Multi‐UAV path planning utilizing the PGA algorithm for terrestrial IoT sensor network under ISAC framework
The integration of internet of things (IoT) technologies with unmanned aerial vehicles (UAVs) has initiated a groundbreaking revolution in data acquisition and communication systems across diverse domains. This document introduces an innovative endeavor, the integration of multi‐UAV path planning fo...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 35; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | The integration of internet of things (IoT) technologies with unmanned aerial vehicles (UAVs) has initiated a groundbreaking revolution in data acquisition and communication systems across diverse domains. This document introduces an innovative endeavor, the integration of multi‐UAV path planning for integrated sensing and communication (ISAC) within ground‐based CAT‐M1 IoT sensor networks, accomplished through the application of the Pareto‐based genetic ant colony optimization (PGA) algorithm. The PGA algorithm is highly capable of UAV path planning due to its efficiency, adaptability, and seamless integration of domain expertise. By employing the PGA algorithm, we simultaneously minimize UAV travel distance while optimizing energy consumption, resulting in multi‐objective optimization. The synergy of ground‐based IoT sensors and seamless UAV communication, coupled with a convex optimization resource allocation algorithm, empowers real‐time data acquisition and heightens situational awareness. Our proposed UAV path planning PGA algorithm with resource allocation is crafted to maximize the efficiency of ground‐based sensor data acquisition. We stand at the forefront of advancing multi‐UAV data collection systems with this pioneering approach, promoting increased efficiency, robustness, and transformative solutions across diverse domains. The proposed system for ISAC achieves an impressive throughput of up to 95% of the system's capacity.
Pareto‐based genetic ant colony optimization (PGA) algorithm for multi‐UAV path planning in ground‐based IoT sensor networks is proposed to enhance data acquisition and communication by integrating IoT and UAV technology for Integrated Sensing and Communication (ISAC). The developed system achieves approximately 95% throughput with data collection and efficient resource allocation. |
---|---|
AbstractList | The integration of internet of things (IoT) technologies with unmanned aerial vehicles (UAVs) has initiated a groundbreaking revolution in data acquisition and communication systems across diverse domains. This document introduces an innovative endeavor, the integration of multi‐UAV path planning for integrated sensing and communication (ISAC) within ground‐based CAT‐M1 IoT sensor networks, accomplished through the application of the Pareto‐based genetic ant colony optimization (PGA) algorithm. The PGA algorithm is highly capable of UAV path planning due to its efficiency, adaptability, and seamless integration of domain expertise. By employing the PGA algorithm, we simultaneously minimize UAV travel distance while optimizing energy consumption, resulting in multi‐objective optimization. The synergy of ground‐based IoT sensors and seamless UAV communication, coupled with a convex optimization resource allocation algorithm, empowers real‐time data acquisition and heightens situational awareness. Our proposed UAV path planning PGA algorithm with resource allocation is crafted to maximize the efficiency of ground‐based sensor data acquisition. We stand at the forefront of advancing multi‐UAV data collection systems with this pioneering approach, promoting increased efficiency, robustness, and transformative solutions across diverse domains. The proposed system for ISAC achieves an impressive throughput of up to 95% of the system's capacity. The integration of internet of things (IoT) technologies with unmanned aerial vehicles (UAVs) has initiated a groundbreaking revolution in data acquisition and communication systems across diverse domains. This document introduces an innovative endeavor, the integration of multi‐UAV path planning for integrated sensing and communication (ISAC) within ground‐based CAT‐M1 IoT sensor networks, accomplished through the application of the Pareto‐based genetic ant colony optimization (PGA) algorithm. The PGA algorithm is highly capable of UAV path planning due to its efficiency, adaptability, and seamless integration of domain expertise. By employing the PGA algorithm, we simultaneously minimize UAV travel distance while optimizing energy consumption, resulting in multi‐objective optimization. The synergy of ground‐based IoT sensors and seamless UAV communication, coupled with a convex optimization resource allocation algorithm, empowers real‐time data acquisition and heightens situational awareness. Our proposed UAV path planning PGA algorithm with resource allocation is crafted to maximize the efficiency of ground‐based sensor data acquisition. We stand at the forefront of advancing multi‐UAV data collection systems with this pioneering approach, promoting increased efficiency, robustness, and transformative solutions across diverse domains. The proposed system for ISAC achieves an impressive throughput of up to 95% of the system's capacity. Pareto‐based genetic ant colony optimization (PGA) algorithm for multi‐UAV path planning in ground‐based IoT sensor networks is proposed to enhance data acquisition and communication by integrating IoT and UAV technology for Integrated Sensing and Communication (ISAC). The developed system achieves approximately 95% throughput with data collection and efficient resource allocation. |
Author | Pawase, Chaitali J. Azadur, Rahman Md Chang, KyungHi |
Author_xml | – sequence: 1 givenname: Rahman Md surname: Azadur fullname: Azadur, Rahman Md organization: Inha University – sequence: 2 givenname: Chaitali J. surname: Pawase fullname: Pawase, Chaitali J. organization: Inha University – sequence: 3 givenname: KyungHi orcidid: 0000-0002-2565-5391 surname: Chang fullname: Chang, KyungHi email: khchang@inha.ac.kr organization: Inha University |
BookMark | eNp1kEFOwzAURC1UJEqpxBG8ZJNiO4mbLKOqlEpFIBHYRk763Rocp7JdVe2KI3BGTkJCWSAEf_NHo5lZvHPUM40BhC4pGVFC2DV4P4pSyk9Qn1FOgzClce-HPkND515Ie-OYxVHSR_XdVnv18fb-lD3jjfBrvNHCGGVWeOuVVodO-TXgh1mGhV41Vvl1jWVjsQdrwXmrhMbzJscOjGttA37X2Fe8NUuweP6YTbC0oobOvECnUmgHw-8_QPnNNJ_cBov72XySLYKK8ZgHS5YAY7LigkhCk5LLspJJyFkZp5DE4RhYtOSchVzwshwLESaUxKkggpIkqsIBujrOVrZxzoIsNlbVwu4LSooOVNGCKjpQbXT0K1opL7xqjLdC6b8KwbGwUxr2_w4X0zz_yn8CWvp9PQ |
CitedBy_id | crossref_primary_10_1002_ett_5028 crossref_primary_10_3390_s24113286 |
Cites_doi | 10.1109/SMC.2016.7844944 10.1109/TITS.2023.3258482 10.1002/ETT.4370 10.1007/S11036‐009‐0184‐3/TABLES/2 10.1002/ETT.4133 10.1109/OJVT.2021.3085421 10.1002/ETT.4123 10.1109/tgcn.2023.3235887 10.1002/ETT.4603 10.1109/TIV.2022.3213703 10.1109/ACCESS.2020.2992217 10.1109/JIOT.2023.3323921 10.3390/APP11083417 10.3390/A12120261 10.1109/MWC.131.2200442 10.1002/ETT.4858 10.1016/J.VEHCOM.2022.100491 10.1109/ICASSP49357.2023.10094604 10.1002/DAC.5555 10.1109/TGCN.2023.3234263 10.1109/ACCESS.2018.2812896 10.1109/TVT.2019.2945037 10.1016/J.INS.2018.03.015 10.1109/ACCESS.2021.3139534 10.1109/TITS.2021.3066240 10.1016/J.NEUCOM.2019.06.075 10.1016/J.ENGSTRUCT.2021.113442 10.1007/S11277‐020‐07181‐W/FIGURES/15 10.1109/TVT.2021.3102161 10.23919/EUSIPCO55093.2022.9909807 10.1016/J.COMPELECENG.2019.01.028 10.1109/MCI.2006.329691 10.1109/SURV.2013.102313.00272 10.1109/MSP.2019.2913173 10.1109/SSCI50451.2021.9660187 10.1016/J.COMNET.2021.108623 10.1155/2013/794521 10.1016/j.icte.2016.08.005 10.1109/EMRTS.2004.1310996 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.4916 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_4916 ETT4916 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Inha University |
GroupedDBID | .GA .Y3 05W 1OB 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION |
ID | FETCH-LOGICAL-c2656-d28e22fc6a0f018b6fbcf8362b59e8537e24d66236a6bb7aa381059a0a1084c3 |
ISSN | 2161-3915 |
IngestDate | Tue Jul 01 03:49:30 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Wed Aug 20 07:27:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2656-d28e22fc6a0f018b6fbcf8362b59e8537e24d66236a6bb7aa381059a0a1084c3 |
ORCID | 0000-0002-2565-5391 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1002_ett_4916 crossref_citationtrail_10_1002_ett_4916 wiley_primary_10_1002_ett_4916_ETT4916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2022; 250 2023; 36 2010; 15 2018; 448–449 2021; 2 2019; 75 2023; 7 2023; 8 2019; 12 2019; 36 2022; 23 2006; 1 2019; 364 2021; 70 2020; 8 2018; 6 2023; 24 2021; 32 2016; 2 2021; 11 2023 2022 2004; 16 2021 2020 2019; 68 2014; 16 2022; 36 2017 2022; 10 2020; 113 2022; 33 2013 2022; 202 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – volume: 7 start-page: 2025 issue: 4 year: 2023 end-page: 2037 article-title: A UAV‐assisted secure communication system by jointly optimizing transmit power and trajectory in the internet of things publication-title: IEEE Transactions on Green Communications and Networking – volume: 6 start-page: 13671 year: 2018 end-page: 13684 article-title: Optimal UAV path planning: sensing data acquisition over IoT sensor networks using multi‐objective bio‐inspired algorithms publication-title: IEEE Access – volume: 33 issue: 11 year: 2022 article-title: A survey on green unmanned aerial vehicles‐based fog computing: challenges and future perspective publication-title: Trans Emerg Telecommun Technol – volume: 36 start-page: 100 issue: 5 year: 2019 end-page: 114 article-title: Toward millimeter wave joint radar‐communications: a signal processing perspective publication-title: IEEE Signal Process Mag – volume: 33 issue: 10 year: 2022 article-title: Unmanned aerial vehicles integrated HetNet for smart dense urban area publication-title: Trans Emerg Telecommun Technol – volume: 12 issue: 2 year: 2019 article-title: A pareto‐based hybrid whale optimization algorithm with tabu search for multi‐objective optimization publication-title: Algorithms – volume: 8 start-page: 86316 year: 2020 end-page: 86327 article-title: 3D optimal surveillance trajectory planning for multiple UAVs by using particle swarm optimization with surveillance area priority publication-title: IEEE Access – volume: 202 year: 2022 article-title: EDTP: energy and delay optimized trajectory planning for UAV‐IoT environment publication-title: Computer Networks – volume: 68 start-page: 12215 issue: 12 year: 2019 end-page: 12226 article-title: On‐board deep Q‐network for UAV‐assisted online power transfer and data collection publication-title: IEEE Trans Veh Technol – year: 2021 – volume: 1 start-page: 28 issue: 4 year: 2006 end-page: 39 article-title: Ant colony optimization publication-title: IEEE Comput Intell Mag – volume: 113 start-page: 115 issue: 1 year: 2020 end-page: 138 article-title: Q‐learning‐based fuzzy logic for multi‐objective routing algorithm in flying ad hoc networks publication-title: Wirel Pers Commun – volume: 250 year: 2022 article-title: Multi‐constraint and multi‐objective optimization of free‐form reticulated shells using improved optimization algorithm publication-title: Eng Struct – volume: 75 start-page: 1 year: 2019 end-page: 15 article-title: Data collection using unmanned aerial vehicles for internet of things platforms publication-title: Computers & Electrical Engineering – volume: 8 start-page: 1204 issue: 2 year: 2023 end-page: 1218 article-title: DRL‐UTPS: DRL‐based trajectory planning for unmanned aerial vehicles for data collection in dynamic IoT network publication-title: IEEE Transactions on Intelligent Vehicles – year: 2023 article-title: Efficient selfish node detection using SVM in IoT‐MANET environment publication-title: Trans Emerg Telecommun Technol – volume: 23 start-page: 25546 issue: 12 year: 2022 end-page: 25556 article-title: A clustering‐based coverage path planning method for autonomous heterogeneous UAVs publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 11 start-page: 3417 issue: 8 year: 2021 article-title: Distributed 3‐D path planning for multi‐UAVs with full area surveillance based on particle swarm optimization publication-title: Applied Sciences – year: 2023 article-title: UAV path planning for data gathering in wireless sensor networks: spatial and temporal substate‐based Q‐learning publication-title: IEEE Internet Things J – volume: 36 year: 2022 article-title: Path planning of multi‐UAVs based on deep Q‐network for energy‐efficient data collection in UAVs‐assisted IoT publication-title: Vehicular Communications – start-page: 1 year: 2023 end-page: 9 article-title: UAV‐enabled integrated sensing and communication: opportunities and challenges publication-title: IEEE Wirel Commun – volume: 15 start-page: 226 issue: 2 year: 2010 end-page: 236 article-title: Low‐power wake‐up radio for wireless sensor networks publication-title: Mobile Networks and Applications – volume: 36 issue: 14 year: 2023 article-title: UAV‐IoT collaboration: energy and time‐saving task scheduling scheme publication-title: International Journal of Communication Systems – year: 2022 – volume: 24 start-page: 8290 year: 2023 end-page: 8303 article-title: Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of multi‐UAV cooperative area search publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2020 – volume: 2 start-page: 140 issue: 3 year: 2016 end-page: 144 article-title: Flying path optimization in UAV‐assisted IoT sensor networks publication-title: ICT Express – year: 2023 – volume: 32 issue: 12 year: 2021 article-title: Unmanned aerial vehicle‐enabled layered architecture based solution for disaster management publication-title: Trans Emerg Telecommun Technol – volume: 7 start-page: 413 issue: 1 year: 2023 end-page: 423 article-title: Energy‐efficient joint computation offloading and resource allocation strategy for ISAC‐aided 6G V2X networks publication-title: IEEE Transactions on Green Communications and Networking – volume: 10 start-page: 7664 year: 2022 end-page: 7674 article-title: Quality‐oriented hybrid path planning based on a* and Q‐learning for unmanned aerial vehicle publication-title: IEEE Access – volume: 32 issue: 7 year: 2021 article-title: A survey on recent optimal techniques for securing unmanned aerial vehicles applications publication-title: Trans Emerg Telecommun Technol – volume: 364 start-page: 32 year: 2019 end-page: 48 article-title: A novel aggregation‐based dominance for Pareto‐based evolutionary algorithms to configure software product lines publication-title: Neurocomputing – year: 2017 – volume: 2 start-page: 249 year: 2021 end-page: 260 article-title: Deep reinforcement learning based energy efficient multi‐UAV data collection for IoT networks publication-title: IEEE Open Journal of Vehicular Technology – volume: 70 start-page: 9540 issue: 9 year: 2021 end-page: 9554 article-title: UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning publication-title: IEEE Trans Veh Technol – volume: 16 start-page: 729 issue: 2 year: 2014 end-page: 744 article-title: Resource allocation techniques in cooperative cognitive radio networks publication-title: IEEE Communications Surveys and Tutorials – volume: 448–449 start-page: 91 year: 2018 end-page: 111 article-title: Decomposition‐based sub‐problem optimal solution updating direction‐guided evolutionary many‐objective algorithm publication-title: Inf Sci (N Y) – volume: 16 start-page: 35 year: 2004 end-page: 44 article-title: Collaborative resource allocation in wireless sensor networks publication-title: Proceedings ‐ Euromicro Conference on Real‐Time Systems – year: 2013 – ident: e_1_2_12_5_1 doi: 10.1109/SMC.2016.7844944 – ident: e_1_2_12_6_1 doi: 10.1109/TITS.2023.3258482 – ident: e_1_2_12_13_1 doi: 10.1002/ETT.4370 – ident: e_1_2_12_41_1 doi: 10.1007/S11036‐009‐0184‐3/TABLES/2 – ident: e_1_2_12_14_1 doi: 10.1002/ETT.4133 – ident: e_1_2_12_22_1 doi: 10.1109/OJVT.2021.3085421 – ident: e_1_2_12_15_1 doi: 10.1002/ETT.4123 – ident: e_1_2_12_32_1 doi: 10.1109/tgcn.2023.3235887 – ident: e_1_2_12_11_1 doi: 10.1002/ETT.4603 – ident: e_1_2_12_20_1 doi: 10.1109/TIV.2022.3213703 – ident: e_1_2_12_34_1 doi: 10.1109/ACCESS.2020.2992217 – ident: e_1_2_12_43_1 – ident: e_1_2_12_16_1 doi: 10.1109/JIOT.2023.3323921 – ident: e_1_2_12_36_1 doi: 10.3390/APP11083417 – ident: e_1_2_12_37_1 doi: 10.3390/A12120261 – ident: e_1_2_12_4_1 doi: 10.1109/MWC.131.2200442 – ident: e_1_2_12_9_1 doi: 10.1002/ETT.4858 – ident: e_1_2_12_23_1 doi: 10.1016/J.VEHCOM.2022.100491 – ident: e_1_2_12_33_1 doi: 10.1109/ICASSP49357.2023.10094604 – ident: e_1_2_12_10_1 doi: 10.1002/DAC.5555 – ident: e_1_2_12_26_1 doi: 10.1109/TGCN.2023.3234263 – ident: e_1_2_12_35_1 doi: 10.1109/ACCESS.2018.2812896 – ident: e_1_2_12_24_1 doi: 10.1109/TVT.2019.2945037 – ident: e_1_2_12_31_1 – ident: e_1_2_12_39_1 doi: 10.1016/J.INS.2018.03.015 – ident: e_1_2_12_17_1 doi: 10.1109/ACCESS.2021.3139534 – ident: e_1_2_12_19_1 doi: 10.1109/TITS.2021.3066240 – ident: e_1_2_12_38_1 doi: 10.1016/J.NEUCOM.2019.06.075 – ident: e_1_2_12_40_1 doi: 10.1016/J.ENGSTRUCT.2021.113442 – ident: e_1_2_12_42_1 – ident: e_1_2_12_18_1 doi: 10.1007/S11277‐020‐07181‐W/FIGURES/15 – ident: e_1_2_12_21_1 doi: 10.1109/TVT.2021.3102161 – ident: e_1_2_12_27_1 doi: 10.23919/EUSIPCO55093.2022.9909807 – ident: e_1_2_12_3_1 doi: 10.1016/J.COMPELECENG.2019.01.028 – ident: e_1_2_12_7_1 doi: 10.1109/MCI.2006.329691 – ident: e_1_2_12_8_1 doi: 10.1109/SURV.2013.102313.00272 – ident: e_1_2_12_29_1 – ident: e_1_2_12_28_1 doi: 10.1109/MSP.2019.2913173 – ident: e_1_2_12_45_1 doi: 10.1109/SSCI50451.2021.9660187 – ident: e_1_2_12_12_1 doi: 10.1016/J.COMNET.2021.108623 – ident: e_1_2_12_44_1 doi: 10.1155/2013/794521 – ident: e_1_2_12_30_1 – ident: e_1_2_12_2_1 doi: 10.1016/j.icte.2016.08.005 – ident: e_1_2_12_25_1 doi: 10.1109/EMRTS.2004.1310996 |
SSID | ssj0000752548 |
Score | 2.286986 |
Snippet | The integration of internet of things (IoT) technologies with unmanned aerial vehicles (UAVs) has initiated a groundbreaking revolution in data acquisition and... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Multi‐UAV path planning utilizing the PGA algorithm for terrestrial IoT sensor network under ISAC framework |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4916 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLa6cmGHaYNNY4PJSBM7ROkSNzHJMSpsBdFpEgFxi2zHWSuVdiqpJnraccf9Rn4Jz3aSGugkxiWtLCep8r68vmd_730IfYwojdR-ncvB3m5AhFAkgMjlXZ6TyIdcTuunDL7R_llwfBFetFp_LNbSvOQdsVhZV_IUq8IY2FVVyf6HZZuLwgB8B_vCESwMx0fZWFfPNnSFs-RctUkdKmVoLUTkwK3Ho0VdEPX9a-Kw8Y_pbFQOLw29UGppDi3ccTRNnSvIaWF4YqjhWiJ35hydJj2nqDlcdjCbLrXG9aaDqjXWmkelEtexK0-unLJewrdIi8mC5XPD72ZDtZcwyJc7Wr-YkXzsDZnSNRk5xx2LilB5qGtwVf2RvXJBAmvlQjs44qu1r9iUc3bkirHKQ5uGJjYSHzh-00hWlmUniP0VvbXv_ec1TETTtZlkcGamznyG1ggkHKSN1pKDwclps14HoRXk0lrgsP6JdS9jj3yub3wnurGzHR2upC_RiyrPwIkBzSvUkpMN9NzqPrmJLjV8bn7_BeBgBRxcAwc3wMEAHAzAwQ1wMAAHW8DBABxsgIMr4GANHKyAgxvgvEbpl8O013cr9Q1XEAjyXXhVJSGFoMwr4O3ltOCiiCDe4WEsIcjblyTIKUTPlFHO9xlTveLCmHnM96JAdN-g9mQ6kW8R7rKYh4yHBWd50JXgNjyR-4LkghS8COgW-lQ_tExUnemVQMo4u2-dLbTbzPxpurGsmLOnn_s_J2SHaao-3z3iYu_R-hK526hdzuZyB6LQkn-oAHILngaOeA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90UAV+path+planning+utilizing+the+PGA+algorithm+for+terrestrial+IoT+sensor+network+under+ISAC+framework&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Azadur%2C+Rahman+Md&rft.au=Pawase%2C+Chaitali+J.&rft.au=Chang%2C+KyungHi&rft.date=2024-01-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fett.4916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |