Engineering Parallel Algorithms for Community Detection in Massive Networks

The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast analytics algorithms and software tools are necessary. One common graph analytics kernel is disjoint community detection (or graph clustering). D...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 27; no. 1; pp. 171 - 184
Main Authors Staudt, Christian L., Meyerhenke, Henning
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast analytics algorithms and software tools are necessary. One common graph analytics kernel is disjoint community detection (or graph clustering). Despite extensive research on heuristic solvers for this task, only few parallel codes exist, although parallelism will be necessary to scale to the data volume of real-world applications. We address the deficit in computing capability by a flexible and extensible community detection framework with shared-memory parallelism. Within this framework we design and implement efficient parallel community detection heuristics: A parallel label propagation scheme; the first large-scale parallelization of the well-known Louvain method, as well as an extension of the method adding refinement; and an ensemble scheme combining the above. In extensive experiments driven by the algorithm engineering paradigm, we identify the most successful parameters and combinations of these algorithms. We also compare our implementations with state-of-the-art competitors. The processing rate of our fastest algorithm often reaches 50 M edges/second. We recommend the parallel Louvain method and our variant with refinement as both qualitatively strong and fast. Our methods are suitable for massive data sets with billions of edges. (A preliminary version of this paper appeared in Proceedings of the 42nd International Conference on Parallel Processing (ICPP 2013) [35].)
AbstractList The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast analytics algorithms and software tools are necessary. One common graph analytics kernel is disjoint community detection (or graph clustering). Despite extensive research on heuristic solvers for this task, only few parallel codes exist, although parallelism will be necessary to scale to the data volume of real-world applications. We address the deficit in computing capability by a flexible and extensible community detection framework with shared-memory parallelism. Within this framework we design and implement efficient parallel community detection heuristics: A parallel label propagation scheme; the first large-scale parallelization of the well-known Louvain method, as well as an extension of the method adding refinement; and an ensemble scheme combining the above. In extensive experiments driven by the algorithm engineering paradigm, we identify the most successful parameters and combinations of these algorithms. We also compare our implementations with state-of-the-art competitors. The processing rate of our fastest algorithm often reaches 50 M edges/second. We recommend the parallel Louvain method and our variant with refinement as both qualitatively strong and fast. Our methods are suitable for massive data sets with billions of edges. (A preliminary version of this paper appeared in Proceedings of the 42nd International Conference on Parallel Processing (ICPP 2013) [35].)
Author Meyerhenke, Henning
Staudt, Christian L.
Author_xml – sequence: 1
  givenname: Christian L.
  surname: Staudt
  fullname: Staudt, Christian L.
  email: christian.staudt@kit.edu
  organization: Fac. of Inf., Karlsruhe Inst. of Technol., Karlsruhe, Germany
– sequence: 2
  givenname: Henning
  surname: Meyerhenke
  fullname: Meyerhenke, Henning
  email: meyerhenke@kit.edu
  organization: Fac. of Inf., Karlsruhe Inst. of Technol., Karlsruhe, Germany
BookMark eNp9kE1PAjEQhnvAREB_gPHSP7A43X4sPRLAj4hKIp43ZZlidbdr2qrh38sG4sGDl3lPz8w7z4D0fOuRkAsGI8ZAX62Ws-dRDkyOcq5Bcd4jfQZCZjpn-pQMYnwDYEKC6JP7ud86jxic39KlCaausaaTetsGl16bSG0b6LRtmk_v0o7OMGGVXOup8_TBxOi-kD5i-m7DezwjJ9bUEc-POSQv1_PV9DZbPN3cTSeLrMqVTBlTYHSOgmsjUaBe77uh1RsJY2GZEmvoJlOssMqOK6602WjJLciiGOebNR8SdthbhTbGgLb8CK4xYVcyKDsDZWeg7AyURwN7pvjDVC6Z7pMUjKv_JS8PpEPE30sFgCq04j_K9G1A
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_TKDE_2020_2975793
crossref_primary_10_1016_j_jfranklin_2024_107404
crossref_primary_10_1016_j_micpro_2017_08_002
crossref_primary_10_1017_nws_2016_20
crossref_primary_10_1038_s41467_018_05690_8
crossref_primary_10_7250_csimq_2024_41_04
crossref_primary_10_1016_j_procs_2015_05_353
crossref_primary_10_1109_ACCESS_2020_2982227
crossref_primary_10_1007_s40031_024_01113_z
crossref_primary_10_1109_TBDATA_2016_2631512
crossref_primary_10_3390_a10030102
crossref_primary_10_1007_s13369_021_05664_x
crossref_primary_10_1007_s13278_025_01433_y
crossref_primary_10_1007_s41109_017_0054_z
crossref_primary_10_1016_j_ins_2024_121096
crossref_primary_10_1111_fire_12157
crossref_primary_10_1016_j_comnet_2020_107182
crossref_primary_10_1007_s11042_023_17025_x
crossref_primary_10_1007_s11227_020_03510_9
crossref_primary_10_1142_S0218001423500131
crossref_primary_10_1016_j_eswa_2022_116607
crossref_primary_10_1007_s11227_021_04224_2
crossref_primary_10_1109_ACCESS_2018_2880157
crossref_primary_10_1145_3583084
crossref_primary_10_14778_3476249_3476282
crossref_primary_10_1088_1367_2630_aa6b38
crossref_primary_10_1109_JSYST_2017_2764479
crossref_primary_10_1007_s11390_023_1599_1
crossref_primary_10_1109_ACCESS_2023_3257021
crossref_primary_10_1007_s13278_019_0566_x
crossref_primary_10_1109_ACCESS_2018_2859788
crossref_primary_10_1016_j_eswa_2021_115377
crossref_primary_10_1016_j_techfore_2020_120060
crossref_primary_10_1145_3564593
crossref_primary_10_1145_3626527
crossref_primary_10_1080_03081079_2020_1863394
crossref_primary_10_1109_TKDE_2018_2803818
crossref_primary_10_1002_int_22759
crossref_primary_10_1145_2992785
crossref_primary_10_1111_jfir_12228
crossref_primary_10_7717_peerj_cs_1291
crossref_primary_10_1007_s11280_021_00931_1
crossref_primary_10_1029_2024WR037268
crossref_primary_10_1002_cpe_8297
crossref_primary_10_3390_info13050209
crossref_primary_10_1007_s13278_016_0332_2
crossref_primary_10_1016_j_jksuci_2020_10_014
crossref_primary_10_1007_s00521_019_04064_5
crossref_primary_10_1016_j_sasc_2022_200044
crossref_primary_10_1063_5_0077106
crossref_primary_10_1109_TPDS_2020_3001645
crossref_primary_10_1109_TPDS_2021_3135329
crossref_primary_10_1109_TKDE_2020_2980516
crossref_primary_10_1002_aic_17205
crossref_primary_10_1016_j_ins_2020_10_057
crossref_primary_10_1016_j_physa_2019_122058
crossref_primary_10_1109_TCSS_2021_3093038
crossref_primary_10_1016_j_knosys_2017_12_007
crossref_primary_10_1016_j_future_2018_05_071
crossref_primary_10_1007_s10115_019_01329_2
crossref_primary_10_1007_s10732_016_9315_8
crossref_primary_10_1109_ACCESS_2019_2897783
crossref_primary_10_1016_j_swevo_2018_11_006
crossref_primary_10_1049_trit_2019_0040
crossref_primary_10_1093_procel_pwae050
crossref_primary_10_1109_TBDATA_2020_2995621
crossref_primary_10_3390_app11167179
crossref_primary_10_14778_3476249_3476252
crossref_primary_10_1002_cpe_6987
crossref_primary_10_1038_s41598_021_99301_0
crossref_primary_10_1109_TFUZZ_2020_2980502
Cites_doi 10.1090/conm/588
10.1103/PhysRevE.82.036106
10.1016/j.physrep.2009.11.002
10.1090/conm/588/11706
10.1109/IPDPS.2013.50
10.1109/ASONAM.2012.90
10.1145/1963190.1970376
10.1109/ICPP.2013.27
10.1186/1471-2105-7-2
10.1109/IPDPS.2015.18
10.1090/conm/588/11701
10.1016/j.jcss.2013.03.012
10.1016/j.jpdc.2014.09.012
10.1103/PhysRevE.83.056119
10.1109/TKDE.2007.190689
10.1103/PhysRevE.70.066111
10.1073/pnas.0605965104
10.1016/j.cosrev.2007.05.001
10.1103/PhysRevE.76.036106
10.1073/pnas.122653799
10.1007/978-3-642-35668-1_18
10.1109/IPDPSW.2013.229
10.1088/1742-5468/2008/10/P10008
10.1007/978-3-642-14866-8
10.1109/IPDPS.2011.61
10.1090/conm/588/11703
10.1007/978-3-540-75755-9_32
10.1103/PhysRevE.78.046110
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TPDS.2015.2390633
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 184
ExternalDocumentID 10_1109_TPDS_2015_2390633
7006796
Genre orig-research
GrantInformation_xml – fundername: Parallel Analysis of Dynamic Networks
– fundername: Ministry of Science, Research and the Arts
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c265t-160a92e439a5e4e9b104ef9d5084f164b0f1641617f6f8c369ad953f057782db3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Thu Apr 24 23:03:50 EDT 2025
Tue Jul 01 02:18:12 EDT 2025
Wed Aug 27 02:52:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords network analysis
Disjoint community detection
parallel Louvain method
parallel algorithm engineering
graph clustering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-160a92e439a5e4e9b104ef9d5084f164b0f1641617f6f8c369ad953f057782db3
PageCount 14
ParticipantIDs crossref_primary_10_1109_TPDS_2015_2390633
crossref_citationtrail_10_1109_TPDS_2015_2390633
ieee_primary_7006796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.-1
2016-1-1
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.-1
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ovelgönne (ref26) 0
ref15
ref14
ref31
gargi (ref12) 0
bichot (ref4) 2011
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref16
ref19
bhowmick (ref3) 2013; 2
lambiotte (ref18) 0
buluç (ref7) 0
ref24
ref23
staudt (ref36) 0
ref20
ref21
ref28
looz (ref22) 2014
ref27
yang (ref37) 0
ref29
ref8
ref9
bader (ref1) 2013
ref6
ref5
müller-hannemann (ref25) 2010; 5971
References_xml – year: 2013
  ident: ref1
  publication-title: Graph Partitioning and Graph Clustering
  doi: 10.1090/conm/588
– ident: ref17
  doi: 10.1103/PhysRevE.82.036106
– ident: ref10
  doi: 10.1016/j.physrep.2009.11.002
– ident: ref9
  doi: 10.1090/conm/588/11706
– ident: ref20
  doi: 10.1109/IPDPS.2013.50
– ident: ref34
  doi: 10.1109/ASONAM.2012.90
– ident: ref31
  doi: 10.1145/1963190.1970376
– ident: ref35
  doi: 10.1109/ICPP.2013.27
– year: 0
  ident: ref7
  article-title: Recent advances in graph partitioning
  publication-title: arXiv preprint arXiv 1311 3144
– ident: ref15
  doi: 10.1186/1471-2105-7-2
– start-page: 66
  year: 0
  ident: ref26
  article-title: Distributed community detection in web-scale networks
  publication-title: Proc Adv Soc Netw Anal Min
– ident: ref24
  doi: 10.1109/IPDPS.2015.18
– ident: ref27
  doi: 10.1090/conm/588/11701
– ident: ref23
  doi: 10.1016/j.jcss.2013.03.012
– ident: ref21
  doi: 10.1016/j.jpdc.2014.09.012
– start-page: 486
  year: 0
  ident: ref12
  article-title: Large-scale community detection on youtube for topic discovery and exploration
  publication-title: Proc 5th Int Conf Weblogs Soc Media
– ident: ref2
  doi: 10.1103/PhysRevE.83.056119
– ident: ref6
  doi: 10.1109/TKDE.2007.190689
– ident: ref8
  doi: 10.1103/PhysRevE.70.066111
– year: 2011
  ident: ref4
  publication-title: Graph Partitioning
– ident: ref11
  doi: 10.1073/pnas.0605965104
– year: 0
  ident: ref36
  article-title: NetworKit: An interactive tool suite for high-performance network analysis
  publication-title: arXiv preprint arXiv 1403 3005
– ident: ref32
  doi: 10.1016/j.cosrev.2007.05.001
– ident: ref28
  doi: 10.1103/PhysRevE.76.036106
– ident: ref14
  doi: 10.1073/pnas.122653799
– ident: ref16
  doi: 10.1007/978-3-642-35668-1_18
– volume: 2
  start-page: 111
  year: 2013
  ident: ref3
  article-title: A template for parallelizing the louvain method for modularity maximization
  publication-title: Dynamics On and Of Complex Networks
– ident: ref29
  doi: 10.1109/IPDPSW.2013.229
– start-page: 3
  year: 0
  ident: ref37
  article-title: Defining and evaluating network communities based on ground-truth
  publication-title: Proc ACM SIGKDD Workshop Min Data Semantics
– ident: ref5
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 5971
  year: 2010
  ident: ref25
  publication-title: Algorithm Engineering Bridging the Gap between Algorithm Theory and Practice
  doi: 10.1007/978-3-642-14866-8
– ident: ref33
  doi: 10.1109/IPDPS.2011.61
– ident: ref30
  doi: 10.1090/conm/588/11703
– year: 2014
  ident: ref22
– ident: ref13
  doi: 10.1007/978-3-540-75755-9_32
– ident: ref19
  doi: 10.1103/PhysRevE.78.046110
– start-page: 546
  year: 0
  ident: ref18
  article-title: Multi-scale modularity in complex networks
  publication-title: Proc 3rd Int Symp Model Optim Mobile Ad Hoc Wireless Netw
SSID ssj0014504
Score 2.5178921
Snippet The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Algorithm design and analysis
Clustering algorithms
Communities
Disjoint community detection
graph clustering
Image edge detection
Instruction sets
network analysis
parallel algorithm engineering
parallel Louvain method
Parallel processing
Software algorithms
Title Engineering Parallel Algorithms for Community Detection in Massive Networks
URI https://ieeexplore.ieee.org/document/7006796
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTgoyrWF3vwJCbNY3fbPYq1iFIRVPAWso9osaZS04P-emeTbagi4iUkYTcsM7PZb94Axz3KUiWk9DKDEkwN515f0cyj1DAdCq15aBOcRzf88oFePbLHBpzWuTDGmDL4zPj2tvTl66maW1NZtxeUZo8mNFFxq3K1ao8BZWWrQNQumCdwGzoPZhiI7v3t4M4GcTE_Qg2fx_G3M2ipqUp5pgzXYbRYTRVK8uLPC-mrzx-FGv-73A1Yc-CSnFXSsAkNk7dhfdG4gbh93IbVpSqEW3C99ERu05ntroIfmTxNZ-Pi-fWdIK4lLpGk-CADU5ThWzkZ52SE2Bv_l-SmiiZ_34aH4cX9-aXneix4KuKs8EIepCIyCEtSZqgREgloMqERt9EMVSkZ2KtVgjKe9VXMRaoFizOEeYgttIx3oJVPc7MLJJBMMalSGseahkpLRUNt671zHUllgg4EC6onyhUgt30wJkmpiAQisYxKLKMSx6gOnNRT3qrqG38N3rI8qAc68u_9_nofVnCys6YcQKuYzc0h4otCHpWC9QU838xP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADSwtixwdOiJQstsFHxKKypKpEkXqL4iVQUVJU0gN8PePErQpCiEuURI5lzYzjNzvA4SllqRJSeplBCaaGc-9M0cyj1DAdCK15YBOc4xZvPtLbLuvOwPEkF8YYUwafmYa9LX35eqBG1lR2cuqXZo9ZmMdzn4VVttbEZ0BZ2SwQ9QvmCdyIzocZ-OKk0758sGFcrBGijs-j6NspNNVWpTxVrlcgHq-nCiZ5aYwK2VCfP0o1_nfBq7Ds4CU5r-RhDWZMXoOVcesG4nZyDZam6hDW4W7qibTToe2vgpP0nwbDXvH8-k4Q2RKXSlJ8kEtTlAFcOenlJEb0jX9M0qriyd_X4fH6qnPR9FyXBU-FnBVewP1UhAaBScoMNUIiAU0mNCI3mqEyJX17tWpQxrMzFXGRasGiDIEeogstow2Yywe52QTiS6aYVCmNIk0DpaWigbYV37kOpTL-FvhjqifKlSC3nTD6SamK-CKxjEosoxLHqC04mnzyVtXf-Gtw3fJgMtCRf_v31wew0OzE98n9TetuBxZxImdb2YW5Yjgye4g2CrlfCtkXFSHPmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Parallel+Algorithms+for+Community+Detection+in+Massive+Networks&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Staudt%2C+Christian+L.&rft.au=Meyerhenke%2C+Henning&rft.date=2016-01-01&rft.issn=1045-9219&rft.volume=27&rft.issue=1&rft.spage=171&rft.epage=184&rft_id=info:doi/10.1109%2FTPDS.2015.2390633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2015_2390633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon