Efficient solid waste inspection through drone‐based aerial imagery and TinyML vision model

Solid waste management is a significant challenge in the development of smart cities. Existing approaches for solid waste monitoring are often time‐consuming and resource intensive. Therefore, this study proposes a novel approach to solid waste monitoring that utilizes drone technology. The proposed...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 35; no. 4
Main Authors Malche, Timothy, Maheshwary, Priti, Tiwari, Pradeep Kumar, Alkhayyat, Ahmed Hussein, Bansal, Abhinav, Kumar, Raghvendra
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2024
Online AccessGet full text
ISSN2161-3915
2161-3915
DOI10.1002/ett.4878

Cover

Loading…
Abstract Solid waste management is a significant challenge in the development of smart cities. Existing approaches for solid waste monitoring are often time‐consuming and resource intensive. Therefore, this study proposes a novel approach to solid waste monitoring that utilizes drone technology. The proposed method enables the efficient identification and classification of waste objects in the garbage discovered by the drone. This system can inspect every part of a smart city from a remote location, allowing for the timely and effective management of solid waste. Thus, the proposed system can be easily integrated in the existing waste management system for smart city. The drone‐based solid waste monitoring system comprises a drone equipped with a computer vision model for resource‐constrained devices and a software application that operates the drone and analyzes the captured image or video. The system utilizes the Internet of Things (IoT) to upload the collected data to the cloud, making it easily accessible whenever necessary. The proposed drone‐based solid waste monitoring system is a promising solution for the efficient and cost‐effective management of solid waste in smart cities. The system's innovative use of drone technology and IoT provides a scalable and adaptable solution that can be customized to meet the needs of any city. This research presents a drone‐based solid waste monitoring system designed to enhance smart city waste management. Using IoT and computer vision models, the system efficiently detects and classifies waste objects in real time, allowing for timely waste management. Quantized TinyML models enable the system to run on resource‐constrained devices, achieving high accuracy. The findings demonstrate its potential to revolutionize waste management in smart cities, offering a cost‐effective, scalable, and environmentally friendly solution.
AbstractList Solid waste management is a significant challenge in the development of smart cities. Existing approaches for solid waste monitoring are often time‐consuming and resource intensive. Therefore, this study proposes a novel approach to solid waste monitoring that utilizes drone technology. The proposed method enables the efficient identification and classification of waste objects in the garbage discovered by the drone. This system can inspect every part of a smart city from a remote location, allowing for the timely and effective management of solid waste. Thus, the proposed system can be easily integrated in the existing waste management system for smart city. The drone‐based solid waste monitoring system comprises a drone equipped with a computer vision model for resource‐constrained devices and a software application that operates the drone and analyzes the captured image or video. The system utilizes the Internet of Things (IoT) to upload the collected data to the cloud, making it easily accessible whenever necessary. The proposed drone‐based solid waste monitoring system is a promising solution for the efficient and cost‐effective management of solid waste in smart cities. The system's innovative use of drone technology and IoT provides a scalable and adaptable solution that can be customized to meet the needs of any city. This research presents a drone‐based solid waste monitoring system designed to enhance smart city waste management. Using IoT and computer vision models, the system efficiently detects and classifies waste objects in real time, allowing for timely waste management. Quantized TinyML models enable the system to run on resource‐constrained devices, achieving high accuracy. The findings demonstrate its potential to revolutionize waste management in smart cities, offering a cost‐effective, scalable, and environmentally friendly solution.
Solid waste management is a significant challenge in the development of smart cities. Existing approaches for solid waste monitoring are often time‐consuming and resource intensive. Therefore, this study proposes a novel approach to solid waste monitoring that utilizes drone technology. The proposed method enables the efficient identification and classification of waste objects in the garbage discovered by the drone. This system can inspect every part of a smart city from a remote location, allowing for the timely and effective management of solid waste. Thus, the proposed system can be easily integrated in the existing waste management system for smart city. The drone‐based solid waste monitoring system comprises a drone equipped with a computer vision model for resource‐constrained devices and a software application that operates the drone and analyzes the captured image or video. The system utilizes the Internet of Things (IoT) to upload the collected data to the cloud, making it easily accessible whenever necessary. The proposed drone‐based solid waste monitoring system is a promising solution for the efficient and cost‐effective management of solid waste in smart cities. The system's innovative use of drone technology and IoT provides a scalable and adaptable solution that can be customized to meet the needs of any city.
Author Alkhayyat, Ahmed Hussein
Tiwari, Pradeep Kumar
Kumar, Raghvendra
Malche, Timothy
Bansal, Abhinav
Maheshwary, Priti
Author_xml – sequence: 1
  givenname: Timothy
  surname: Malche
  fullname: Malche, Timothy
  organization: Manipal University Jaipur
– sequence: 2
  givenname: Priti
  surname: Maheshwary
  fullname: Maheshwary, Priti
  organization: Rabindranath Tagore University
– sequence: 3
  givenname: Pradeep Kumar
  surname: Tiwari
  fullname: Tiwari, Pradeep Kumar
  email: pradeeptiwari.mca@gmail.com
  organization: Dr. Vishwanath Karad MIT World Peace University
– sequence: 4
  givenname: Ahmed Hussein
  surname: Alkhayyat
  fullname: Alkhayyat, Ahmed Hussein
  organization: The Islamic University
– sequence: 5
  givenname: Abhinav
  surname: Bansal
  fullname: Bansal, Abhinav
  organization: Raj Kumar Goel Institute of Technology
– sequence: 6
  givenname: Raghvendra
  surname: Kumar
  fullname: Kumar, Raghvendra
  organization: GIET University
BookMark eNp1kLFOwzAQhi1UJEqpxCN4ZEmxHbt2R1QVilTEEkYUGfvcGqVJZRuqbDwCz8iTkFAGhOCWu-H77_77T9GgbmpA6JySCSWEXUJKE66kOkJDRqc0y2dUDH7MJ2gc4zPpSgomuBqix4Vz3nioE45N5S3e65gA-zruwCTf1DhtQvOy3mAbulsfb-9POoLFGoLXFfZbvYbQYl1bXPi6vVvhVx972baxUJ2hY6erCOPvPkIP14tivsxW9ze386tVZthUqAw4cCkt1XzGNeROOeqMciSfWjrThOVUUSOsIkIaJo3lXBirZMdLyYSV-QhNDntNaGIM4Erjk-7tp6B9VVJS9vmUXT5ln08nuPgl2IXul9D-hWYHdO8raP_lykVRfPGfpix4NQ
CitedBy_id crossref_primary_10_53697_ijgaes_v2i1_3343
crossref_primary_10_1109_JSTARS_2024_3488056
crossref_primary_10_3390_app14052084
crossref_primary_10_1109_ACCESS_2024_3433381
crossref_primary_10_53697_ijgaes_v1i2_3343
crossref_primary_10_3390_fi16020042
Cites_doi 10.3390/sym14050960
10.1155/2021/1055604
10.1007/978-981-16-8664-1_27
10.1016/j.wasman.2023.02.014
10.1002/essoar.10507932.1
10.3390/rs12091515
10.3390/rs13050965
10.1109/ZINC52049.2021.9499291
10.1016/j.jksuci.2021.11.019
10.1109/ACCESS.2019.2932731
10.1016/j.procs.2021.05.037
10.4218/etrij.2018-0520
10.1109/JIOT.2014.2337336
10.1007/978-981-19-8032-9_28
10.1088/2515-7620/ac473b
10.1109/ITNEC52019.2021.9586894
10.23919/ICIF.2018.8455565
10.1145/3528227.3528569
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.4878
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_4878
ETT4878
Genre researchArticle
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2658-e4e477d1a494ae3f8f1fc8f036d19a023181c5d8057c27cd445cd871a47725d73
ISSN 2161-3915
IngestDate Thu Apr 24 23:13:26 EDT 2025
Tue Jul 01 03:49:30 EDT 2025
Wed Jan 22 17:19:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2658-e4e477d1a494ae3f8f1fc8f036d19a023181c5d8057c27cd445cd871a47725d73
PageCount 18
ParticipantIDs crossref_citationtrail_10_1002_ett_4878
crossref_primary_10_1002_ett_4878
wiley_primary_10_1002_ett_4878_ETT4878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2024
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2014; 1
2021; 13
2019; 7
2015; 28
2021; 5
2023
2022
2022; 4
2019; 41
2021
2023; 162
2019; 46
2022; 34
2022; 14
2018
2017
2020; 12
2021; 185
2015
2021; 2021
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
Hosang J (e_1_2_7_24_1) 2017
e_1_2_7_14_1
Rothe R (e_1_2_7_25_1) 2015
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Wu Y (e_1_2_7_13_1) 2021; 2021
e_1_2_7_30_1
Petrolo R (e_1_2_7_3_1) 2015; 28
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Hou ZQ (e_1_2_7_26_1) 2019; 46
References_xml – start-page: 33
  year: 2022
  end-page: 40
– volume: 14
  issue: 5
  year: 2022
  article-title: A deep learning‐based intelligent garbage detection system using an unmanned aerial vehicle
  publication-title: Symmetry
– start-page: 389
  year: 2023
  end-page: 411
– volume: 185
  start-page: 361
  year: 2021
  end-page: 369
  article-title: Deep learning and remote sensing: detection of dumping waste using UAV
  publication-title: Procedia Comput Sci
– volume: 34
  start-page: 1595
  issue: 4
  year: 2022
  end-page: 1623
  article-title: A review on TinyML: state‐of‐the‐art and prospects
  publication-title: J King Saud Univ‐Comput Inf Sci
– volume: 162
  start-page: 123
  year: 2023
  end-page: 130
  article-title: Garbage detection and classification using a new deep learning‐based machine vision system as a tool for sustainable waste recycling
  publication-title: Waste Manag
– volume: 41
  start-page: 494
  issue: 4
  year: 2019
  end-page: 505
  article-title: Vision‐based garbage dumping action detection for real‐world surveillance platform
  publication-title: ETRI J
– volume: 28
  start-page: 1
  issue: 1
  year: 2015
  end-page: 12
  article-title: Towards a smart city based on cloud of things, a survey on the smart city vision and paradigms
  publication-title: Trans Emerg Telecommun Technol
– start-page: 309
  year: 2022
  end-page: 319
– volume: 7
  start-page: 106838
  year: 2019
  end-page: 106846
  article-title: An improved faster R‐CNN for small object detection
  publication-title: IEEE Access
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 14
  article-title: A garbage detection and classification method based on visual scene understanding in the home environment
  publication-title: Complexity
– volume: 46
  issue: 12
  year: 2019
  article-title: Improved algorithm of faster R‐CNN based on double threshold‐non‐maximum suppression
  publication-title: Opto‐Electron Eng
– start-page: 439
  year: 2018
  end-page: 444
– start-page: 290
  year: 2015
  end-page: 306
– volume: 13
  issue: 5
  year: 2021
  article-title: Autonomous, onboard vision‐based trash and litter detection in low altitude aerial images collected by an unmanned aerial vehicle
  publication-title: Remote Sens (Basel)
– volume: 5
  start-page: 469
  year: 2021
  end-page: 473
– volume: 1
  start-page: 349
  issue: 4
  year: 2014
  end-page: 359
  article-title: A vision of IoT: applications, challenges, and opportunities with China perspective
  publication-title: IEEE Internet Things J
– volume: 4
  issue: 1
  year: 2022
  article-title: Unmanned aerial vehicles and deep learning for assessment of anthropogenic marine debris on beaches on an Island in a semi‐enclosed sea in Japan
  publication-title: Environ Res Commun
– start-page: 4507
  year: 2017
  end-page: 4515
– volume: 12
  issue: 9
  year: 2020
  article-title: A deep learning model for automatic plastic mapping using unmanned aerial vehicle (UAV) data
  publication-title: Remote Sens (Basel)
– start-page: 11
  year: 2021
  end-page: 15
– ident: e_1_2_7_4_1
  doi: 10.3390/sym14050960
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_7_13_1
  article-title: A garbage detection and classification method based on visual scene understanding in the home environment
  publication-title: Complexity
  doi: 10.1155/2021/1055604
– ident: e_1_2_7_5_1
  doi: 10.1007/978-981-16-8664-1_27
– ident: e_1_2_7_20_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.wasman.2023.02.014
– ident: e_1_2_7_9_1
  doi: 10.1002/essoar.10507932.1
– ident: e_1_2_7_8_1
  doi: 10.3390/rs12091515
– ident: e_1_2_7_22_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_6_1
  doi: 10.3390/rs13050965
– ident: e_1_2_7_7_1
  doi: 10.1109/ZINC52049.2021.9499291
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jksuci.2021.11.019
– ident: e_1_2_7_21_1
  doi: 10.1109/ACCESS.2019.2932731
– start-page: 4507
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: e_1_2_7_24_1
– volume: 46
  issue: 12
  year: 2019
  ident: e_1_2_7_26_1
  article-title: Improved algorithm of faster R‐CNN based on double threshold‐non‐maximum suppression
  publication-title: Opto‐Electron Eng
– start-page: 290
  volume-title: 12th Asian Conference on Computer Vision
  year: 2015
  ident: e_1_2_7_25_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.procs.2021.05.037
– volume: 28
  start-page: 1
  issue: 1
  year: 2015
  ident: e_1_2_7_3_1
  article-title: Towards a smart city based on cloud of things, a survey on the smart city vision and paradigms
  publication-title: Trans Emerg Telecommun Technol
– ident: e_1_2_7_16_1
  doi: 10.4218/etrij.2018-0520
– ident: e_1_2_7_30_1
– ident: e_1_2_7_2_1
  doi: 10.1109/JIOT.2014.2337336
– ident: e_1_2_7_27_1
– ident: e_1_2_7_12_1
  doi: 10.1007/978-981-19-8032-9_28
– ident: e_1_2_7_11_1
  doi: 10.1088/2515-7620/ac473b
– ident: e_1_2_7_15_1
  doi: 10.1109/ITNEC52019.2021.9586894
– ident: e_1_2_7_19_1
  doi: 10.23919/ICIF.2018.8455565
– ident: e_1_2_7_18_1
  doi: 10.1145/3528227.3528569
– ident: e_1_2_7_23_1
SSID ssj0000752548
Score 2.3320508
Snippet Solid waste management is a significant challenge in the development of smart cities. Existing approaches for solid waste monitoring are often time‐consuming...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Efficient solid waste inspection through drone‐based aerial imagery and TinyML vision model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4878
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIP07iJsYGMhOAhSkk8p3EeJyiq0IqQyKS9oMi1HbWilGlNNZUnfsL-wP4cv4RjH-fCVKTBS1q5zkU-X3MuPuc7hLxUoCKHmS5DybMy5BocFKkiFSYJ02DOCtAZNt4x-Tgcn_IPZ8lZr3fdyVpaV9OB-rG1ruR_pApjIFdbJfsPkm0uCgPwHeQLR5AwHG8l45Hjf7C7-XCfuQ4uJcjMppe78km3DYBdePTF96Vp8hqs5tKBNNiw45tlsUAWpny-3ExOAqw3xyY5XeM1b3uLu00GW1vsehxVtplOt9JkFVR1yL6TpDiRC4BIByHtDzOzml1K3NL_ZHmWmojCHIbnOCy1MeeBSwpvcLr4OpObjUTyhBmo9mC8Xq2M5xP34QzWzYJxbz0W24BYhjWeA7NlzL-2keXEw5Nv1QbILmuqagBumWg1Xr3Lf0MRNumJSOXMCjizsGfeITsMvBDWJzvH7yYnn5sgHthb4GC7rof1I9YExxF7U9_4D5On6wI5GybfI7ve-aDHiKT7pGeWD8i9DiXlQ_KlwRR1mKIOU7TFFPWYog5Tv35eOTRRRBP1aKKAJopooogm6tD0iJy-H-Vvx6FvwREqBrZpaLjhaapj-CdzaY5KUcalEiWYPTrOpOUOFLFKtACrX7FUac4t2UQK82G9Ep0ePSb9JTzNE0JFFuskm0YlvAO4nsYy4mqYiUSKSEZpyffJ63qVCuX56W2blEVxUxz75EUz8xw5WbbMeeUW-q8TilGe28-nt7jYAbnbQvWQ9KuLtXkGtmg1fe4R8RuheZF3
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+solid+waste+inspection+through+drone%E2%80%90based+aerial+imagery+and+TinyML+vision+model&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Malche%2C+Timothy&rft.au=Maheshwary%2C+Priti&rft.au=Tiwari%2C+Pradeep+Kumar&rft.au=Alkhayyat%2C+Ahmed+Hussein&rft.date=2024-04-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fett.4878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon