Edge‐based blockchain enabled anomaly detection for insider attack prevention in Internet of Things
Internet of Things (IoT) platforms are responsible for overall data processing in the IoT System. This ranges from analytics and big data processing to gathering all sensor data over time to analyze and produce long‐term trends. However, this comes with prohibitively high demand for resources such a...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 32; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.06.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Internet of Things (IoT) platforms are responsible for overall data processing in the IoT System. This ranges from analytics and big data processing to gathering all sensor data over time to analyze and produce long‐term trends. However, this comes with prohibitively high demand for resources such as memory, computing power and bandwidth, which the highly resource constrained IoT devices lack to send data to the platforms to achieve efficient operations. This results in poor availability and risk of data loss due to single point of failure should the cloud platforms suffer attacks. The integrity of the data can also be compromised by an insider, such as a malicious system administrator, without leaving traces of their actions. To address these issues, we propose in this work an edge‐based blockchain enabled anomaly detection technique to prevent insider attacks in IoT. The technique first employs the power of edge computing to reduce the latency and bandwidth requirements by taking processing closer to the IoT nodes, hence improving availability, and avoiding single point of failure. It then leverages some aspect of sequence‐based anomaly detection, while integrating distributed edge with blockchain that offers smart contracts to perform detection and correction of abnormalities in incoming sensor data. Evaluation of our technique using real IoT system datasets showed that the technique remarkably achieved the intended purpose, while ensuring integrity and availability of the data which is critical to IoT success.
Different cloud services offer platforms for IoT big data analytics and processing, albeit at prohibitively high requirements for resources like memory and bandwidth, to constrained IoT devices. Employing edge computing helps lower some of those requirements, improve data availability and implement anomaly detection, but shares similar security issues as the cloud. As we presented, blockchain technology offers the prospects of ensuring IoT data integrity and was integrated with the edge to safeguard the data, which proved effective against insider attacks targeted at the system. |
---|---|
AbstractList | Internet of Things (IoT) platforms are responsible for overall data processing in the IoT System. This ranges from analytics and big data processing to gathering all sensor data over time to analyze and produce long‐term trends. However, this comes with prohibitively high demand for resources such as memory, computing power and bandwidth, which the highly resource constrained IoT devices lack to send data to the platforms to achieve efficient operations. This results in poor availability and risk of data loss due to single point of failure should the cloud platforms suffer attacks. The integrity of the data can also be compromised by an insider, such as a malicious system administrator, without leaving traces of their actions. To address these issues, we propose in this work an edge‐based blockchain enabled anomaly detection technique to prevent insider attacks in IoT. The technique first employs the power of edge computing to reduce the latency and bandwidth requirements by taking processing closer to the IoT nodes, hence improving availability, and avoiding single point of failure. It then leverages some aspect of sequence‐based anomaly detection, while integrating distributed edge with blockchain that offers smart contracts to perform detection and correction of abnormalities in incoming sensor data. Evaluation of our technique using real IoT system datasets showed that the technique remarkably achieved the intended purpose, while ensuring integrity and availability of the data which is critical to IoT success. Internet of Things (IoT) platforms are responsible for overall data processing in the IoT System. This ranges from analytics and big data processing to gathering all sensor data over time to analyze and produce long‐term trends. However, this comes with prohibitively high demand for resources such as memory, computing power and bandwidth, which the highly resource constrained IoT devices lack to send data to the platforms to achieve efficient operations. This results in poor availability and risk of data loss due to single point of failure should the cloud platforms suffer attacks. The integrity of the data can also be compromised by an insider, such as a malicious system administrator, without leaving traces of their actions. To address these issues, we propose in this work an edge‐based blockchain enabled anomaly detection technique to prevent insider attacks in IoT. The technique first employs the power of edge computing to reduce the latency and bandwidth requirements by taking processing closer to the IoT nodes, hence improving availability, and avoiding single point of failure. It then leverages some aspect of sequence‐based anomaly detection, while integrating distributed edge with blockchain that offers smart contracts to perform detection and correction of abnormalities in incoming sensor data. Evaluation of our technique using real IoT system datasets showed that the technique remarkably achieved the intended purpose, while ensuring integrity and availability of the data which is critical to IoT success. Different cloud services offer platforms for IoT big data analytics and processing, albeit at prohibitively high requirements for resources like memory and bandwidth, to constrained IoT devices. Employing edge computing helps lower some of those requirements, improve data availability and implement anomaly detection, but shares similar security issues as the cloud. As we presented, blockchain technology offers the prospects of ensuring IoT data integrity and was integrated with the edge to safeguard the data, which proved effective against insider attacks targeted at the system. |
Author | Awan, Irfan‐Ullah Thakker, Dhavalkumar Tukur, Yusuf Muhammad |
Author_xml | – sequence: 1 givenname: Yusuf Muhammad orcidid: 0000-0002-4227-5411 surname: Tukur fullname: Tukur, Yusuf Muhammad email: mtyillo04@yahoo.com organization: Usmanu Danfodiyo University – sequence: 2 givenname: Dhavalkumar surname: Thakker fullname: Thakker, Dhavalkumar organization: University of Bradford – sequence: 3 givenname: Irfan‐Ullah surname: Awan fullname: Awan, Irfan‐Ullah organization: University of Bradford |
BookMark | eNp1kMtKA0EQRRuJYIwBP6GXbmbsx_Q8lhKiBgJuxvXQj5qkzaQndDdKdn6C3-iXOElciGhtqqh7blHcSzRyvQOErilJKSHsFmJMMyrKMzRmNKcJr6gY_Zgv0DSEFzJUIZjIyjGCuVnB5_uHkgEMVl2vN3otrcPgpOqGlXT9VnZ7bCCCjrZ3uO09ti5YAx7LGKXe4J2HV3BHdbAuXATvIOK-xfXaulW4Quet7AJMv_sEPd_P69ljsnx6WMzulolmuSgTAFCtUEVBRF7qkpeqyljRUikqSbOMk8wMGgfOK0lMVZWKZUpwkhvWalMoPkHp6a72fQge2kbbKA9_RS9t11DSHHJqhpyaQ06D4eaXYeftVvr9X2hyQt9sB_t_uWZe10f-C_YHevI |
CitedBy_id | crossref_primary_10_1002_ett_70110 crossref_primary_10_1016_j_ins_2023_03_044 crossref_primary_10_1142_S021812662550080X crossref_primary_10_3390_math12010107 crossref_primary_10_1007_s10796_022_10360_8 crossref_primary_10_1007_s11227_022_04370_1 crossref_primary_10_1016_j_seta_2022_102815 crossref_primary_10_1109_ACCESS_2021_3133319 crossref_primary_10_1109_ACCESS_2024_3404814 crossref_primary_10_1142_S2010324724400095 crossref_primary_10_3390_electronics10091005 crossref_primary_10_1109_JIOT_2023_3268705 crossref_primary_10_1109_ACCESS_2025_3551627 |
Cites_doi | 10.1109/SIoT.2014.10 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102 10.1145/3125503.3125628 10.1145/2808783.2808784 10.1002/dac.3248 10.1109/ACCESS.2016.2529723 10.1109/STAST.2013.14 10.1109/LCOMM.2011.022411.110120 10.1109/FiCloud.2019.00023 10.1109/JIOT.2017.2683200 10.1109/JIOT.2017.2694844 10.1109/ACCESS.2018.2799942 10.1007/978-3-319-39381-0_21 10.1155/2017/9324035 10.1007/978-3-319-20376-8_56 10.1109/TII.2018.2866917 10.1109/IAS.2009.315 10.1016/j.comnet.2019.02.002 10.1109/JIOT.2017.2709942 10.1007/s11042-017-5540-x 10.1109/TKDE.2010.235 10.1109/SIOT.2015.10 10.1109/SPW.2014.38 10.1016/j.sbspro.2014.03.716 10.1016/j.future.2017.03.001 10.1145/3211933.3211946 10.1109/JIOT.2018.2878154 10.1109/HICSS.2012.289 10.1145/1104004.1104010 10.1016/j.jnca.2017.04.002 10.1016/j.jnca.2015.11.016 10.1145/3282278.3282281 10.1109/CVCBT.2018.00011 10.1016/j.comnet.2016.03.011 10.1109/TII.2020.2974537 10.1057/ejis.2009.12 10.1109/JIOT.2018.2875542 10.1109/GCIoT47977.2019.9058395 10.1016/j.future.2013.01.010 10.1016/j.comnet.2014.02.001 10.1002/sam.11167 10.1109/SPW.2016.47 10.1109/TII.2017.2738841 10.1145/3120459.3120472 10.1007/s10796-014-9489-2 10.1109/CCST.2013.6922038 10.1109/TETC.2016.2606384 10.1016/j.istr.2010.11.002 10.1109/SPW.2018.00040 10.1016/j.comnet.2010.05.010 10.1109/WF-IoT.2014.6803221 10.1109/ICED.2016.7804660 10.1109/JIOT.2018.2874222 10.1109/iThings/CPSCom.2011.84 10.1109/JIOT.2020.2977196 10.1002/qre.392 10.1109/MCOMSTD.2018.1800020 10.1145/3126973.3126980 10.1109/SPW.2018.00036 10.1016/j.cose.2008.08.003 10.1109/ACCESS.2017.2757955 10.1145/3209914.3209917 10.1109/ACCESS.2018.2842685 10.1109/TSUSC.2019.2907110 10.1016/j.procs.2015.03.175 10.1109/COMST.2015.2444095 10.1007/978-3-642-15152-1_3 10.1016/j.clsr.2015.07.002 10.1016/j.comnet.2007.02.001 10.1109/ICECCO48375.2019.9043248 10.1109/JIOT.2014.2306328 10.1109/FIT.2012.53 10.1109/TSC.2019.2962677 10.4108/icst.bodynets.2012.250550 10.1109/WF-IoT.2018.8355182 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.4158 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_4158 ETT4158 |
Genre | article |
GrantInformation_xml | – fundername: Petroleum Technology Development Fund (PTDF) Nigeria funderid: PTDF/ED/PHD/TYM/858/16 |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2658-eeebf5b770568c838b9427f1a59a144304d7703e339a0d998b24b5306d2fcd7b3 |
ISSN | 2161-3915 |
IngestDate | Tue Jul 01 03:49:25 EDT 2025 Thu Apr 24 23:11:57 EDT 2025 Wed Jan 22 16:30:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2658-eeebf5b770568c838b9427f1a59a144304d7703e339a0d998b24b5306d2fcd7b3 |
Notes | Funding information Petroleum Technology Development Fund (PTDF) Nigeria, PTDF/ED/PHD/TYM/858/16 |
ORCID | 0000-0002-4227-5411 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1002_ett_4158 crossref_primary_10_1002_ett_4158 wiley_primary_10_1002_ett_4158_ETT4158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2017; 5 2013; 29 2010; 54 2010; 10 2015; 17 2010; 15 2011; 2 2017; 4 2012 2017; 2017 2011 2010 2015; 31 2017; 88 2019; 13 2019; 15 2016; 102 2020; 16 2011; 15 2007; 51 2013; 6 2014; 64 2009; 28 2014; 1 2016; 4 2014; 129 2015; 45 2020; 7 2018; 6 2017; 30 2018; 2 2010; 24 2017; 76 2019 2018 2017 2016; 139 2016 2015 2016; 60 2014 2001; 17 2013 2018; 77 2009; 18 2018; 14 2019; 153 2005; 36 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 Kriegel H‐P (e_1_2_10_51_1) 2010; 10 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 Hunker J (e_1_2_10_34_1) 2011; 2 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 Yakubu O (e_1_2_10_6_1) 2016; 139 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – year: 2011 – volume: 6 start-page: 53 issue: 1 year: 2013 end-page: 72 article-title: CASOS: a subspace method for anomaly detection in high dimensional astronomical databases publication-title: Stat Anal Data Min: ASA Data Sci J – volume: 1 start-page: 22 issue: 1 year: 2014 end-page: 32 article-title: Internet of Things for smart cities publication-title: IEEE Internet Things J – volume: 54 start-page: 2787 issue: 15 year: 2010 end-page: 2805 article-title: The Internet of Things: a survey publication-title: Comput Netw – volume: 5 start-page: 586 issue: 4 year: 2017 end-page: 602 article-title: A comprehensive study of security of Internet‐of‐Things publication-title: IEEE Trans Emerg Topics Comput – volume: 36 start-page: 68 issue: 4 year: 2005 end-page: 79 article-title: A longitudinal study of information system threat categories: the enduring problem of human error publication-title: ACM SIGMIS Database – volume: 6 start-page: 115 year: 2018 end-page: 124 article-title: Fog node based distributed blockchain cloud architecture for IoT publication-title: IEEE Access – volume: 6 start-page: 4719 issue: 3 year: 2018 end-page: 4732 article-title: EdgeChain: an edge‐IoT framework and prototype based on blockchain and smart contracts publication-title: IEEE Internet Things J – year: 2019 article-title: EDCSuS: sustainable edge data centers as a service in SDN‐enabled vehicular environment publication-title: IEEE Trans Sustain Comput – volume: 15 start-page: 469 issue: 1 year: 2019 end-page: 480 article-title: SAFE: SDN‐assisted framework for edge–cloud interplay in secure healthcare ecosystem publication-title: IEEE Trans Industr Inform – volume: 13 start-page: 613 issue: 4 year: 2019 end-page: 624 article-title: GUARDIAN: blockchain‐based secure demand response management in smart grid system publication-title: IEEE Trans Serv Comput – year: 2018 – volume: 88 start-page: 10 year: 2017 end-page: 28 article-title: Internet of Things security: a survey publication-title: J Netw Comput Appl – volume: 4 start-page: 766 year: 2016 end-page: 773 article-title: Internet of Things and big data analytics for smart and connected communities publication-title: IEEE Access – year: 2014 – volume: 2 start-page: 22 issue: 3 year: 2018 end-page: 28 article-title: Blockchain‐based decentralized cloud/fog solutions: challenges, opportunities, and standards publication-title: IEEE Commun Stand Mag – volume: 2017 start-page: 1 year: 2017 end-page: 25 article-title: Internet of Things: architectures, protocols, and applications publication-title: Int J Electr Comput Eng – volume: 31 start-page: 618 issue: 5 year: 2015 end-page: 627 article-title: Internet of Things: privacy issues revisited publication-title: Comput Law Secur Rev – volume: 30 issue: 11 year: 2017 article-title: A novel ensembled technique for anomaly detection publication-title: Int J Commun Syst – volume: 15 start-page: 112 issue: 3 year: 2010 end-page: 133 article-title: Assessing insider threats to information security using technical, behavioural and organisational measures publication-title: Inf Secur Tech Rep – volume: 17 start-page: 105 issue: 2 year: 2001 end-page: 112 article-title: An anomaly detection technique based on a chi‐square statistic for detecting intrusions into information systems publication-title: Qual Reliab Eng Int – volume: 10 start-page: 1 year: 2010 end-page: 76 article-title: Outlier detection techniques publication-title: Tutorial at KDD – volume: 51 start-page: 3448 issue: 12 year: 2007 end-page: 3470 article-title: An overview of anomaly detection techniques: existing solutions and latest technological trends publication-title: Comput Netw – volume: 4 start-page: 1174 issue: 5 year: 2017 end-page: 1184 article-title: Fog‐empowered anomaly detection in Internet of Things using hyperellipsoidal clustering publication-title: IEEE Internet Things J – volume: 7 start-page: 6143 issue: 7 year: 2020 end-page: 6149 article-title: Blockchain‐enabled distributed security framework for next‐generation IoT: an edge cloud and software‐defined network‐integrated approach publication-title: IEEE Internet Things J – year: 2019 – volume: 6 start-page: 4660 issue: 3 year: 2018 end-page: 4670 article-title: Blockchain for secure and efficient data sharing in vehicular edge computing and networks publication-title: IEEE Internet Things J – year: 2015 – volume: 129 start-page: 581 year: 2014 end-page: 591 article-title: Analysis of insiders attack mitigation strategies publication-title: Procedia‐Soc Behav Sci – volume: 18 start-page: 101 issue: 2 year: 2009 end-page: 105 article-title: Behavioral and policy issues in information systems security: the insider threat publication-title: Eur J Inf Syst – volume: 4 start-page: 1250 issue: 5 year: 2017 end-page: 1258 article-title: A survey on security and privacy issues in Internet‐of‐Things publication-title: IEEE Internet Things J – volume: 6 start-page: 24639 year: 2018 end-page: 24649 article-title: A blockchain connected gateway for BLE‐based devices in the Internet of Things publication-title: IEEE Access – volume: 28 start-page: 18 issue: 1‐2 year: 2009 end-page: 28 article-title: Anomaly‐based network intrusion detection: techniques, systems and challenges publication-title: Comp Secur – volume: 15 start-page: 461 issue: 4 year: 2011 end-page: 463 article-title: Future Internet of Things architecture: like mankind neural system or social organization framework? publication-title: IEEE Commun Lett – volume: 29 start-page: 1645 issue: 7 year: 2013 end-page: 1660 article-title: Internet of Things (IoT): a vision, architectural elements, and future directions publication-title: Futur Gener Comput Syst – volume: 4 start-page: 1125 issue: 5 year: 2017 end-page: 1142 article-title: A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications publication-title: IEEE Internet Things J – volume: 60 start-page: 19 year: 2016 end-page: 31 article-title: A survey of network anomaly detection techniques publication-title: J Netw Comput Appl – volume: 17 start-page: 261 issue: 2 year: 2015 end-page: 274 article-title: The Internet of Things—a survey of topics and trends publication-title: Inf Syst Front – volume: 2 start-page: 4 issue: 1 year: 2011 end-page: 27 article-title: Insiders and insider threats‐an overview of definitions and mitigation techniques publication-title: JoWUA – year: 2016 – volume: 153 start-page: 36 year: 2019 end-page: 48 article-title: SURVIVOR: a blockchain based edge‐as‐a‐service framework for secure energy trading in SDN‐enabled vehicle‐to‐grid environment publication-title: Comput Netw – volume: 17 start-page: 2347 issue: 4 year: 2015 end-page: 2376 article-title: Internet of Things: a survey on enabling technologies, protocols, and applications publication-title: IEEE Commun Surv Tutor – volume: 14 start-page: 778 issue: 2 year: 2018 end-page: 789 article-title: Optimal decision making for big data processing at edge‐cloud environment: an SDN perspective publication-title: IEEE Trans Industr Inform – volume: 16 start-page: 6564 issue: 10 year: 2020 end-page: 6574 article-title: Blockchain‐enabled secure energy trading with verifiable fairness in Industrial Internet of Things publication-title: IEEE Trans Industr Inform – year: 2010 – year: 2012 – volume: 139 start-page: 33 issue: 10 year: 2016 end-page: 39 article-title: A review of prospects and challenges of Internet of Things publication-title: Int J Comput Appl – volume: 45 start-page: 436 year: 2015 end-page: 445 article-title: Insider threat detection using log analysis and event correlation publication-title: Procedia Comput Sci – volume: 64 start-page: 273 issue: Supplement C year: 2014 end-page: 295 article-title: Lightweight collaborative key establishment scheme for the Internet of Things publication-title: Comput Netw – volume: 6 start-page: 32979 year: 2018 end-page: 33001 article-title: A review on the use of blockchain for the Internet of Things publication-title: IEEE Access – volume: 76 start-page: 540 issue: Supplement C year: 2017 end-page: 549 article-title: Privacy preserving Internet of Things: from privacy techniques to a blueprint architecture and efficient implementation publication-title: Futur Gener Comput Syst – volume: 6 start-page: 4671 issue: 3 year: 2018 end-page: 4679 article-title: Blockchain‐based Secure Time Protection Scheme in IoT publication-title: IEEE Internet Things J – year: 2017 – volume: 77 start-page: 21947 issue: 17 year: 2018 end-page: 21965 article-title: Malicious insiders attack in IoT based multi‐cloud e‐healthcare environment: a systematic literature review publication-title: Multimed Tools Appl – volume: 102 start-page: 83 issue: Supplement C year: 2016 end-page: 95 article-title: On perspective of security and privacy‐preserving solutions in the Internet of Things publication-title: Comput Netw – volume: 24 start-page: 823 issue: 5 year: 2010 end-page: 839 article-title: Anomaly detection for discrete sequences: a survey publication-title: IEEE Trans Knowl Data Eng – year: 2013 – ident: e_1_2_10_22_1 doi: 10.1109/SIoT.2014.10 – ident: e_1_2_10_60_1 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102 – ident: e_1_2_10_69_1 doi: 10.1145/3125503.3125628 – ident: e_1_2_10_32_1 doi: 10.1145/2808783.2808784 – ident: e_1_2_10_45_1 doi: 10.1002/dac.3248 – ident: e_1_2_10_21_1 doi: 10.1109/ACCESS.2016.2529723 – ident: e_1_2_10_31_1 doi: 10.1109/STAST.2013.14 – ident: e_1_2_10_3_1 doi: 10.1109/LCOMM.2011.022411.110120 – ident: e_1_2_10_25_1 doi: 10.1109/FiCloud.2019.00023 – ident: e_1_2_10_18_1 doi: 10.1109/JIOT.2017.2683200 – ident: e_1_2_10_16_1 doi: 10.1109/JIOT.2017.2694844 – ident: e_1_2_10_66_1 doi: 10.1109/ACCESS.2018.2799942 – ident: e_1_2_10_40_1 doi: 10.1007/978-3-319-39381-0_21 – ident: e_1_2_10_11_1 doi: 10.1155/2017/9324035 – ident: e_1_2_10_36_1 doi: 10.1007/978-3-319-20376-8_56 – ident: e_1_2_10_54_1 doi: 10.1109/TII.2018.2866917 – ident: e_1_2_10_76_1 doi: 10.1109/IAS.2009.315 – ident: e_1_2_10_55_1 doi: 10.1016/j.comnet.2019.02.002 – ident: e_1_2_10_81_1 doi: 10.1109/JIOT.2017.2709942 – ident: e_1_2_10_41_1 doi: 10.1007/s11042-017-5540-x – ident: e_1_2_10_50_1 doi: 10.1109/TKDE.2010.235 – ident: e_1_2_10_42_1 doi: 10.1109/SIOT.2015.10 – ident: e_1_2_10_35_1 doi: 10.1109/SPW.2014.38 – ident: e_1_2_10_77_1 doi: 10.1016/j.sbspro.2014.03.716 – ident: e_1_2_10_14_1 doi: 10.1016/j.future.2017.03.001 – ident: e_1_2_10_67_1 doi: 10.1145/3211933.3211946 – ident: e_1_2_10_70_1 doi: 10.1109/JIOT.2018.2878154 – ident: e_1_2_10_37_1 doi: 10.1109/HICSS.2012.289 – ident: e_1_2_10_74_1 doi: 10.1145/1104004.1104010 – ident: e_1_2_10_24_1 doi: 10.1016/j.jnca.2017.04.002 – ident: e_1_2_10_46_1 doi: 10.1016/j.jnca.2015.11.016 – ident: e_1_2_10_59_1 doi: 10.1145/3282278.3282281 – ident: e_1_2_10_80_1 doi: 10.1109/CVCBT.2018.00011 – ident: e_1_2_10_13_1 doi: 10.1016/j.comnet.2016.03.011 – ident: e_1_2_10_57_1 doi: 10.1109/TII.2020.2974537 – ident: e_1_2_10_26_1 doi: 10.1057/ejis.2009.12 – ident: e_1_2_10_64_1 doi: 10.1109/JIOT.2018.2875542 – ident: e_1_2_10_2_1 – ident: e_1_2_10_78_1 doi: 10.1109/GCIoT47977.2019.9058395 – ident: e_1_2_10_5_1 doi: 10.1016/j.future.2013.01.010 – ident: e_1_2_10_39_1 doi: 10.1016/j.comnet.2014.02.001 – ident: e_1_2_10_44_1 doi: 10.1002/sam.11167 – ident: e_1_2_10_43_1 doi: 10.1109/SPW.2016.47 – ident: e_1_2_10_52_1 doi: 10.1109/TII.2017.2738841 – ident: e_1_2_10_72_1 doi: 10.1145/3120459.3120472 – ident: e_1_2_10_9_1 doi: 10.1007/s10796-014-9489-2 – ident: e_1_2_10_28_1 doi: 10.1109/CCST.2013.6922038 – ident: e_1_2_10_17_1 doi: 10.1109/TETC.2016.2606384 – ident: e_1_2_10_29_1 doi: 10.1016/j.istr.2010.11.002 – ident: e_1_2_10_75_1 doi: 10.1109/SPW.2018.00040 – ident: e_1_2_10_4_1 doi: 10.1016/j.comnet.2010.05.010 – ident: e_1_2_10_19_1 doi: 10.1109/WF-IoT.2014.6803221 – ident: e_1_2_10_38_1 – ident: e_1_2_10_23_1 doi: 10.1109/ICED.2016.7804660 – ident: e_1_2_10_73_1 doi: 10.1109/JIOT.2018.2874222 – ident: e_1_2_10_7_1 doi: 10.1109/iThings/CPSCom.2011.84 – volume: 10 start-page: 1 year: 2010 ident: e_1_2_10_51_1 article-title: Outlier detection techniques publication-title: Tutorial at KDD – ident: e_1_2_10_58_1 doi: 10.1109/JIOT.2020.2977196 – ident: e_1_2_10_47_1 doi: 10.1002/qre.392 – ident: e_1_2_10_71_1 doi: 10.1109/MCOMSTD.2018.1800020 – ident: e_1_2_10_65_1 doi: 10.1145/3126973.3126980 – ident: e_1_2_10_27_1 doi: 10.1109/SPW.2018.00036 – ident: e_1_2_10_48_1 doi: 10.1016/j.cose.2008.08.003 – ident: e_1_2_10_62_1 doi: 10.1109/ACCESS.2017.2757955 – ident: e_1_2_10_63_1 doi: 10.1145/3209914.3209917 – ident: e_1_2_10_61_1 doi: 10.1109/ACCESS.2018.2842685 – ident: e_1_2_10_53_1 doi: 10.1109/TSUSC.2019.2907110 – ident: e_1_2_10_33_1 doi: 10.1016/j.procs.2015.03.175 – ident: e_1_2_10_20_1 doi: 10.1109/COMST.2015.2444095 – ident: e_1_2_10_30_1 doi: 10.1007/978-3-642-15152-1_3 – ident: e_1_2_10_12_1 doi: 10.1016/j.clsr.2015.07.002 – ident: e_1_2_10_49_1 doi: 10.1016/j.comnet.2007.02.001 – ident: e_1_2_10_79_1 doi: 10.1109/ICECCO48375.2019.9043248 – ident: e_1_2_10_10_1 doi: 10.1109/JIOT.2014.2306328 – ident: e_1_2_10_8_1 doi: 10.1109/FIT.2012.53 – ident: e_1_2_10_56_1 doi: 10.1109/TSC.2019.2962677 – volume: 2 start-page: 4 issue: 1 year: 2011 ident: e_1_2_10_34_1 article-title: Insiders and insider threats‐an overview of definitions and mitigation techniques publication-title: JoWUA – ident: e_1_2_10_15_1 doi: 10.4108/icst.bodynets.2012.250550 – volume: 139 start-page: 33 issue: 10 year: 2016 ident: e_1_2_10_6_1 article-title: A review of prospects and challenges of Internet of Things publication-title: Int J Comput Appl – ident: e_1_2_10_68_1 doi: 10.1109/WF-IoT.2018.8355182 |
SSID | ssj0000752548 |
Score | 2.3158302 |
Snippet | Internet of Things (IoT) platforms are responsible for overall data processing in the IoT System. This ranges from analytics and big data processing to... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Edge‐based blockchain enabled anomaly detection for insider attack prevention in Internet of Things |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4158 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLxkJwaFKaRxnkxxXbNGCKBdSaTlFfqoo2xbtOkJw4ifwt_gb_BLGdh5G25UWLpEVj6LW8ynzyDczCD1PCc0ZLeIok9QGKDMeca1SWOVKZjFjrLD1zosPB8dL-u4kPRmNfgWspcbwqfi-s67kf7QK90Cvtkr2HzTbPxRuwBr0C1fQMFyvpOO5HYzesRWsPZKWiC5qsWK2E4gri7KtWLdrdvptIpVRoqcWfvaDOifMGCZq2ysgYD76PKFyLAE_2TN0Ysthxrj72GBrjN2sI2OH6oQVJ-cT06XuA7Ji2dSNA8qn5rzRk0WzYus1kwNHhdUt1-NoxeC8aksD75H51ads355pWHR_fgloXoUZDBIwrbx1uUgRcjkJExR3kdimyQpf-TlVO-61L_MhWdq_mb1Z743eBZvhe9AqY6bgzOSDXey4AL1MepmUcwfmZWl3rqE9AhELGaO9w6PF-499wg98MwjG3YTE7od3zZBn5FX34L_cozBccv5OeQvdbAMVfOhRdxuN1OYOuhG0r7yLlMXf7x8_HfLwgDzcIg-3yMM98jAgD7fIwx55eEAe7OAOeXirsUfePbR8My9fH0ft2I5IEPBnI6UU1ynPMvCtc5EnOS8oyXTM0oJB-J7MqIS9RCVJwWYSwn1OKE8hdJVEC5nx5D4ab7Yb9QDhXIsUJKmkXFPKRK5mMpYiy9gB15zqffSyO61KtD3t7WiV08p34yYVnGtlz3UfPeslv_g-LjtkXrgDv1SganX88KqCj9D1AfCP0dicNeoJOLGGP23h8QfmRKHo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge%E2%80%90based+blockchain+enabled+anomaly+detection+for+insider+attack+prevention+in+Internet+of+Things&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Tukur%2C+Yusuf+Muhammad&rft.au=Thakker%2C+Dhavalkumar&rft.au=Awan%2C+Irfan%E2%80%90Ullah&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=32&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.4158&rft.externalDBID=10.1002%252Fett.4158&rft.externalDocID=ETT4158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |