National Science Foundation grantid: IIS-1213013; CCF-1216096; DGE-0549489; IIP-1315169 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c265t-252bc4a17f4e4518cbf9341ca41a8a4f2b467212df5fe7c02f1102f5ebb0e61f3 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Tue Jul 01 03:14:34 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Aug 27 02:52:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | urban computing GPS trajectory intelliegent transportation systems Spatial databases and GIS taxi-sharing ridesharing |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-252bc4a17f4e4518cbf9341ca41a8a4f2b467212df5fe7c02f1102f5ebb0e61f3 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2014_2334313 ieee_primary_6847170 crossref_primary_10_1109_TKDE_2014_2334313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-July-1 2015-7-1 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-July-1 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref31 ref11 ref32 ref10 ref2 ref1 ref17 ref16 yamamoto (ref14) 0 ref19 ref18 ma (ref3) 0 gidofalvi (ref30) 0 ref24 ref23 kamar (ref4) 0 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref6 ref5 santani (ref15) 2008 |
References_xml | – ident: ref9 doi: 10.1007/3-540-48521-X_9 – ident: ref21 doi: 10.1002/net.20182 – ident: ref23 doi: 10.1016/S0191-2615(02)00045-0 – ident: ref2 doi: 10.1016/S0305-0548(03)00186-2 – ident: ref1 doi: 10.1287/opre.1030.0106 – ident: ref26 doi: 10.1109/VETECF.2010.5594422 – start-page: 559 year: 0 ident: ref14 article-title: Adaptive routing of cruising taxis by mutual exchange of pathways publication-title: Proc 12th Int Conf Knowledge-Based Intell Inf Eng Syst Part II – ident: ref7 doi: 10.1145/1869790.1869807 – ident: ref31 doi: 10.1145/2629592 – ident: ref20 doi: 10.1287/opre.1060.0283 – ident: ref24 doi: 10.1016/j.parco.2003.12.001 – ident: ref29 doi: 10.1145/2525314.2525365 – year: 0 ident: ref30 article-title: Cab-sharing: An effective, door-to-door, on-demand transportation service publication-title: Proc 6th Eur Congr Intell Transp Syst Serv – ident: ref8 doi: 10.1145/2020408.2020462 – ident: ref17 doi: 10.1109/MDM.2012.55 – start-page: 187 year: 0 ident: ref4 article-title: Collaboration and shared plans in the open world: Studies of ridesharing publication-title: Proc 21st Int Jont Conf Artif Intell – start-page: 410 year: 0 ident: ref3 article-title: T-Share: A large-scale dynamic ridesharing service publication-title: Proc 29th IEEE Int Conf Data Eng – ident: ref18 doi: 10.1016/0377-2217(91)90319-Q – ident: ref10 doi: 10.1109/MDM.2010.14 – ident: ref13 doi: 10.1145/1999995.2000006 – ident: ref19 doi: 10.1007/s00291-008-0135-6 – ident: ref25 doi: 10.1016/S0968-090X(01)00003-1 – year: 2008 ident: ref15 article-title: Spatio-temporal efficiency in a taxi dispatch system – ident: ref5 doi: 10.1111/j.1475-3995.2006.00544.x – ident: ref27 doi: 10.1109/ITSC.2012.6338703 – ident: ref32 doi: 10.1145/2623330.2623656 – ident: ref11 doi: 10.1145/2030112.2030128 – ident: ref28 doi: 10.1145/1352431.1352513 – ident: ref16 doi: 10.1109/BigData.2013.6691605 – ident: ref22 doi: 10.1007/s10479-007-0170-8 – ident: ref12 doi: 10.1145/1835804.1835918 – ident: ref6 doi: 10.1016/j.ejor.2004.09.060 |
SSID | ssj0008781 |
Score | 2.5964887 |
Snippet | We proposed and developed a taxi-sharing system that accepts taxi passengers' real-time ride requests sent from smart phones and schedules proper taxis to pick... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1782 |
SubjectTerms | GPS trajectory Indexes intelliegent transportation systems Real-time systems ridesharing Roads Schedules Servers Smart phones Spatial databases and GIS taxi-sharing urban computing Vehicles |
Title | Real-Time City-Scale Taxi Ridesharing |
URI | https://ieeexplore.ieee.org/document/6847170 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3qw2irWFznoRdw02UceR6ktRamH2kJvYZ9QlFYkBfHXO5ukoYqItxBmYJnZzMyXeSF0pTXTTGmKOU0jzKjlOI3TGBOtRKQoM6ooohk_RaMZe5jzeQPd1r0wxpii-Mz47rHI5euVWrtfZb3ImdIYAPoOALeyV6u2uklcLCQFdAGYiLK4ymCGQdqbPt4PXBEX8wml4DDpNx-0tVSl8CnDFhpvTlOWkrz461z66vPHoMb_HvcA7VfBpXdX3oZD1DDLNmptFjd41XfcRntbUwg76HoCwSJ2vSBeH2Jy_AxqM95UfCy8yUK7lJCjO0Kz4WDaH-FqewJWJOI5JpxIxUQYW2YYDxMlbQouSwkWikQwSyTYSHBc2nJrYhUQC8IilhspAxOFlh6j5nK1NCfIo4HVQgJPlCYM_L0UFlAGhehAUmrCoIuCjTwzVY0WdxsuXrMCYgRp5lSQORVklQq66KZmeSvnavxF3HHSrQkrwZ7-_voM7QIzL2tqz1Ezf1-bC4gccnlZXJkvTOi8oA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6KHtSD1VaxPnPQi7htkt1NmqPUlmofh9pCbyH7gqK0IimIv97ZJC1VRLyFMBuWmd35ZjIvgGulmGJSUcJpFBBGDSdRGIXEVzIJJGVaZkk0g2HQnbCnKZ-W4G5dC6O1zpLPdN0-ZrF8tZBL-6usEVhVGqKDvo24z6K8Wmutd5thNpIU_Qv0iigLixim50aNce-hbdO4WN2nFCGTfkOhjbEqGap0yjBY7SdPJnmpL1NRl58_WjX-d8MHsF-Yl859fh4OoaTnFSivRjc4xU2uwN5GH8Iq3IzQXCS2GsRpoVVOnlFw2hknHzNnNFM2KGTpjmDSaY9bXVLMTyDSD3hKfO4LyRIvNEwz7jWlMBGClkyYlzQTZnyBWhKhSxludChd3yCzfMO1EK4OPEOPYWu-mOsTcKhrVCJwTRA1GSK-SAz6GRTtA0Gp9twauCt-xrJoLm5nXLzGmZPhRrEVQWxFEBciqMHteslb3lnjL-Kq5e6asGDs6e-vr2CnOx704_7jsHcGu_ghnmfYnsNW-r7UF2hHpOIyOz5fZz6_8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+City-Scale+Taxi+Ridesharing&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Ma%2C+Shuo&rft.au=Zheng%2C+Yu&rft.au=Wolfson%2C+Ouri&rft.date=2015-07-01&rft.issn=1041-4347&rft.volume=27&rft.issue=7&rft.spage=1782&rft.epage=1795&rft_id=info:doi/10.1109%2FTKDE.2014.2334313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2014_2334313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |