Engineering Parallel Algorithms for Community Detection in Massive Networks
The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast analytics algorithms and software tools are necessary. One common graph analytics kernel is disjoint community detection (or graph clustering). D...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 27; no. 1; pp. 171 - 184 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast analytics algorithms and software tools are necessary. One common graph analytics kernel is disjoint community detection (or graph clustering). Despite extensive research on heuristic solvers for this task, only few parallel codes exist, although parallelism will be necessary to scale to the data volume of real-world applications. We address the deficit in computing capability by a flexible and extensible community detection framework with shared-memory parallelism. Within this framework we design and implement efficient parallel community detection heuristics: A parallel label propagation scheme; the first large-scale parallelization of the well-known Louvain method, as well as an extension of the method adding refinement; and an ensemble scheme combining the above. In extensive experiments driven by the algorithm engineering paradigm, we identify the most successful parameters and combinations of these algorithms. We also compare our implementations with state-of-the-art competitors. The processing rate of our fastest algorithm often reaches 50 M edges/second. We recommend the parallel Louvain method and our variant with refinement as both qualitatively strong and fast. Our methods are suitable for massive data sets with billions of edges. (A preliminary version of this paper appeared in Proceedings of the 42nd International Conference on Parallel Processing (ICPP 2013) [35].) |
---|---|
AbstractList | The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast analytics algorithms and software tools are necessary. One common graph analytics kernel is disjoint community detection (or graph clustering). Despite extensive research on heuristic solvers for this task, only few parallel codes exist, although parallelism will be necessary to scale to the data volume of real-world applications. We address the deficit in computing capability by a flexible and extensible community detection framework with shared-memory parallelism. Within this framework we design and implement efficient parallel community detection heuristics: A parallel label propagation scheme; the first large-scale parallelization of the well-known Louvain method, as well as an extension of the method adding refinement; and an ensemble scheme combining the above. In extensive experiments driven by the algorithm engineering paradigm, we identify the most successful parameters and combinations of these algorithms. We also compare our implementations with state-of-the-art competitors. The processing rate of our fastest algorithm often reaches 50 M edges/second. We recommend the parallel Louvain method and our variant with refinement as both qualitatively strong and fast. Our methods are suitable for massive data sets with billions of edges. (A preliminary version of this paper appeared in Proceedings of the 42nd International Conference on Parallel Processing (ICPP 2013) [35].) |
Author | Meyerhenke, Henning Staudt, Christian L. |
Author_xml | – sequence: 1 givenname: Christian L. surname: Staudt fullname: Staudt, Christian L. email: christian.staudt@kit.edu organization: Fac. of Inf., Karlsruhe Inst. of Technol., Karlsruhe, Germany – sequence: 2 givenname: Henning surname: Meyerhenke fullname: Meyerhenke, Henning email: meyerhenke@kit.edu organization: Fac. of Inf., Karlsruhe Inst. of Technol., Karlsruhe, Germany |
BookMark | eNp9kE1PAjEQhnvAREB_gPHSP7A43X4sPRLAj4hKIp43ZZlidbdr2qrh38sG4sGDl3lPz8w7z4D0fOuRkAsGI8ZAX62Ws-dRDkyOcq5Bcd4jfQZCZjpn-pQMYnwDYEKC6JP7ud86jxic39KlCaausaaTetsGl16bSG0b6LRtmk_v0o7OMGGVXOup8_TBxOi-kD5i-m7DezwjJ9bUEc-POSQv1_PV9DZbPN3cTSeLrMqVTBlTYHSOgmsjUaBe77uh1RsJY2GZEmvoJlOssMqOK6602WjJLciiGOebNR8SdthbhTbGgLb8CK4xYVcyKDsDZWeg7AyURwN7pvjDVC6Z7pMUjKv_JS8PpEPE30sFgCq04j_K9G1A |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1109_TKDE_2020_2975793 crossref_primary_10_1016_j_jfranklin_2024_107404 crossref_primary_10_1016_j_micpro_2017_08_002 crossref_primary_10_1017_nws_2016_20 crossref_primary_10_1038_s41467_018_05690_8 crossref_primary_10_7250_csimq_2024_41_04 crossref_primary_10_1016_j_procs_2015_05_353 crossref_primary_10_1109_ACCESS_2020_2982227 crossref_primary_10_1007_s40031_024_01113_z crossref_primary_10_1109_TBDATA_2016_2631512 crossref_primary_10_3390_a10030102 crossref_primary_10_1007_s13369_021_05664_x crossref_primary_10_1007_s13278_025_01433_y crossref_primary_10_1007_s41109_017_0054_z crossref_primary_10_1016_j_ins_2024_121096 crossref_primary_10_1111_fire_12157 crossref_primary_10_1016_j_comnet_2020_107182 crossref_primary_10_1007_s11042_023_17025_x crossref_primary_10_1007_s11227_020_03510_9 crossref_primary_10_1142_S0218001423500131 crossref_primary_10_1016_j_eswa_2022_116607 crossref_primary_10_1007_s11227_021_04224_2 crossref_primary_10_1109_ACCESS_2018_2880157 crossref_primary_10_1145_3583084 crossref_primary_10_14778_3476249_3476282 crossref_primary_10_1088_1367_2630_aa6b38 crossref_primary_10_1109_JSYST_2017_2764479 crossref_primary_10_1007_s11390_023_1599_1 crossref_primary_10_1109_ACCESS_2023_3257021 crossref_primary_10_1007_s13278_019_0566_x crossref_primary_10_1109_ACCESS_2018_2859788 crossref_primary_10_1016_j_eswa_2021_115377 crossref_primary_10_1016_j_techfore_2020_120060 crossref_primary_10_1145_3564593 crossref_primary_10_1145_3626527 crossref_primary_10_1080_03081079_2020_1863394 crossref_primary_10_1109_TKDE_2018_2803818 crossref_primary_10_1002_int_22759 crossref_primary_10_1145_2992785 crossref_primary_10_1111_jfir_12228 crossref_primary_10_7717_peerj_cs_1291 crossref_primary_10_1007_s11280_021_00931_1 crossref_primary_10_1029_2024WR037268 crossref_primary_10_1002_cpe_8297 crossref_primary_10_3390_info13050209 crossref_primary_10_1007_s13278_016_0332_2 crossref_primary_10_1016_j_jksuci_2020_10_014 crossref_primary_10_1007_s00521_019_04064_5 crossref_primary_10_1016_j_sasc_2022_200044 crossref_primary_10_1063_5_0077106 crossref_primary_10_1109_TPDS_2020_3001645 crossref_primary_10_1109_TPDS_2021_3135329 crossref_primary_10_1109_TKDE_2020_2980516 crossref_primary_10_1002_aic_17205 crossref_primary_10_1016_j_ins_2020_10_057 crossref_primary_10_1016_j_physa_2019_122058 crossref_primary_10_1109_TCSS_2021_3093038 crossref_primary_10_1016_j_knosys_2017_12_007 crossref_primary_10_1016_j_future_2018_05_071 crossref_primary_10_1007_s10115_019_01329_2 crossref_primary_10_1007_s10732_016_9315_8 crossref_primary_10_1109_ACCESS_2019_2897783 crossref_primary_10_1016_j_swevo_2018_11_006 crossref_primary_10_1049_trit_2019_0040 crossref_primary_10_1093_procel_pwae050 crossref_primary_10_1109_TBDATA_2020_2995621 crossref_primary_10_3390_app11167179 crossref_primary_10_14778_3476249_3476252 crossref_primary_10_1002_cpe_6987 crossref_primary_10_1038_s41598_021_99301_0 crossref_primary_10_1109_TFUZZ_2020_2980502 |
Cites_doi | 10.1090/conm/588 10.1103/PhysRevE.82.036106 10.1016/j.physrep.2009.11.002 10.1090/conm/588/11706 10.1109/IPDPS.2013.50 10.1109/ASONAM.2012.90 10.1145/1963190.1970376 10.1109/ICPP.2013.27 10.1186/1471-2105-7-2 10.1109/IPDPS.2015.18 10.1090/conm/588/11701 10.1016/j.jcss.2013.03.012 10.1016/j.jpdc.2014.09.012 10.1103/PhysRevE.83.056119 10.1109/TKDE.2007.190689 10.1103/PhysRevE.70.066111 10.1073/pnas.0605965104 10.1016/j.cosrev.2007.05.001 10.1103/PhysRevE.76.036106 10.1073/pnas.122653799 10.1007/978-3-642-35668-1_18 10.1109/IPDPSW.2013.229 10.1088/1742-5468/2008/10/P10008 10.1007/978-3-642-14866-8 10.1109/IPDPS.2011.61 10.1090/conm/588/11703 10.1007/978-3-540-75755-9_32 10.1103/PhysRevE.78.046110 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TPDS.2015.2390633 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EndPage | 184 |
ExternalDocumentID | 10_1109_TPDS_2015_2390633 7006796 |
Genre | orig-research |
GrantInformation_xml | – fundername: Parallel Analysis of Dynamic Networks – fundername: Ministry of Science, Research and the Arts |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c265t-160a92e439a5e4e9b104ef9d5084f164b0f1641617f6f8c369ad953f057782db3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Thu Apr 24 23:03:50 EDT 2025 Tue Jul 01 02:18:12 EDT 2025 Wed Aug 27 02:52:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | network analysis Disjoint community detection parallel Louvain method parallel algorithm engineering graph clustering |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-160a92e439a5e4e9b104ef9d5084f164b0f1641617f6f8c369ad953f057782db3 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TPDS_2015_2390633 crossref_citationtrail_10_1109_TPDS_2015_2390633 ieee_primary_7006796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Jan.-1 2016-1-1 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan.-1 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ovelgönne (ref26) 0 ref15 ref14 ref31 gargi (ref12) 0 bichot (ref4) 2011 ref30 ref33 ref11 ref32 ref10 ref2 ref17 ref16 ref19 bhowmick (ref3) 2013; 2 lambiotte (ref18) 0 buluç (ref7) 0 ref24 ref23 staudt (ref36) 0 ref20 ref21 ref28 looz (ref22) 2014 ref27 yang (ref37) 0 ref29 ref8 ref9 bader (ref1) 2013 ref6 ref5 müller-hannemann (ref25) 2010; 5971 |
References_xml | – year: 2013 ident: ref1 publication-title: Graph Partitioning and Graph Clustering doi: 10.1090/conm/588 – ident: ref17 doi: 10.1103/PhysRevE.82.036106 – ident: ref10 doi: 10.1016/j.physrep.2009.11.002 – ident: ref9 doi: 10.1090/conm/588/11706 – ident: ref20 doi: 10.1109/IPDPS.2013.50 – ident: ref34 doi: 10.1109/ASONAM.2012.90 – ident: ref31 doi: 10.1145/1963190.1970376 – ident: ref35 doi: 10.1109/ICPP.2013.27 – year: 0 ident: ref7 article-title: Recent advances in graph partitioning publication-title: arXiv preprint arXiv 1311 3144 – ident: ref15 doi: 10.1186/1471-2105-7-2 – start-page: 66 year: 0 ident: ref26 article-title: Distributed community detection in web-scale networks publication-title: Proc Adv Soc Netw Anal Min – ident: ref24 doi: 10.1109/IPDPS.2015.18 – ident: ref27 doi: 10.1090/conm/588/11701 – ident: ref23 doi: 10.1016/j.jcss.2013.03.012 – ident: ref21 doi: 10.1016/j.jpdc.2014.09.012 – start-page: 486 year: 0 ident: ref12 article-title: Large-scale community detection on youtube for topic discovery and exploration publication-title: Proc 5th Int Conf Weblogs Soc Media – ident: ref2 doi: 10.1103/PhysRevE.83.056119 – ident: ref6 doi: 10.1109/TKDE.2007.190689 – ident: ref8 doi: 10.1103/PhysRevE.70.066111 – year: 2011 ident: ref4 publication-title: Graph Partitioning – ident: ref11 doi: 10.1073/pnas.0605965104 – year: 0 ident: ref36 article-title: NetworKit: An interactive tool suite for high-performance network analysis publication-title: arXiv preprint arXiv 1403 3005 – ident: ref32 doi: 10.1016/j.cosrev.2007.05.001 – ident: ref28 doi: 10.1103/PhysRevE.76.036106 – ident: ref14 doi: 10.1073/pnas.122653799 – ident: ref16 doi: 10.1007/978-3-642-35668-1_18 – volume: 2 start-page: 111 year: 2013 ident: ref3 article-title: A template for parallelizing the louvain method for modularity maximization publication-title: Dynamics On and Of Complex Networks – ident: ref29 doi: 10.1109/IPDPSW.2013.229 – start-page: 3 year: 0 ident: ref37 article-title: Defining and evaluating network communities based on ground-truth publication-title: Proc ACM SIGKDD Workshop Min Data Semantics – ident: ref5 doi: 10.1088/1742-5468/2008/10/P10008 – volume: 5971 year: 2010 ident: ref25 publication-title: Algorithm Engineering Bridging the Gap between Algorithm Theory and Practice doi: 10.1007/978-3-642-14866-8 – ident: ref33 doi: 10.1109/IPDPS.2011.61 – ident: ref30 doi: 10.1090/conm/588/11703 – year: 2014 ident: ref22 – ident: ref13 doi: 10.1007/978-3-540-75755-9_32 – ident: ref19 doi: 10.1103/PhysRevE.78.046110 – start-page: 546 year: 0 ident: ref18 article-title: Multi-scale modularity in complex networks publication-title: Proc 3rd Int Symp Model Optim Mobile Ad Hoc Wireless Netw |
SSID | ssj0014504 |
Score | 2.5178921 |
Snippet | The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 171 |
SubjectTerms | Algorithm design and analysis Clustering algorithms Communities Disjoint community detection graph clustering Image edge detection Instruction sets network analysis parallel algorithm engineering parallel Louvain method Parallel processing Software algorithms |
Title | Engineering Parallel Algorithms for Community Detection in Massive Networks |
URI | https://ieeexplore.ieee.org/document/7006796 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTgoyrWF3vwJCbNY3fbPYq1iFIRVPAWso9osaZS04P-emeTbagi4iUkYTcsM7PZb94Axz3KUiWk9DKDEkwN515f0cyj1DAdCq15aBOcRzf88oFePbLHBpzWuTDGmDL4zPj2tvTl66maW1NZtxeUZo8mNFFxq3K1ao8BZWWrQNQumCdwGzoPZhiI7v3t4M4GcTE_Qg2fx_G3M2ipqUp5pgzXYbRYTRVK8uLPC-mrzx-FGv-73A1Yc-CSnFXSsAkNk7dhfdG4gbh93IbVpSqEW3C99ERu05ntroIfmTxNZ-Pi-fWdIK4lLpGk-CADU5ThWzkZ52SE2Bv_l-SmiiZ_34aH4cX9-aXneix4KuKs8EIepCIyCEtSZqgREgloMqERt9EMVSkZ2KtVgjKe9VXMRaoFizOEeYgttIx3oJVPc7MLJJBMMalSGseahkpLRUNt671zHUllgg4EC6onyhUgt30wJkmpiAQisYxKLKMSx6gOnNRT3qrqG38N3rI8qAc68u_9_nofVnCys6YcQKuYzc0h4otCHpWC9QU838xP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADSwtixwdOiJQstsFHxKKypKpEkXqL4iVQUVJU0gN8PePErQpCiEuURI5lzYzjNzvA4SllqRJSeplBCaaGc-9M0cyj1DAdCK15YBOc4xZvPtLbLuvOwPEkF8YYUwafmYa9LX35eqBG1lR2cuqXZo9ZmMdzn4VVttbEZ0BZ2SwQ9QvmCdyIzocZ-OKk0758sGFcrBGijs-j6NspNNVWpTxVrlcgHq-nCiZ5aYwK2VCfP0o1_nfBq7Ds4CU5r-RhDWZMXoOVcesG4nZyDZam6hDW4W7qibTToe2vgpP0nwbDXvH8-k4Q2RKXSlJ8kEtTlAFcOenlJEb0jX9M0qriyd_X4fH6qnPR9FyXBU-FnBVewP1UhAaBScoMNUIiAU0mNCI3mqEyJX17tWpQxrMzFXGRasGiDIEeogstow2Yywe52QTiS6aYVCmNIk0DpaWigbYV37kOpTL-FvhjqifKlSC3nTD6SamK-CKxjEosoxLHqC04mnzyVtXf-Gtw3fJgMtCRf_v31wew0OzE98n9TetuBxZxImdb2YW5Yjgye4g2CrlfCtkXFSHPmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Parallel+Algorithms+for+Community+Detection+in+Massive+Networks&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Staudt%2C+Christian+L.&rft.au=Meyerhenke%2C+Henning&rft.date=2016-01-01&rft.issn=1045-9219&rft.volume=27&rft.issue=1&rft.spage=171&rft.epage=184&rft_id=info:doi/10.1109%2FTPDS.2015.2390633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2015_2390633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |