Resource allocation for full‐duplex–based heterogeneous cellular networks considering back‐haul capacity

In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 28; no. 7
Main Authors Mardi, A., Azmi, P., Mokari, N., Parsaeefard, S.
Format Journal Article
LanguageEnglish
Published 01.07.2017
Online AccessGet full text
ISSN2161-3915
2161-3915
DOI10.1002/ett.3139

Cover

Loading…
Abstract In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account the back‐haul and transmission power constraints. Moreover, the superiority of the proposed system is shown by comparing it with the half‐duplex femtorelay‐assisted counterpart. Since the proposed resource allocation optimization problem is nonconvex and intractable, we divide it into subcarrier and transmission power allocation subproblems and then use an iterative algorithm to solve each of them. Toward this end, in each iteration, subcarriers are allocated via a binary linear program, while the successive convex approximation method is adapted to transform the nonconvex transmission power allocation subproblem into a sequence of convex subproblems. To achieve this goal, we use 1 of the 3 proposed approaches, namely, dual, arithmetic‐geometric mean approximation, and difference of 2 concave functions. In addition, we investigate the performance, convergence, and computational complexity of these approaches. The simulation results reveal that the proposed approaches are close to the optimal solution while providing less computational complexity. Moreover, they illustrate that even by considering self‐interference in the full‐duplex mode, the sum rate will be increased approximately by 41% in comparison with the half‐duplex mode. In this paper, we concentrate on the resource allocation of the full‐duplex femtorelays with limited back‐haul capacity links in an OFDMA‐based heterogeneous cellular network. The considered objective is to maximize the sum rate of all users and small cells, subject to transmission power limitation and also back‐haul capacity constraint. Because the corresponding optimization problems were nonconvex with high‐computational complexity, we used the SCA method with 3 approaches, namely, dual, DC, and AGMA.
AbstractList In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account the back‐haul and transmission power constraints. Moreover, the superiority of the proposed system is shown by comparing it with the half‐duplex femtorelay‐assisted counterpart. Since the proposed resource allocation optimization problem is nonconvex and intractable, we divide it into subcarrier and transmission power allocation subproblems and then use an iterative algorithm to solve each of them. Toward this end, in each iteration, subcarriers are allocated via a binary linear program, while the successive convex approximation method is adapted to transform the nonconvex transmission power allocation subproblem into a sequence of convex subproblems. To achieve this goal, we use 1 of the 3 proposed approaches, namely, dual, arithmetic‐geometric mean approximation, and difference of 2 concave functions. In addition, we investigate the performance, convergence, and computational complexity of these approaches. The simulation results reveal that the proposed approaches are close to the optimal solution while providing less computational complexity. Moreover, they illustrate that even by considering self‐interference in the full‐duplex mode, the sum rate will be increased approximately by 41 % in comparison with the half‐duplex mode.
In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account the back‐haul and transmission power constraints. Moreover, the superiority of the proposed system is shown by comparing it with the half‐duplex femtorelay‐assisted counterpart. Since the proposed resource allocation optimization problem is nonconvex and intractable, we divide it into subcarrier and transmission power allocation subproblems and then use an iterative algorithm to solve each of them. Toward this end, in each iteration, subcarriers are allocated via a binary linear program, while the successive convex approximation method is adapted to transform the nonconvex transmission power allocation subproblem into a sequence of convex subproblems. To achieve this goal, we use 1 of the 3 proposed approaches, namely, dual, arithmetic‐geometric mean approximation, and difference of 2 concave functions. In addition, we investigate the performance, convergence, and computational complexity of these approaches. The simulation results reveal that the proposed approaches are close to the optimal solution while providing less computational complexity. Moreover, they illustrate that even by considering self‐interference in the full‐duplex mode, the sum rate will be increased approximately by 41% in comparison with the half‐duplex mode. In this paper, we concentrate on the resource allocation of the full‐duplex femtorelays with limited back‐haul capacity links in an OFDMA‐based heterogeneous cellular network. The considered objective is to maximize the sum rate of all users and small cells, subject to transmission power limitation and also back‐haul capacity constraint. Because the corresponding optimization problems were nonconvex with high‐computational complexity, we used the SCA method with 3 approaches, namely, dual, DC, and AGMA.
Author Mokari, N.
Mardi, A.
Azmi, P.
Parsaeefard, S.
Author_xml – sequence: 1
  givenname: A.
  surname: Mardi
  fullname: Mardi, A.
  organization: Tarbiat Modares University
– sequence: 2
  givenname: P.
  surname: Azmi
  fullname: Azmi, P.
  email: pazmi@modares.ac.ir
  organization: Tarbiat Modares University
– sequence: 3
  givenname: N.
  surname: Mokari
  fullname: Mokari, N.
  organization: Tarbiat Modares University
– sequence: 4
  givenname: S.
  surname: Parsaeefard
  fullname: Parsaeefard, S.
  organization: Iran Telecommunication Research Center
BookMark eNp1kM1KAzEUhYNUsNaCj5Clm6nJ_CZLKfUHCoLU9ZDJ3LRjY1KSGWp3fYSCb9gnMW1diOjd3MvhnMPlu0Q9Yw0gdE3JiBIS30LbjhKa8DPUj2lOo4TTrPfjvkBD799ImCKLs5T1kXkBbzsnAQutrRRtYw1W1mHVab3f7upupeFjv_2shIcaL6AFZ-dgwHYeS9C608JhA-3aumVQrPFNDa4xc1wJuQwNC9FpLMVKyKbdXKFzJbSH4fceoNf7yWz8GE2fH57Gd9NIxnnGI8pTxlLISc3yhBYyhSxcRQ2SMwo1yeNCEc4rUvFEMZUpSYoqZyxmUhAVxAG6OfVKZ713oMqVa96F25SUlAdUZUBVHlAF6-iXNTx65NA60ei_AtEpsG40bP4tLiez2dH_BZ1agao
CitedBy_id crossref_primary_10_1002_ett_4001
crossref_primary_10_1109_TVT_2021_3052716
Cites_doi 10.1109/JSAC.2014.2330193
10.1007/s10898-009-9456-5
10.1109/TVT.2013.2264064
10.1109/TVT.2009.2035131
10.1109/TWC.2011.120911.110139
10.1049/iet-com.2010.0319
10.1002/ett.2590
10.1109/TCOMM.2006.877962
10.1109/TVT.2009.2013233
10.1109/TSP.2011.2164401
10.1016/j.phycom.2013.04.001
10.1109/TVT.2015.2428997
10.1109/TWC.2011.042211.101183
10.1287/opre.26.4.681
10.1109/EW.2009.5357758
10.1017/CBO9780511804441
10.1287/opre.1100.0910
10.1109/MCOM.2008.4623708
10.1109/GLOCOMW.2014.7063568
10.1109/TVT.2013.2293882
10.1109/CHINACOM.2009.5339801
10.1109/TVT.2012.2201189
10.1109/TWC.2013.092413.130221
10.1109/TSP.2011.2159598
10.1017/CBO9780511841224
10.1109/TWC.2011.100611.102046
10.1109/TVT.2012.2205719
10.1109/ICC.2005.1494679
10.1109/CAMAD.2012.6335358
10.1109/MMM.2009.932832
10.1007/s11081-007-9001-7
10.1109/TWC.2007.05960
10.1109/TWC.2013.111313.130645
10.1109/TWC.2008.060882
10.1109/TW.2013.081413.121866
10.1109/JSAC.2006.879350
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.3139
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_3139
ETT3139
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
1OB
AAMMB
AAYXX
ADMLS
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c2659-194884e60d86317c4e5d867dec981ed0627f099b0b93f8f5fc07b68828ca0fb93
ISSN 2161-3915
IngestDate Thu Apr 24 23:04:34 EDT 2025
Tue Aug 05 12:09:59 EDT 2025
Wed Jan 22 16:31:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2659-194884e60d86317c4e5d867dec981ed0627f099b0b93f8f5fc07b68828ca0fb93
PageCount 19
ParticipantIDs crossref_primary_10_1002_ett_3139
crossref_citationtrail_10_1002_ett_3139
wiley_primary_10_1002_ett_3139_ETT3139
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2017
References 2012; 61
2010; 59
2012
2011
2010
2006; 54
2013; 62
2009
2008; 7
2011; 10
2005
2004
2011; 59
2012; 12
2012; 11
2011; 5
2013; 9
February 2013
2009; 58
2009; 10
2010; 47
2006; 24
2013; 12
2015; 64
2016; 65
2007; 8
2007; 6
2014; 13
2008; 46
2015
1978; 26
2014
2012; 25
2014; 32
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Tse D (e_1_2_8_39_1) 2004
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Alkandari A (e_1_2_8_2_1) 2012; 12
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – year: 2011
– year: 2009
– volume: 61
  start-page: 3731
  year: 2012
  end-page: 3745
  article-title: Robust worst‐case interference control in underlay cognitive radio networks
  publication-title: IEEE Trans Veh Technol
– volume: 26
  start-page: 681
  year: 1978
  end-page: 683
  article-title: A general inner approximation algorithm for nonconvex mathematical programs
  publication-title: Oper Res
– volume: 65
  start-page: 2509
  year: 2016
  end-page: 2521
  article-title: Limited‐feedback resource allocation in heterogeneous cellular networks
  publication-title: IEEE Trans Veh Technol
– volume: 12
  start-page: 5813
  year: 2013
  end-page: 5825
  article-title: Backhaul‐aware interference management in the uplink of wireless small cell networks
  publication-title: IEEE Trans Wirel Commun
– volume: 13
  start-page: 342
  year: 2014
  end-page: 355
  article-title: Joint subchannel assignment and power allocation for OFDMA femtocell networks
  publication-title: IEEE Wirel Commun Lett
– year: 2005
– volume: 12
  start-page: 10
  year: 2012
  end-page: 21
  article-title: Interference management in femtocell
  publication-title: J Adv Comput Sci Technol Res (JACSTR)
– volume: 62
  start-page: 4421
  year: 2013
  end-page: 4429
  article-title: Self‐interference cancellation using phase rotation in full‐duplex wireless
  publication-title: IEEE Trans Veh Technol
– volume: 10
  start-page: 54
  year: 2009
  end-page: 66
  article-title: The next challenge for cellular networks: backhaul
  publication-title: IEEE Microwave Mag
– volume: 11
  start-page: 510
  year: 2012
  end-page: 515
  article-title: Fast global optimal power allocation in wireless networks by local D.C. programming
  publication-title: IEEE Trans Wirel Commun
– volume: 64
  start-page: 3056
  year: 2015
  end-page: 3074
  article-title: Uplink radio resource allocation in AF and DF relay‐assisted networks with limited rate feedback
  publication-title: IEEE Trans Veh Technol
– volume: 10
  start-page: 4204
  year: 2011
  end-page: 4213
  article-title: Femtocell as a relay: an outage analysis
  publication-title: IEEE Trans Wirel Commun
– volume: 5
  start-page: 1083
  year: 2011
  end-page: 1089
  article-title: Radio resource allocation in OFDM‐based cooperative relaying networks for a mixture of elastic and streaming traffic
  publication-title: IET Commun
– volume: 59
  start-page: 617
  year: 2011
  end-page: 630
  article-title: Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach
  publication-title: Oper Res
– volume: 59
  start-page: 4985
  year: 2011
  end-page: 4997
  article-title: On cooperative relaying schemes for wireless physical layer security
  publication-title: IEEE Trans Signal Proc
– year: 2014
– year: 2010
– volume: 59
  start-page: 5473
  year: 2011
  end-page: 5484
  article-title: Relay precoder optimization in MIMO‐relay networks with imperfect CSI
  publication-title: IEEE Trans Signal Proc
– year: 2012
– volume: 6
  start-page: 2640
  year: 2007
  end-page: 2651
  article-title: Power control by geometric programming
  publication-title: IEEE Trans Wirel Commun
– volume: 59
  start-page: 1011
  year: 2010
  end-page: 1017
  article-title: Cross‐layer resource allocation in OFDMA systems for heterogeneous traffic with imperfect CSI
  publication-title: IEEE Trans Veh Technol
– volume: 46
  start-page: 59
  year: 2008
  end-page: 67
  article-title: Femtocell networks: a survey
  publication-title: IEEE Commun Mag
– year: February 2013
– volume: 9
  start-page: 1
  year: 2013
  end-page: 15
  article-title: Enabling next generation small cells through femtorelays
  publication-title: Phys Commun
– volume: 24
  start-page: 1439
  year: 2006
  end-page: 1451
  article-title: A tutorial on decomposition methods for network utility maximization
  publication-title: IEEE J Sel Areas Commun (J‐SAC)
– volume: 47
  start-page: 29
  year: 2010
  end-page: 51
  article-title: A sequential parametric convex approximation method with applications to nonconvex truss topology design problems
  publication-title: J Global Optim
– volume: 7
  start-page: 2190
  year: 2008
  end-page: 22101
  article-title: Resource allocation for delay differentiated traffic in multiuser OFDM systems
  publication-title: IEEE Trans Wirel Commun
– volume: 12
  start-page: 5110
  year: 2013
  end-page: 5123
  article-title: Quantized ergodic radio resource allocation in OFDMA‐based cognitive DF relay‐assisted networks
  publication-title: IEEE Trans Wirel Commun
– volume: 54
  start-page: 1310
  year: 2006
  end-page: 1322
  article-title: Dual methods for nonconvex spectrum optimization of multicarrier systems
  publication-title: IEEE Trans Commun
– year: 2004
– volume: 8
  start-page: 67
  year: 2007
  article-title: A Tutorial on Geometric Programming
  publication-title: Optim Eng
– volume: 10
  start-page: 2246
  year: 2011
  end-page: 2258
  article-title: Resource allocation and scheduling in multi‐cell OFDMA systems with decode‐and‐forward relaying
  publication-title: IEEE Trans Wirel Commun
– volume: 32
  start-page: 1637
  year: 2014
  end-page: 1652
  article-title: In‐band full‐duplex wireless: challenges and opportunities
  publication-title: IEEE J Sel Areas Commun (J‐SAC)
– volume: 61
  start-page: 3025
  year: 2012
  end-page: 3037
  article-title: Mimicking full‐duplex relaying using half‐duplex relays with buffers
  publication-title: IEEE Trans Veh Technol
– year: 2015
– volume: 25
  start-page: 515
  year: 2012
  end-page: 529
  article-title: Relay assisted OFDMA spectrum sharing systems
  publication-title: Trans Emerging Tel Tech
– volume: 58
  start-page: 2835
  year: 2009
  end-page: 2848
  article-title: Coordinated scheduling and power allocation in downlink multicell OFDMA networks
  publication-title: IEEE Trans Veh Technol
– ident: e_1_2_8_11_1
  doi: 10.1109/JSAC.2014.2330193
– ident: e_1_2_8_41_1
  doi: 10.1007/s10898-009-9456-5
– volume-title: Fundamentals of Wireless Communications
  year: 2004
  ident: e_1_2_8_39_1
– ident: e_1_2_8_13_1
  doi: 10.1109/TVT.2013.2264064
– ident: e_1_2_8_37_1
– ident: e_1_2_8_30_1
  doi: 10.1109/TVT.2009.2035131
– ident: e_1_2_8_19_1
  doi: 10.1109/TWC.2011.120911.110139
– ident: e_1_2_8_25_1
  doi: 10.1049/iet-com.2010.0319
– ident: e_1_2_8_14_1
– ident: e_1_2_8_24_1
  doi: 10.1002/ett.2590
– ident: e_1_2_8_46_1
  doi: 10.1109/TCOMM.2006.877962
– ident: e_1_2_8_47_1
  doi: 10.1109/TVT.2009.2013233
– ident: e_1_2_8_40_1
  doi: 10.1109/TSP.2011.2164401
– volume: 12
  start-page: 10
  year: 2012
  ident: e_1_2_8_2_1
  article-title: Interference management in femtocell
  publication-title: J Adv Comput Sci Technol Res (JACSTR)
– ident: e_1_2_8_28_1
– ident: e_1_2_8_36_1
– ident: e_1_2_8_5_1
  doi: 10.1016/j.phycom.2013.04.001
– ident: e_1_2_8_10_1
  doi: 10.1109/TVT.2015.2428997
– ident: e_1_2_8_16_1
  doi: 10.1109/TWC.2011.042211.101183
– ident: e_1_2_8_43_1
  doi: 10.1287/opre.26.4.681
– ident: e_1_2_8_3_1
  doi: 10.1109/EW.2009.5357758
– ident: e_1_2_8_7_1
– ident: e_1_2_8_26_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_8_42_1
  doi: 10.1287/opre.1100.0910
– ident: e_1_2_8_33_1
  doi: 10.1109/MCOM.2008.4623708
– ident: e_1_2_8_32_1
  doi: 10.1109/GLOCOMW.2014.7063568
– ident: e_1_2_8_23_1
  doi: 10.1109/TVT.2013.2293882
– ident: e_1_2_8_27_1
  doi: 10.1109/CHINACOM.2009.5339801
– ident: e_1_2_8_12_1
  doi: 10.1109/TVT.2012.2201189
– ident: e_1_2_8_35_1
– ident: e_1_2_8_9_1
  doi: 10.1109/TWC.2013.092413.130221
– ident: e_1_2_8_20_1
  doi: 10.1109/TSP.2011.2159598
– ident: e_1_2_8_21_1
  doi: 10.1017/CBO9780511841224
– ident: e_1_2_8_6_1
  doi: 10.1109/TWC.2011.100611.102046
– ident: e_1_2_8_15_1
– ident: e_1_2_8_38_1
  doi: 10.1109/TVT.2012.2205719
– ident: e_1_2_8_31_1
  doi: 10.1109/ICC.2005.1494679
– ident: e_1_2_8_4_1
  doi: 10.1109/CAMAD.2012.6335358
– ident: e_1_2_8_8_1
  doi: 10.1109/MMM.2009.932832
– ident: e_1_2_8_44_1
  doi: 10.1007/s11081-007-9001-7
– ident: e_1_2_8_18_1
  doi: 10.1109/TWC.2007.05960
– ident: e_1_2_8_29_1
  doi: 10.1109/TWC.2013.111313.130645
– ident: e_1_2_8_45_1
  doi: 10.1109/TWC.2008.060882
– ident: e_1_2_8_22_1
  doi: 10.1109/TW.2013.081413.121866
– ident: e_1_2_8_17_1
  doi: 10.1109/JSAC.2006.879350
– ident: e_1_2_8_34_1
SSID ssj0000752548
Score 2.0362008
Snippet In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then,...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Resource allocation for full‐duplex–based heterogeneous cellular networks considering back‐haul capacity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3139
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5NIeSp80faFCaQ-Lt7bXluxjaFNC6YZAHMjN6GUauvWGxgslp_yEQn9H_1R-SWckS-ulG0h7Md7ZQZiZD81oNA9CXuNIbZYxFcWZkFGmeBwJnZSRZgKsJ5N5o_FGd3bA9o-zTyf5yWj0e5C1tOzkRF1srCv5H60CDfSKVbL_oNmwKBDgHfQLT9AwPG-kYx97H-PtuVqlDWJMPWQx6OXZ3PzwP6dotjT4hyDPBSxsMAUWo_c2HbV1SeHnmIxu53hiIEEK2DL9al_Ecj5WYGHVabd2I1ytBo_bGwgsPLYDkDqctDMsQzkfdz6eP8hgnCFU7U41CSC8-GYph4EyW3wVrjT-INAO4WgujGmES9I_mgwDGQkPSa_9fpcmGAorXXXnxGyg9Rt2WgyAyQemOxi2v-yC6zNrum4yTVzzpPXW24Env47Lmvy9qsJ_bpHtlHPMCtje_TD7fBSCeuB_wYHbTkH0H-4bHsfpO7_wmgs0PBJZn6a6R-72hxG665B1n4xM-4DcGbSofEhajzG6whgFjFHE2NXlT4euq8tfFld0DVfU44p6XNEBrijiClZARFGPqEfk-ONe9X4_6md0RCpleRklJViAzLBYFwxcUZWZHN64NqosEqOxCXYDhxAZy3LaFE3eqJhLBse6Qom4AeJjstUuWvOE0DJPY26w8FI0WcNkyTiTWulpiUIVfIe89WKrVd_AHueozGvXejutQcA1CniHvAqcZ65pywaeN1by1zLUvbKf3pTxGbm9gvVzstV9X5oX4LF28mWPkz_nJZuC
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+allocation+for+full%E2%80%90duplex%E2%80%93based+heterogeneous+cellular+networks+considering+back%E2%80%90haul+capacity&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Mardi%2C+A.&rft.au=Azmi%2C+P.&rft.au=Mokari%2C+N.&rft.au=Parsaeefard%2C+S.&rft.date=2017-07-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=28&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3139&rft.externalDBID=10.1002%252Fett.3139&rft.externalDocID=ETT3139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon