Resource allocation for full‐duplex–based heterogeneous cellular networks considering back‐haul capacity
In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 28; no. 7 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2017
|
Online Access | Get full text |
ISSN | 2161-3915 2161-3915 |
DOI | 10.1002/ett.3139 |
Cover
Loading…
Abstract | In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account the back‐haul and transmission power constraints. Moreover, the superiority of the proposed system is shown by comparing it with the half‐duplex femtorelay‐assisted counterpart. Since the proposed resource allocation optimization problem is nonconvex and intractable, we divide it into subcarrier and transmission power allocation subproblems and then use an iterative algorithm to solve each of them. Toward this end, in each iteration, subcarriers are allocated via a binary linear program, while the successive convex approximation method is adapted to transform the nonconvex transmission power allocation subproblem into a sequence of convex subproblems. To achieve this goal, we use 1 of the 3 proposed approaches, namely, dual, arithmetic‐geometric mean approximation, and difference of 2 concave functions. In addition, we investigate the performance, convergence, and computational complexity of these approaches. The simulation results reveal that the proposed approaches are close to the optimal solution while providing less computational complexity. Moreover, they illustrate that even by considering self‐interference in the full‐duplex mode, the sum rate will be increased approximately by 41% in comparison with the half‐duplex mode.
In this paper, we concentrate on the resource allocation of the full‐duplex femtorelays with limited back‐haul capacity links in an OFDMA‐based heterogeneous cellular network. The considered objective is to maximize the sum rate of all users and small cells, subject to transmission power limitation and also back‐haul capacity constraint. Because the corresponding optimization problems were nonconvex with high‐computational complexity, we used the SCA method with 3 approaches, namely, dual, DC, and AGMA. |
---|---|
AbstractList | In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account the back‐haul and transmission power constraints. Moreover, the superiority of the proposed system is shown by comparing it with the half‐duplex femtorelay‐assisted counterpart. Since the proposed resource allocation optimization problem is nonconvex and intractable, we divide it into subcarrier and transmission power allocation subproblems and then use an iterative algorithm to solve each of them. Toward this end, in each iteration, subcarriers are allocated via a binary linear program, while the successive convex approximation method is adapted to transform the nonconvex transmission power allocation subproblem into a sequence of convex subproblems. To achieve this goal, we use 1 of the 3 proposed approaches, namely, dual, arithmetic‐geometric mean approximation, and difference of 2 concave functions. In addition, we investigate the performance, convergence, and computational complexity of these approaches. The simulation results reveal that the proposed approaches are close to the optimal solution while providing less computational complexity. Moreover, they illustrate that even by considering self‐interference in the full‐duplex mode, the sum rate will be increased approximately by 41 % in comparison with the half‐duplex mode. In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then, we design schemes for the uplink radio resource allocation. The goal of the proposed schemes is to maximize the sum rate, taking into account the back‐haul and transmission power constraints. Moreover, the superiority of the proposed system is shown by comparing it with the half‐duplex femtorelay‐assisted counterpart. Since the proposed resource allocation optimization problem is nonconvex and intractable, we divide it into subcarrier and transmission power allocation subproblems and then use an iterative algorithm to solve each of them. Toward this end, in each iteration, subcarriers are allocated via a binary linear program, while the successive convex approximation method is adapted to transform the nonconvex transmission power allocation subproblem into a sequence of convex subproblems. To achieve this goal, we use 1 of the 3 proposed approaches, namely, dual, arithmetic‐geometric mean approximation, and difference of 2 concave functions. In addition, we investigate the performance, convergence, and computational complexity of these approaches. The simulation results reveal that the proposed approaches are close to the optimal solution while providing less computational complexity. Moreover, they illustrate that even by considering self‐interference in the full‐duplex mode, the sum rate will be increased approximately by 41% in comparison with the half‐duplex mode. In this paper, we concentrate on the resource allocation of the full‐duplex femtorelays with limited back‐haul capacity links in an OFDMA‐based heterogeneous cellular network. The considered objective is to maximize the sum rate of all users and small cells, subject to transmission power limitation and also back‐haul capacity constraint. Because the corresponding optimization problems were nonconvex with high‐computational complexity, we used the SCA method with 3 approaches, namely, dual, DC, and AGMA. |
Author | Mokari, N. Mardi, A. Azmi, P. Parsaeefard, S. |
Author_xml | – sequence: 1 givenname: A. surname: Mardi fullname: Mardi, A. organization: Tarbiat Modares University – sequence: 2 givenname: P. surname: Azmi fullname: Azmi, P. email: pazmi@modares.ac.ir organization: Tarbiat Modares University – sequence: 3 givenname: N. surname: Mokari fullname: Mokari, N. organization: Tarbiat Modares University – sequence: 4 givenname: S. surname: Parsaeefard fullname: Parsaeefard, S. organization: Iran Telecommunication Research Center |
BookMark | eNp1kM1KAzEUhYNUsNaCj5Clm6nJ_CZLKfUHCoLU9ZDJ3LRjY1KSGWp3fYSCb9gnMW1diOjd3MvhnMPlu0Q9Yw0gdE3JiBIS30LbjhKa8DPUj2lOo4TTrPfjvkBD799ImCKLs5T1kXkBbzsnAQutrRRtYw1W1mHVab3f7upupeFjv_2shIcaL6AFZ-dgwHYeS9C608JhA-3aumVQrPFNDa4xc1wJuQwNC9FpLMVKyKbdXKFzJbSH4fceoNf7yWz8GE2fH57Gd9NIxnnGI8pTxlLISc3yhBYyhSxcRQ2SMwo1yeNCEc4rUvFEMZUpSYoqZyxmUhAVxAG6OfVKZ713oMqVa96F25SUlAdUZUBVHlAF6-iXNTx65NA60ei_AtEpsG40bP4tLiez2dH_BZ1agao |
CitedBy_id | crossref_primary_10_1002_ett_4001 crossref_primary_10_1109_TVT_2021_3052716 |
Cites_doi | 10.1109/JSAC.2014.2330193 10.1007/s10898-009-9456-5 10.1109/TVT.2013.2264064 10.1109/TVT.2009.2035131 10.1109/TWC.2011.120911.110139 10.1049/iet-com.2010.0319 10.1002/ett.2590 10.1109/TCOMM.2006.877962 10.1109/TVT.2009.2013233 10.1109/TSP.2011.2164401 10.1016/j.phycom.2013.04.001 10.1109/TVT.2015.2428997 10.1109/TWC.2011.042211.101183 10.1287/opre.26.4.681 10.1109/EW.2009.5357758 10.1017/CBO9780511804441 10.1287/opre.1100.0910 10.1109/MCOM.2008.4623708 10.1109/GLOCOMW.2014.7063568 10.1109/TVT.2013.2293882 10.1109/CHINACOM.2009.5339801 10.1109/TVT.2012.2201189 10.1109/TWC.2013.092413.130221 10.1109/TSP.2011.2159598 10.1017/CBO9780511841224 10.1109/TWC.2011.100611.102046 10.1109/TVT.2012.2205719 10.1109/ICC.2005.1494679 10.1109/CAMAD.2012.6335358 10.1109/MMM.2009.932832 10.1007/s11081-007-9001-7 10.1109/TWC.2007.05960 10.1109/TWC.2013.111313.130645 10.1109/TWC.2008.060882 10.1109/TW.2013.081413.121866 10.1109/JSAC.2006.879350 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.3139 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_3139 ETT3139 |
Genre | article |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR 1OB AAMMB AAYXX ADMLS AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION |
ID | FETCH-LOGICAL-c2659-194884e60d86317c4e5d867dec981ed0627f099b0b93f8f5fc07b68828ca0fb93 |
ISSN | 2161-3915 |
IngestDate | Thu Apr 24 23:04:34 EDT 2025 Tue Aug 05 12:09:59 EDT 2025 Wed Jan 22 16:31:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2659-194884e60d86317c4e5d867dec981ed0627f099b0b93f8f5fc07b68828ca0fb93 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1002_ett_3139 crossref_citationtrail_10_1002_ett_3139 wiley_primary_10_1002_ett_3139_ETT3139 |
PublicationCentury | 2000 |
PublicationDate | July 2017 2017-07-00 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
PublicationDecade | 2010 |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2017 |
References | 2012; 61 2010; 59 2012 2011 2010 2006; 54 2013; 62 2009 2008; 7 2011; 10 2005 2004 2011; 59 2012; 12 2012; 11 2011; 5 2013; 9 February 2013 2009; 58 2009; 10 2010; 47 2006; 24 2013; 12 2015; 64 2016; 65 2007; 8 2007; 6 2014; 13 2008; 46 2015 1978; 26 2014 2012; 25 2014; 32 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 Tse D (e_1_2_8_39_1) 2004 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Alkandari A (e_1_2_8_2_1) 2012; 12 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – year: 2011 – year: 2009 – volume: 61 start-page: 3731 year: 2012 end-page: 3745 article-title: Robust worst‐case interference control in underlay cognitive radio networks publication-title: IEEE Trans Veh Technol – volume: 26 start-page: 681 year: 1978 end-page: 683 article-title: A general inner approximation algorithm for nonconvex mathematical programs publication-title: Oper Res – volume: 65 start-page: 2509 year: 2016 end-page: 2521 article-title: Limited‐feedback resource allocation in heterogeneous cellular networks publication-title: IEEE Trans Veh Technol – volume: 12 start-page: 5813 year: 2013 end-page: 5825 article-title: Backhaul‐aware interference management in the uplink of wireless small cell networks publication-title: IEEE Trans Wirel Commun – volume: 13 start-page: 342 year: 2014 end-page: 355 article-title: Joint subchannel assignment and power allocation for OFDMA femtocell networks publication-title: IEEE Wirel Commun Lett – year: 2005 – volume: 12 start-page: 10 year: 2012 end-page: 21 article-title: Interference management in femtocell publication-title: J Adv Comput Sci Technol Res (JACSTR) – volume: 62 start-page: 4421 year: 2013 end-page: 4429 article-title: Self‐interference cancellation using phase rotation in full‐duplex wireless publication-title: IEEE Trans Veh Technol – volume: 10 start-page: 54 year: 2009 end-page: 66 article-title: The next challenge for cellular networks: backhaul publication-title: IEEE Microwave Mag – volume: 11 start-page: 510 year: 2012 end-page: 515 article-title: Fast global optimal power allocation in wireless networks by local D.C. programming publication-title: IEEE Trans Wirel Commun – volume: 64 start-page: 3056 year: 2015 end-page: 3074 article-title: Uplink radio resource allocation in AF and DF relay‐assisted networks with limited rate feedback publication-title: IEEE Trans Veh Technol – volume: 10 start-page: 4204 year: 2011 end-page: 4213 article-title: Femtocell as a relay: an outage analysis publication-title: IEEE Trans Wirel Commun – volume: 5 start-page: 1083 year: 2011 end-page: 1089 article-title: Radio resource allocation in OFDM‐based cooperative relaying networks for a mixture of elastic and streaming traffic publication-title: IET Commun – volume: 59 start-page: 617 year: 2011 end-page: 630 article-title: Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach publication-title: Oper Res – volume: 59 start-page: 4985 year: 2011 end-page: 4997 article-title: On cooperative relaying schemes for wireless physical layer security publication-title: IEEE Trans Signal Proc – year: 2014 – year: 2010 – volume: 59 start-page: 5473 year: 2011 end-page: 5484 article-title: Relay precoder optimization in MIMO‐relay networks with imperfect CSI publication-title: IEEE Trans Signal Proc – year: 2012 – volume: 6 start-page: 2640 year: 2007 end-page: 2651 article-title: Power control by geometric programming publication-title: IEEE Trans Wirel Commun – volume: 59 start-page: 1011 year: 2010 end-page: 1017 article-title: Cross‐layer resource allocation in OFDMA systems for heterogeneous traffic with imperfect CSI publication-title: IEEE Trans Veh Technol – volume: 46 start-page: 59 year: 2008 end-page: 67 article-title: Femtocell networks: a survey publication-title: IEEE Commun Mag – year: February 2013 – volume: 9 start-page: 1 year: 2013 end-page: 15 article-title: Enabling next generation small cells through femtorelays publication-title: Phys Commun – volume: 24 start-page: 1439 year: 2006 end-page: 1451 article-title: A tutorial on decomposition methods for network utility maximization publication-title: IEEE J Sel Areas Commun (J‐SAC) – volume: 47 start-page: 29 year: 2010 end-page: 51 article-title: A sequential parametric convex approximation method with applications to nonconvex truss topology design problems publication-title: J Global Optim – volume: 7 start-page: 2190 year: 2008 end-page: 22101 article-title: Resource allocation for delay differentiated traffic in multiuser OFDM systems publication-title: IEEE Trans Wirel Commun – volume: 12 start-page: 5110 year: 2013 end-page: 5123 article-title: Quantized ergodic radio resource allocation in OFDMA‐based cognitive DF relay‐assisted networks publication-title: IEEE Trans Wirel Commun – volume: 54 start-page: 1310 year: 2006 end-page: 1322 article-title: Dual methods for nonconvex spectrum optimization of multicarrier systems publication-title: IEEE Trans Commun – year: 2004 – volume: 8 start-page: 67 year: 2007 article-title: A Tutorial on Geometric Programming publication-title: Optim Eng – volume: 10 start-page: 2246 year: 2011 end-page: 2258 article-title: Resource allocation and scheduling in multi‐cell OFDMA systems with decode‐and‐forward relaying publication-title: IEEE Trans Wirel Commun – volume: 32 start-page: 1637 year: 2014 end-page: 1652 article-title: In‐band full‐duplex wireless: challenges and opportunities publication-title: IEEE J Sel Areas Commun (J‐SAC) – volume: 61 start-page: 3025 year: 2012 end-page: 3037 article-title: Mimicking full‐duplex relaying using half‐duplex relays with buffers publication-title: IEEE Trans Veh Technol – year: 2015 – volume: 25 start-page: 515 year: 2012 end-page: 529 article-title: Relay assisted OFDMA spectrum sharing systems publication-title: Trans Emerging Tel Tech – volume: 58 start-page: 2835 year: 2009 end-page: 2848 article-title: Coordinated scheduling and power allocation in downlink multicell OFDMA networks publication-title: IEEE Trans Veh Technol – ident: e_1_2_8_11_1 doi: 10.1109/JSAC.2014.2330193 – ident: e_1_2_8_41_1 doi: 10.1007/s10898-009-9456-5 – volume-title: Fundamentals of Wireless Communications year: 2004 ident: e_1_2_8_39_1 – ident: e_1_2_8_13_1 doi: 10.1109/TVT.2013.2264064 – ident: e_1_2_8_37_1 – ident: e_1_2_8_30_1 doi: 10.1109/TVT.2009.2035131 – ident: e_1_2_8_19_1 doi: 10.1109/TWC.2011.120911.110139 – ident: e_1_2_8_25_1 doi: 10.1049/iet-com.2010.0319 – ident: e_1_2_8_14_1 – ident: e_1_2_8_24_1 doi: 10.1002/ett.2590 – ident: e_1_2_8_46_1 doi: 10.1109/TCOMM.2006.877962 – ident: e_1_2_8_47_1 doi: 10.1109/TVT.2009.2013233 – ident: e_1_2_8_40_1 doi: 10.1109/TSP.2011.2164401 – volume: 12 start-page: 10 year: 2012 ident: e_1_2_8_2_1 article-title: Interference management in femtocell publication-title: J Adv Comput Sci Technol Res (JACSTR) – ident: e_1_2_8_28_1 – ident: e_1_2_8_36_1 – ident: e_1_2_8_5_1 doi: 10.1016/j.phycom.2013.04.001 – ident: e_1_2_8_10_1 doi: 10.1109/TVT.2015.2428997 – ident: e_1_2_8_16_1 doi: 10.1109/TWC.2011.042211.101183 – ident: e_1_2_8_43_1 doi: 10.1287/opre.26.4.681 – ident: e_1_2_8_3_1 doi: 10.1109/EW.2009.5357758 – ident: e_1_2_8_7_1 – ident: e_1_2_8_26_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_8_42_1 doi: 10.1287/opre.1100.0910 – ident: e_1_2_8_33_1 doi: 10.1109/MCOM.2008.4623708 – ident: e_1_2_8_32_1 doi: 10.1109/GLOCOMW.2014.7063568 – ident: e_1_2_8_23_1 doi: 10.1109/TVT.2013.2293882 – ident: e_1_2_8_27_1 doi: 10.1109/CHINACOM.2009.5339801 – ident: e_1_2_8_12_1 doi: 10.1109/TVT.2012.2201189 – ident: e_1_2_8_35_1 – ident: e_1_2_8_9_1 doi: 10.1109/TWC.2013.092413.130221 – ident: e_1_2_8_20_1 doi: 10.1109/TSP.2011.2159598 – ident: e_1_2_8_21_1 doi: 10.1017/CBO9780511841224 – ident: e_1_2_8_6_1 doi: 10.1109/TWC.2011.100611.102046 – ident: e_1_2_8_15_1 – ident: e_1_2_8_38_1 doi: 10.1109/TVT.2012.2205719 – ident: e_1_2_8_31_1 doi: 10.1109/ICC.2005.1494679 – ident: e_1_2_8_4_1 doi: 10.1109/CAMAD.2012.6335358 – ident: e_1_2_8_8_1 doi: 10.1109/MMM.2009.932832 – ident: e_1_2_8_44_1 doi: 10.1007/s11081-007-9001-7 – ident: e_1_2_8_18_1 doi: 10.1109/TWC.2007.05960 – ident: e_1_2_8_29_1 doi: 10.1109/TWC.2013.111313.130645 – ident: e_1_2_8_45_1 doi: 10.1109/TWC.2008.060882 – ident: e_1_2_8_22_1 doi: 10.1109/TW.2013.081413.121866 – ident: e_1_2_8_17_1 doi: 10.1109/JSAC.2006.879350 – ident: e_1_2_8_34_1 |
SSID | ssj0000752548 |
Score | 2.0362008 |
Snippet | In this paper, we propose a heterogeneous cellular network based on orthogonal frequency division multiple access consisting of full‐duplex femtorelays. Then,... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Resource allocation for full‐duplex–based heterogeneous cellular networks considering back‐haul capacity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3139 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5NIeSp80faFCaQ-Lt7bXluxjaFNC6YZAHMjN6GUauvWGxgslp_yEQn9H_1R-SWckS-ulG0h7Md7ZQZiZD81oNA9CXuNIbZYxFcWZkFGmeBwJnZSRZgKsJ5N5o_FGd3bA9o-zTyf5yWj0e5C1tOzkRF1srCv5H60CDfSKVbL_oNmwKBDgHfQLT9AwPG-kYx97H-PtuVqlDWJMPWQx6OXZ3PzwP6dotjT4hyDPBSxsMAUWo_c2HbV1SeHnmIxu53hiIEEK2DL9al_Ecj5WYGHVabd2I1ytBo_bGwgsPLYDkDqctDMsQzkfdz6eP8hgnCFU7U41CSC8-GYph4EyW3wVrjT-INAO4WgujGmES9I_mgwDGQkPSa_9fpcmGAorXXXnxGyg9Rt2WgyAyQemOxi2v-yC6zNrum4yTVzzpPXW24Env47Lmvy9qsJ_bpHtlHPMCtje_TD7fBSCeuB_wYHbTkH0H-4bHsfpO7_wmgs0PBJZn6a6R-72hxG665B1n4xM-4DcGbSofEhajzG6whgFjFHE2NXlT4euq8tfFld0DVfU44p6XNEBrijiClZARFGPqEfk-ONe9X4_6md0RCpleRklJViAzLBYFwxcUZWZHN64NqosEqOxCXYDhxAZy3LaFE3eqJhLBse6Qom4AeJjstUuWvOE0DJPY26w8FI0WcNkyTiTWulpiUIVfIe89WKrVd_AHueozGvXejutQcA1CniHvAqcZ65pywaeN1by1zLUvbKf3pTxGbm9gvVzstV9X5oX4LF28mWPkz_nJZuC |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+allocation+for+full%E2%80%90duplex%E2%80%93based+heterogeneous+cellular+networks+considering+back%E2%80%90haul+capacity&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Mardi%2C+A.&rft.au=Azmi%2C+P.&rft.au=Mokari%2C+N.&rft.au=Parsaeefard%2C+S.&rft.date=2017-07-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=28&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3139&rft.externalDBID=10.1002%252Fett.3139&rft.externalDocID=ETT3139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |