An Online Change-Point-Based Model for Traffic Parameter Prediction
This paper develops a method for predicting traffic parameters under abrupt changes based on change point models. Traffic parameters such as speed, flow, and density are subject to shifts because of weather, accidents, driving characteristics, etc. An intuitive approach of employing the hidden Marko...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 14; no. 3; pp. 1360 - 1369 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper develops a method for predicting traffic parameters under abrupt changes based on change point models. Traffic parameters such as speed, flow, and density are subject to shifts because of weather, accidents, driving characteristics, etc. An intuitive approach of employing the hidden Markov model (HMM) and the expectation-maximization (EM) algorithm as change point models at these shifts and accordingly adapting the autoregressive-integrated-moving-average (ARIMA) forecasting model is formulated. The model is fitted and tested using publicly available 1993 I-880 loop data. It is compared with basic and mean updating forecasting models. Detailed numerical experiments are given on several days of data to show the impact of using change point models for adaptive forecasting models. |
---|---|
AbstractList | This paper develops a method for predicting traffic parameters under abrupt changes based on change point models. Traffic parameters such as speed, flow, and density are subject to shifts because of weather, accidents, driving characteristics, etc. An intuitive approach of employing the hidden Markov model (HMM) and the expectation-maximization (EM) algorithm as change point models at these shifts and accordingly adapting the autoregressive-integrated-moving-average (ARIMA) forecasting model is formulated. The model is fitted and tested using publicly available 1993 I-880 loop data. It is compared with basic and mean updating forecasting models. Detailed numerical experiments are given on several days of data to show the impact of using change point models for adaptive forecasting models. |
Author | Bezuglov, Anton Comert, Gurcan |
Author_xml | – sequence: 1 givenname: Gurcan surname: Comert fullname: Comert, Gurcan email: comertg@benedict.edu organization: Phys. & Eng. Dept., Benedict Coll., Columbia, SC, USA – sequence: 2 givenname: Anton surname: Bezuglov fullname: Bezuglov, Anton email: bezuglova@benedict.edu organization: Math & Comput. Sci. Dept., Benedict Coll., Columbia, SC, USA |
BookMark | eNp9kMtOwzAQRS1UJNrCByA2_gEXjxPHybJEvKSiViKso4kzBqPUQU42_D2NWrFgwWpGI525V2fBZqEPxNg1yBWALG6r5-p1pSQkK6UyqVN5xuagdS6khGw27SoVhdTygi2G4fNwTTXAnJXrwLeh84F4-YHhncSu92EUdzhQy1_6ljru-siriM55y3cYcU8jRb6L1Ho7-j5csnOH3UBXp7lkbw_3VfkkNtvH53K9EVZlehRAlGctUtGqrEgsGSON0ya3CLaRpmiMlWmDqdWZhbRJ8iTB3BSonAZrG0yWDI5_beyHIZKrv6LfY_yuQdaThXqyUE8W6pOFA2P-MNaPOLUeI_ruX_LmSHoi-k3KtFJg8uQH1qFr_A |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1007_s40998_019_00227_1 crossref_primary_10_1109_TITS_2019_2939290 crossref_primary_10_1016_j_neucom_2017_03_049 crossref_primary_10_1109_TITS_2018_2873137 crossref_primary_10_1016_j_procs_2014_05_435 crossref_primary_10_3390_s20030685 crossref_primary_10_1016_j_rser_2022_112947 crossref_primary_10_1186_1687_1499_2014_85 crossref_primary_10_1109_TITS_2015_2457240 crossref_primary_10_1080_23311916_2016_1270703 crossref_primary_10_1109_TITS_2024_3411638 crossref_primary_10_1109_TCCN_2020_3018157 crossref_primary_10_3390_math11163574 crossref_primary_10_1016_j_vehcom_2019_100184 crossref_primary_10_1016_j_knosys_2019_01_015 crossref_primary_10_1177_03611981241308868 crossref_primary_10_1109_TITS_2023_3306559 crossref_primary_10_1007_s40534_019_0193_2 crossref_primary_10_1007_s11071_024_09844_w crossref_primary_10_1109_ACCESS_2018_2879055 crossref_primary_10_1049_itr2_12127 crossref_primary_10_1049_iet_its_2018_5385 crossref_primary_10_1080_15472450_2022_2069498 crossref_primary_10_1109_ACCESS_2018_2805299 crossref_primary_10_1109_TITS_2022_3161623 crossref_primary_10_1109_ACCESS_2020_3018452 crossref_primary_10_1109_TITS_2014_2345663 crossref_primary_10_1142_S0129183117501212 crossref_primary_10_1007_s11063_018_9804_x crossref_primary_10_1016_j_physa_2019_122601 crossref_primary_10_1155_2019_5314520 crossref_primary_10_1016_j_oceaneng_2023_115687 crossref_primary_10_1038_s41598_025_93168_1 crossref_primary_10_32604_cmc_2022_027707 crossref_primary_10_3390_app10010356 crossref_primary_10_1109_ACCESS_2020_2970250 crossref_primary_10_1061_JTEPBS_0000654 crossref_primary_10_1016_j_ress_2020_107126 crossref_primary_10_1016_j_physa_2020_125574 crossref_primary_10_3390_app13042143 crossref_primary_10_3390_s21155074 crossref_primary_10_1109_TITS_2020_3037791 crossref_primary_10_1109_MITS_2014_2332591 crossref_primary_10_1111_mice_12381 crossref_primary_10_1049_iet_its_2019_0133 crossref_primary_10_1109_ACCESS_2019_2938236 crossref_primary_10_1016_j_aej_2023_05_015 crossref_primary_10_1016_j_trc_2016_09_014 crossref_primary_10_3390_math12121895 crossref_primary_10_1109_JIOT_2022_3196461 crossref_primary_10_1109_TVT_2023_3239054 crossref_primary_10_1016_j_engappai_2023_107012 crossref_primary_10_1109_COMST_2023_3273121 |
Cites_doi | 10.1016/j.trc.2005.04.007 10.1109/TITS.2011.2174634 10.3141/1776-25 10.1080/0144164042000195072 10.1007/s00477-004-0224-2 10.3141/1934-07 10.1016/j.trc.2009.11.001 10.1016/S0169-2070(96)00700-5 10.3141/2175-04 10.1061/(ASCE)0733-947X(2006)132:2(114) 10.1090/S0002-9904-1967-11751-8 10.1093/comjnl/bxq003 10.1109/TITS.2009.2021448 10.1109/TITS.2011.2174051 10.1109/TITS.2004.833765 10.1016/j.trc.2010.10.004 10.1109/5.18626 10.1109/TITS.2011.2173933 10.1016/S0968-090X(03)00004-4 10.1214/aoms/1177697196 10.1109/TITS.2008.2011693 10.1016/S0968-090X(02)00009-8 10.3141/1879-01 10.1016/0191-2615(84)90002-X 10.1002/0471721182 10.3141/1710-06 10.1016/S0968-090X(03)00026-3 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.csda.2011.11.002 10.1016/j.trc.2007.11.003 10.1111/j.1467-8667.2009.00620.x 10.1175/1520-0442(2002)015<2547:DOUCAR>2.0.CO;2 10.1016/j.ijforecast.2010.09.001 10.1016/j.trc.2009.04.006 10.1061/(ASCE)0733-947X(1997)123:4(261) 10.1109/TITS.2009.2028149 10.1016/S0165-0270(02)00275-3 10.1007/s00180-007-0097-1 10.1016/j.trb.2004.03.003 10.1016/j.trc.2010.10.002 10.1093/biomet/59.3.539 10.1093/oxfordhb/9780195398649.001.0001 10.3141/1783-08 10.3141/1876-09 10.1623/hysj.52.1.18 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.3141/1965-03 10.1093/biomet/asq013 10.3141/1993-05 10.3141/1811-04 10.1016/j.trc.2009.03.001 10.1016/j.ijforecast.2003.10.004 10.1002/(SICI)1099-1255(199609)11:5<475::AID-JAE409>3.0.CO;2-9 10.3141/1923-03 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TITS.2013.2260540 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 1369 |
ExternalDocumentID | 10_1109_TITS_2013_2260540 6522178 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c265t-1ee86dae9d2693ce7707f578ca1cb079b7c04ba4c56c14b3833a879a2f51ccba3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Thu Apr 24 23:02:56 EDT 2025 Tue Jul 01 04:28:57 EDT 2025 Tue Aug 26 16:44:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-1ee86dae9d2693ce7707f578ca1cb079b7c04ba4c56c14b3833a879a2f51ccba3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TITS_2013_2260540 crossref_citationtrail_10_1109_TITS_2013_2260540 ieee_primary_6522178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref13 castle (ref43) 2011 ref12 ref59 ref58 ref14 ref52 ref11 ref10 ref16 ref19 ref51 ref50 ref45 ref47 ref42 ref41 adams (ref56) 2007 ref49 shen (ref15) 2010; 1 ref8 ref9 ref4 qin (ref31) 2004; 1876 ref3 ref6 ref5 ref40 hastie (ref63) 2009 vlahogianni (ref18) 2011; 19 ref35 ref34 ref37 ref36 ref30 turner (ref53) 2010; 1 ref32 turner (ref55) 2009; 1 dempster (ref62) 1977; 39 mclachlan (ref64) 2000 ref2 ref1 lee (ref7) 2010; 1 ref39 ref38 hamilton (ref46) 2008 qi (ref33) 2010 brook (ref66) 1972; 59 ref24 ref67 ref23 ref26 ref25 ref20 ref22 ref65 ref21 ref28 ref29 zwet (ref27) 2004; 5 ref60 saatci (ref54) 2010; 1 ref61 aiolfi (ref44) 2011 zhang (ref17) 2010; 1 giron (ref48) 2007; 8 |
References_xml | – year: 2010 ident: ref33 publication-title: Probabilistic Models for Short Term Traffic Conditions Prediction – ident: ref14 doi: 10.1016/j.trc.2005.04.007 – ident: ref8 doi: 10.1109/TITS.2011.2174634 – ident: ref67 doi: 10.3141/1776-25 – year: 2009 ident: ref63 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – volume: 1 start-page: 1 year: 2010 ident: ref7 article-title: Comparison of univariate and multivariate time series models in short-term freeway traffic flow forecasting publication-title: Proc TRB 89th Annu Meeting Compend Papers DVD – ident: ref22 doi: 10.1080/0144164042000195072 – ident: ref47 doi: 10.1007/s00477-004-0224-2 – ident: ref24 doi: 10.3141/1934-07 – ident: ref25 doi: 10.1016/j.trc.2009.11.001 – ident: ref9 doi: 10.1016/S0169-2070(96)00700-5 – start-page: 271 year: 2011 ident: ref43 publication-title: The Oxford Handbook of Economic Forecasting – ident: ref39 doi: 10.3141/2175-04 – year: 2007 ident: ref56 publication-title: Bayesian Online Change-point Detection – ident: ref19 doi: 10.1061/(ASCE)0733-947X(2006)132:2(114) – volume: 1 start-page: 927 year: 2010 ident: ref54 article-title: Gaussian process change point models publication-title: Proc Int Conf Mach Learn – ident: ref60 doi: 10.1090/S0002-9904-1967-11751-8 – ident: ref57 doi: 10.1093/comjnl/bxq003 – year: 2008 ident: ref46 publication-title: Regime Switching Models – ident: ref5 doi: 10.1109/TITS.2009.2021448 – ident: ref20 doi: 10.1109/TITS.2011.2174051 – volume: 5 start-page: 200 year: 2004 ident: ref27 article-title: A simple and effective method for predicting travel times on freeways publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2004.833765 – volume: 19 start-page: 387 year: 2011 ident: ref18 article-title: Statistical methods versus neural networks in transportation research: Differences, similarities, and some insights publication-title: Transp Res C Emerg Technol doi: 10.1016/j.trc.2010.10.004 – ident: ref59 doi: 10.1109/5.18626 – volume: 1 start-page: 1 year: 2010 ident: ref17 article-title: Intelligent intersection traffic flow prediction based on fuzzy neutral network publication-title: Proc TRB 89th Annu Meeting Compend Papers DVD – ident: ref21 doi: 10.1109/TITS.2011.2173933 – ident: ref3 doi: 10.1016/S0968-090X(03)00004-4 – ident: ref61 doi: 10.1214/aoms/1177697196 – ident: ref36 doi: 10.1109/TITS.2008.2011693 – ident: ref2 doi: 10.1016/S0968-090X(02)00009-8 – ident: ref11 doi: 10.3141/1879-01 – ident: ref13 doi: 10.1016/0191-2615(84)90002-X – start-page: 355 year: 2011 ident: ref44 publication-title: The Oxford Handbook of Economic Forecasting – year: 2000 ident: ref64 publication-title: Finite Mixture Models doi: 10.1002/0471721182 – ident: ref29 doi: 10.3141/1710-06 – ident: ref28 doi: 10.1016/S0968-090X(03)00026-3 – volume: 39 start-page: 1 year: 1977 ident: ref62 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Stat Soc B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref65 doi: 10.1016/j.csda.2011.11.002 – ident: ref34 doi: 10.1016/j.trc.2007.11.003 – ident: ref16 doi: 10.1111/j.1467-8667.2009.00620.x – ident: ref50 doi: 10.1175/1520-0442(2002)015<2547:DOUCAR>2.0.CO;2 – ident: ref45 doi: 10.1016/j.ijforecast.2010.09.001 – ident: ref12 doi: 10.1016/j.trc.2009.04.006 – ident: ref23 doi: 10.1061/(ASCE)0733-947X(1997)123:4(261) – volume: 1 start-page: 1 year: 2010 ident: ref15 article-title: Freeway travel time prediction with dynamic neural networks publication-title: Proc TRB 89th Annu Meeting Compend Papers DVD – ident: ref6 doi: 10.1109/TITS.2009.2028149 – ident: ref51 doi: 10.1016/S0165-0270(02)00275-3 – ident: ref58 doi: 10.1007/s00180-007-0097-1 – ident: ref10 doi: 10.1016/j.trb.2004.03.003 – ident: ref35 doi: 10.1016/j.trc.2010.10.002 – volume: 59 start-page: 539 year: 1972 ident: ref66 article-title: An approach to the probability distribution of CUSUM run length publication-title: Biometrika doi: 10.1093/biomet/59.3.539 – volume: 1 start-page: 213 year: 2010 ident: ref53 article-title: Bayesian change point detection for satellite fault prediction publication-title: Proc of IGCC – volume: 1 start-page: 1 year: 2009 ident: ref55 article-title: Adaptive sequential Bayesian change point detection publication-title: Proc Temp Segment Workshop NIPS – ident: ref42 doi: 10.1093/oxfordhb/9780195398649.001.0001 – ident: ref30 doi: 10.3141/1783-08 – volume: 1876 start-page: 82 year: 2004 ident: ref31 article-title: Adaptive calibration of dynamic speed?density relations for online network traffic estimation and prediction applications publication-title: Transp Res Rec J Transp Res Board doi: 10.3141/1876-09 – ident: ref52 doi: 10.1623/hysj.52.1.18 – ident: ref4 doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – volume: 8 start-page: 1 year: 2007 ident: ref48 article-title: Objective Bayesian analysis of multiple change points for linear models publication-title: Proc Bayesian Stats – ident: ref32 doi: 10.3141/1965-03 – ident: ref49 doi: 10.1093/biomet/asq013 – ident: ref37 doi: 10.3141/1993-05 – ident: ref26 doi: 10.3141/1811-04 – ident: ref40 doi: 10.1016/j.trc.2009.03.001 – ident: ref1 doi: 10.1016/j.ijforecast.2003.10.004 – ident: ref41 doi: 10.1002/(SICI)1099-1255(199609)11:5<475::AID-JAE409>3.0.CO;2-9 – ident: ref38 doi: 10.3141/1923-03 |
SSID | ssj0014511 |
Score | 2.3385067 |
Snippet | This paper develops a method for predicting traffic parameters under abrupt changes based on change point models. Traffic parameters such as speed, flow, and... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1360 |
SubjectTerms | Adaptation models Change point models Data models Forecasting hidden Markov model (HMM) Hidden Markov models Numerical models Prediction algorithms Predictive models time-series autoregressive integrated moving average (ARIMA) traffic prediction |
Title | An Online Change-Point-Based Model for Traffic Parameter Prediction |
URI | https://ieeexplore.ieee.org/document/6522178 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT3rwVcX6IgdPYtrsbh6bYxVLFSoFW-htSbJZEMtWyvbirzezu12KiHgLYQLDTMLMZGa-Qeg2E6kRYZqSTDNDAOKcxJwbIoRWcew87waakyevYjxnLwu-aKH7phfGOVcWn7k-LMtcfrqyG_gqGwjvLAQybqO2D9yqXq0mYwA4WyU2asiIonybwQyoGsyeZ29QxBX1Q_De4Z9jxwbtDFUpbcroEE223FSlJB_9TWH69usHUON_2T1CB7VziYfVbThGLZefoP0dyMEuehzmuIIXxVVjAZmu3vOCPHhrlmKYjLbE3o_F3oYBuASeaqje8sLH0zXkdECPp2g-epo9jkk9SIHYUPCCBM7FItVOpaFQkXVSUpn5p2p1YA2VykhLmdHMcmEDZnzQGulYKh1mPLDW6OgMdfJV7s4R9qRcZi7ixnhBahqrlGbaZBFj2vqNHqJb0Sa2RhmHYRfLpIw2qEpAGwloI6m10UN3zZHPCmLjL-IuCLohrGV88fv2JdoLy_EVUBN2hTrFeuOuvRNRmJvy9nwDcArDTg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB58HNSDryq-zcGTmDb7SHZz1KJUbUvBCr0tSTYLYtmKbC_-ejO726WIiLclzMIwkzCTzMz3AVxlItXCT1OaqVBThDinMeeaCqFkHFunu8bh5MFQ9F7DpwmfrMBNMwtjrS2bz2wbP8tafjozc3wq6wiXLHhRvArrLu5zr5rWamoGiLRVoqP6IZWML2qYHpOd8eP4Bdu4graP-Tu-dCxFoSValTKqPOzAYKFP1Uzy3p4Xum2-fkA1_lfhXdiu00tyW-2HPVix-T5sLYEOtqB7m5MKYJRUowV0NHvLC3rn4llKkBttSlwmS1wUQ3gJMlLYv-XMT0afWNVBTx7A68P9uNujNZUCNb7gBfWsjUWqrEx9IQNjo4hFmTusRnlGs0jqyLBQq9BwYbxQu2troOJIKj_jnjFaBYewls9yewTEifIoswHX2hlSsVimLFM6C8JQGbdwDGxh2sTUOONIdzFNyvsGkwl6I0FvJLU3juG6-eWjAtn4S7iFhm4Eaxuf_L58CRu98aCf9B-Hz6ew6ZdkFtghdgZrxefcnruUotAX5U76BtAsxpc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Online+Change-Point-Based+Model+for+Traffic+Parameter+Prediction&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Comert%2C+Gurcan&rft.au=Bezuglov%2C+Anton&rft.date=2013-09-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=14&rft.issue=3&rft.spage=1360&rft.epage=1369&rft_id=info:doi/10.1109%2FTITS.2013.2260540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2013_2260540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |