DL‐IDS: a deep learning–based intrusion detection framework for securing IoT

The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and w...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 33; no. 3
Main Authors Otoum, Yazan, Liu, Dandan, Nayak, Amiya
Format Journal Article
LanguageEnglish
Published 01.03.2022
Online AccessGet full text

Cover

Loading…
Abstract The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and wearables. As reported in IHS Markit (see https://technology.ihs.com), the number of connected devices is projected to jump from approximately 27 billion in 2017 to 125 billion in 2030, an average annual increment of 12%. Security is a critical issue in today's IoT field because of the nature of the architecture, the types of devices, different methods of communication (mainly wireless), and the volume of data being transmitted over the network. Security becomes even more important as the number of devices connected to the IoT increases. To overcome the challenges of securing IoT devices, we propose a new deep learning–based intrusion detection system (DL‐IDS) to detect security threats in IoT environments. There are many IDSs in the literature, but they lack optimal features learning and data set management, which are significant issues that affect the accuracy of attack detection. Our proposed module combines the spider monkey optimization (SMO) algorithm and the stacked‐deep polynomial network (SDPN) to achieve optimal detection recognition; SMO selects the optimal features in the data sets and SDPN classifies the data as normal or anomalies. The types of anomalies detected by DL‐IDS include denial of service (DoS), user‐to‐root (U2R) attack, probe attack, and remote‐to‐local (R2L) attack. Extensive analysis indicates that the proposed DL‐IDS achieves better performance in terms of accuracy, precision, recall, and F‐score. The paper proposes a novel DL‐IDS to identify severe anomalies. An SMO algorithm is used to extract the most relevant features from the data set. An SDPN is then applied to identify the optimal features and classify the data as normal or anomalous in different attack categories (eg, DoS, U2R, R2L, and probe). DL‐IDS system achieved superior results; in accuracy (99.02%), precision (99.38%), recall (98.91%), and F1‐score (99.14%) using the NSL‐;KDD data set.
AbstractList The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and wearables. As reported in IHS Markit (see https://technology.ihs.com), the number of connected devices is projected to jump from approximately 27 billion in 2017 to 125 billion in 2030, an average annual increment of 12%. Security is a critical issue in today's IoT field because of the nature of the architecture, the types of devices, different methods of communication (mainly wireless), and the volume of data being transmitted over the network. Security becomes even more important as the number of devices connected to the IoT increases. To overcome the challenges of securing IoT devices, we propose a new deep learning–based intrusion detection system (DL‐IDS) to detect security threats in IoT environments. There are many IDSs in the literature, but they lack optimal features learning and data set management, which are significant issues that affect the accuracy of attack detection. Our proposed module combines the spider monkey optimization (SMO) algorithm and the stacked‐deep polynomial network (SDPN) to achieve optimal detection recognition; SMO selects the optimal features in the data sets and SDPN classifies the data as normal or anomalies. The types of anomalies detected by DL‐IDS include denial of service (DoS), user‐to‐root (U2R) attack, probe attack, and remote‐to‐local (R2L) attack. Extensive analysis indicates that the proposed DL‐IDS achieves better performance in terms of accuracy, precision, recall, and F‐score. The paper proposes a novel DL‐IDS to identify severe anomalies. An SMO algorithm is used to extract the most relevant features from the data set. An SDPN is then applied to identify the optimal features and classify the data as normal or anomalous in different attack categories (eg, DoS, U2R, R2L, and probe). DL‐IDS system achieved superior results; in accuracy (99.02%), precision (99.38%), recall (98.91%), and F1‐score (99.14%) using the NSL‐;KDD data set.
The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and wearables. As reported in IHS Markit (see https://technology.ihs.com ), the number of connected devices is projected to jump from approximately 27 billion in 2017 to 125 billion in 2030, an average annual increment of 12%. Security is a critical issue in today's IoT field because of the nature of the architecture, the types of devices, different methods of communication (mainly wireless), and the volume of data being transmitted over the network. Security becomes even more important as the number of devices connected to the IoT increases. To overcome the challenges of securing IoT devices, we propose a new deep learning–based intrusion detection system (DL‐IDS) to detect security threats in IoT environments. There are many IDSs in the literature, but they lack optimal features learning and data set management, which are significant issues that affect the accuracy of attack detection. Our proposed module combines the spider monkey optimization (SMO) algorithm and the stacked‐deep polynomial network (SDPN) to achieve optimal detection recognition; SMO selects the optimal features in the data sets and SDPN classifies the data as normal or anomalies. The types of anomalies detected by DL‐IDS include denial of service (DoS), user‐to‐root (U2R) attack, probe attack, and remote‐to‐local (R2L) attack. Extensive analysis indicates that the proposed DL‐IDS achieves better performance in terms of accuracy, precision, recall, and F‐score.
Author Liu, Dandan
Otoum, Yazan
Nayak, Amiya
Author_xml – sequence: 1
  givenname: Yazan
  orcidid: 0000-0002-5500-3060
  surname: Otoum
  fullname: Otoum, Yazan
  email: yazan.otoum@uottawa.ca
  organization: University of Ottawa
– sequence: 2
  givenname: Dandan
  surname: Liu
  fullname: Liu, Dandan
  organization: Wuhan University
– sequence: 3
  givenname: Amiya
  surname: Nayak
  fullname: Nayak, Amiya
  organization: University of Ottawa
BookMark eNp1kN9KwzAUxoNMcM6Bj5BLbzqTJmla72Tzz2CgYL0uaXIi1a4dScbY3R5B8A33JLbOCxE9N-eD830fnN8pGjRtAwidUzKhhMSXEMKEpYQdoWFMExqxjIrBD32Cxt6_km6kiAVPh-hxttjv3uezpyussAFY4RqUa6rmZb_7KJUHg6smuLWv2qa7B9ChV9apJWxa94Zt67AHvXZdBM_b_AwdW1V7GH_vEXq-vcmn99Hi4W4-vV5EOk4Ei8q0FFxClmlFwFgDzEot4iTTTAtZcplwkxjJS5CUQ6qMMjIzmTGK8SyxMRuhi0Ovdq33DmyxctVSuW1BSdHDKDoYRQ-js05-WXUVVP9HcKqq_wpEh8CmqmH7b3Fxk-df_k9xMXSR
CitedBy_id crossref_primary_10_1007_s10922_021_09589_6
crossref_primary_10_3390_technologies13030121
crossref_primary_10_1109_ACCESS_2021_3087201
crossref_primary_10_1007_s10586_021_03388_z
crossref_primary_10_26599_TST_2023_9010033
crossref_primary_10_3390_s21196346
crossref_primary_10_3390_app13179937
crossref_primary_10_1109_ACCESS_2022_3172304
crossref_primary_10_1007_s11042_024_18919_0
crossref_primary_10_1007_s11042_023_16853_1
crossref_primary_10_1016_j_jisa_2022_103196
crossref_primary_10_3390_electronics11213541
crossref_primary_10_3390_electronics12194050
crossref_primary_10_1016_j_cose_2023_103297
crossref_primary_10_1007_s11042_024_19617_7
crossref_primary_10_1007_s12652_021_03169_x
crossref_primary_10_1109_ACCESS_2024_3375878
crossref_primary_10_1186_s40537_024_00957_y
crossref_primary_10_1080_00051144_2023_2269646
crossref_primary_10_3390_app11125713
crossref_primary_10_3390_iot2030022
crossref_primary_10_1109_ACCESS_2024_3369915
crossref_primary_10_1016_j_iot_2023_100709
crossref_primary_10_1109_TSE_2024_3363611
crossref_primary_10_18359_rcin_6534
crossref_primary_10_1109_COMST_2022_3233793
crossref_primary_10_1002_cpe_7401
crossref_primary_10_1016_j_eswa_2022_119330
crossref_primary_10_1007_s11235_024_01237_z
crossref_primary_10_1007_s00500_023_09452_7
crossref_primary_10_32604_cmc_2024_046396
crossref_primary_10_1007_s11227_024_06737_y
crossref_primary_10_35940_ijrte_E8182_13050125
crossref_primary_10_1080_19393555_2023_2218852
crossref_primary_10_3390_a15070239
crossref_primary_10_1109_JIOT_2023_3288544
crossref_primary_10_1002_ett_4757
crossref_primary_10_1155_2024_3909173
crossref_primary_10_1080_00051144_2024_2304369
crossref_primary_10_3934_mbe_2023602
crossref_primary_10_3233_JIFS_221351
crossref_primary_10_1111_exsy_13726
crossref_primary_10_1007_s42979_024_03429_5
crossref_primary_10_1007_s10462_023_10437_z
crossref_primary_10_1007_s11227_024_06915_y
crossref_primary_10_1080_09540091_2022_2149698
crossref_primary_10_1109_TII_2023_3314208
crossref_primary_10_1155_2024_5551759
crossref_primary_10_1007_s12065_024_00949_0
crossref_primary_10_1007_s10586_024_04310_z
crossref_primary_10_1007_s10586_024_04495_3
crossref_primary_10_3390_electronics13214153
crossref_primary_10_32604_iasc_2023_035874
crossref_primary_10_1109_ACCESS_2022_3145002
crossref_primary_10_3390_s22124459
crossref_primary_10_1109_JIOT_2021_3088056
crossref_primary_10_1002_ett_4522
crossref_primary_10_3390_app131910977
crossref_primary_10_53759_7669_jmc202404073
crossref_primary_10_3390_electronics12041044
crossref_primary_10_1109_ACCESS_2022_3161566
crossref_primary_10_3390_electronics9101565
crossref_primary_10_1016_j_procs_2024_11_089
crossref_primary_10_1038_s41598_023_42678_x
crossref_primary_10_3390_electronics13163210
crossref_primary_10_37391_ijeer_120308
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_1016_j_eswa_2023_121912
crossref_primary_10_1007_s11042_024_20059_4
crossref_primary_10_1109_ACCESS_2024_3493384
crossref_primary_10_1002_dac_5661
crossref_primary_10_1109_ACCESS_2022_3220622
crossref_primary_10_1109_ACCESS_2023_3241588
crossref_primary_10_1007_s11036_021_01892_5
crossref_primary_10_1016_j_iotcps_2023_09_003
crossref_primary_10_1109_MIC_2023_3264700
crossref_primary_10_1142_S0218213023500653
crossref_primary_10_1002_cpe_7134
crossref_primary_10_1016_j_ins_2023_03_052
crossref_primary_10_32604_cmc_2023_043173
crossref_primary_10_1007_s00500_023_09610_x
crossref_primary_10_22144_ctujoisd_2023_030
crossref_primary_10_1109_JIOT_2024_3384374
crossref_primary_10_1109_TNSM_2022_3193099
crossref_primary_10_1007_s00521_024_10306_y
crossref_primary_10_1186_s13677_023_00527_2
crossref_primary_10_1007_s11277_024_11009_2
crossref_primary_10_1142_S1756973724500021
crossref_primary_10_61186_jist_44500_12_46_90
crossref_primary_10_1109_ACCESS_2024_3476136
crossref_primary_10_1155_2020_6689134
crossref_primary_10_3390_inventions8050122
crossref_primary_10_3390_math11194080
crossref_primary_10_1002_ett_4149
crossref_primary_10_1002_itl2_640
crossref_primary_10_1109_ACCESS_2022_3153716
crossref_primary_10_3390_electronics11091502
crossref_primary_10_1002_ett_4287
crossref_primary_10_1016_j_iotcps_2023_12_003
crossref_primary_10_3233_WEB_230109A
crossref_primary_10_1002_cpe_7445
crossref_primary_10_1109_ACCESS_2024_3442529
crossref_primary_10_3390_s22176617
crossref_primary_10_1007_s41870_024_02026_2
crossref_primary_10_1016_j_measen_2024_101263
crossref_primary_10_1007_s10115_024_02162_y
crossref_primary_10_7717_peerj_cs_721
crossref_primary_10_1109_TCE_2023_3277856
crossref_primary_10_3390_a16020075
crossref_primary_10_1109_MSMC_2023_3344943
crossref_primary_10_3390_electronics13061004
crossref_primary_10_1007_s10586_022_03607_1
crossref_primary_10_1109_ACCESS_2020_3012411
crossref_primary_10_1007_s12083_024_01721_y
crossref_primary_10_1109_TCE_2024_3367330
crossref_primary_10_1016_j_iotcps_2024_01_003
crossref_primary_10_3390_s22186806
crossref_primary_10_3390_app13052894
crossref_primary_10_1007_s10586_024_04365_y
crossref_primary_10_1016_j_cose_2023_103315
crossref_primary_10_1007_s13042_025_02544_w
crossref_primary_10_1002_ett_4609
crossref_primary_10_1007_s12008_023_01671_4
crossref_primary_10_1109_JIOT_2022_3224649
crossref_primary_10_1002_ett_3999
crossref_primary_10_1002_ett_4567
Cites_doi 10.1109/ICC.2019.8761658
10.3390/jsan8010016
10.1007/s12293-013-0128-0
10.1007/s10916-018-1045-z
10.1145/2820975.2820980
10.1109/CISDA.2009.5356528
10.1016/j.future.2018.03.007
10.1016/j.future.2017.08.043
10.1109/ICC.2018.8422832
10.1109/MCOM.2018.1700332
10.1109/MNET.2018.1700202
10.1016/j.comcom.2019.09.010
10.1016/j.neucom.2016.01.074
10.1109/JIOT.2017.2683200
10.1016/j.adhoc.2019.02.001
10.1109/ISBI.2016.7493399
10.3390/s19081788
10.1109/TSUSC.2018.2809665
10.1109/IJCNN.2018.8489489
10.1109/INFCOMW.2018.8407032
10.1007/s11235-017-0345-9
10.1109/TII.2019.2922699
10.1016/j.comnet.2018.03.012
10.1016/j.jisa.2018.05.002
10.1093/comjnl/bxz064
10.1109/SPW.2018.00013
10.1109/PST.2016.7906930
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.3803
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_3803
ETT3803
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2653-b8b547e99ca0edfde3f7c5269c3c57b4764d6d74be714e8adad79d9dda3496f23
ISSN 2161-3915
IngestDate Thu Apr 24 23:07:10 EDT 2025
Tue Jul 01 03:49:22 EDT 2025
Wed Jan 22 16:26:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2653-b8b547e99ca0edfde3f7c5269c3c57b4764d6d74be714e8adad79d9dda3496f23
ORCID 0000-0002-5500-3060
PageCount 15
ParticipantIDs crossref_primary_10_1002_ett_3803
crossref_citationtrail_10_1002_ett_3803
wiley_primary_10_1002_ett_3803_ETT3803
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2022
References 2019; 8
2018; 141
2019; 4
2017; 3
2017; 4
2019; 148
2009
2019
2019; 19
2018
2016
2018; 41
2018; 85
2015
2018; 82
2018; 67
2018; 56
2018; 32
2018; 42
2014; 6
2016; 194
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Tama BA (e_1_2_7_21_1) 2017; 3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_20_1
Kotb Y (e_1_2_7_5_1) 2019
References_xml – year: 2019
  article-title: An intrusion detection system for connected vehicles in smart cities
  publication-title: Ad Hoc Netw
– year: 2009
– year: 2019
  article-title: A profitable and energy‐efficient cooperative fog solution for IoT services
  publication-title: IEEE Trans Ind Inform
– volume: 41
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Identification of malicious activities in industrial Internet of Things based on deep learning models
  publication-title: J Inf Secur Appl
– volume: 67
  start-page: 423
  issue: 3
  year: 2018
  end-page: 441
  article-title: Security in Internet of Things: issues, challenges, taxonomy, and architecture
  publication-title: Telecommunication Systems
– volume: 3
  year: 2017
  article-title: Attack classification analysis of IoT network via deep learning approach
  publication-title: Res Br Inf Commun Technol Evol
– volume: 4
  start-page: 88
  year: 2019
  end-page: 95
  article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning
  publication-title: IEEE Trans Sustain Comput
– volume: 194
  start-page: 87
  year: 2016
  end-page: 94
  article-title: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset
  publication-title: Neurocomputing
– volume: 8
  start-page: 16
  issue: 1
  year: 2019
  article-title: A mechanism for securing IoT‐enabled applications at the fog layer
  publication-title: J Sens Actuator Netw
– volume: 141
  start-page: 199
  year: 2018
  end-page: 221
  article-title: Internet of Things security: a top‐down survey
  publication-title: Computer Networks
– volume: 4
  start-page: 1125
  issue: 5
  year: 2017
  end-page: 1142
  article-title: A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications
  publication-title: IEEE Internet Things J
– volume: 42
  start-page: 186
  year: 2018
  article-title: Maintaining security privacy in health care system using learning based deep‐q‐networks
  publication-title: J Med Syst
– volume: 56
  start-page: 169
  issue: 2
  year: 2018
  end-page: 175
  article-title: Deep learning: the frontier for distributed attack detection in fog‐to‐things computing
  publication-title: IEEE Commun Mag
– year: 2016
– year: 2018
– volume: 6
  start-page: 31
  issue: 1
  year: 2014
  end-page: 47
  article-title: Spider monkey optimization algorithm for numerical optimization
  publication-title: Memetic Computing
– volume: 85
  start-page: 88
  year: 2018
  end-page: 96
  article-title: A deep Recurrent Neural Network based approach for Internet of Things malware threat hunting
  publication-title: Future Gener Comput Syst
– start-page: 1
  year: 2019
  end-page: 26
  article-title: Cloud‐based multi‐agent cooperation for IoT devices using workflow‐nets
  publication-title: J Grid Comput
– year: 2019
  article-title: DeepDetect: detection of distributed denial of service attacks using deep learning
  publication-title: Comput J
– volume: 19
  start-page: 1788
  issue: 8
  year: 2019
  article-title: The security of big data in fog‐enabled IoT applications including blockchain: a survey
  publication-title: Sensors
– volume: 148
  start-page: 86
  year: 2019
  end-page: 97
  article-title: QoS enhancement with deep learning‐based interference prediction in mobile IoT
  publication-title: Computer Communications
– volume: 32
  start-page: 96
  issue: 1
  year: 2018
  end-page: 101
  article-title: Learning IoT in edge: deep learning for the Internet of Things with edge computing
  publication-title: IEEE Network
– year: 2019
– year: 2015
– volume: 82
  start-page: 761
  year: 2018
  end-page: 768
  article-title: Distributed attack detection scheme using deep learning approach for Internet of Things
  publication-title: Future Gener Comput Syst
– ident: e_1_2_7_2_1
  doi: 10.1109/ICC.2019.8761658
– ident: e_1_2_7_4_1
  doi: 10.3390/jsan8010016
– ident: e_1_2_7_26_1
  doi: 10.1007/s12293-013-0128-0
– ident: e_1_2_7_22_1
  doi: 10.1007/s10916-018-1045-z
– ident: e_1_2_7_18_1
  doi: 10.1145/2820975.2820980
– ident: e_1_2_7_29_1
  doi: 10.1109/CISDA.2009.5356528
– ident: e_1_2_7_20_1
  doi: 10.1016/j.future.2018.03.007
– ident: e_1_2_7_31_1
  doi: 10.1016/j.future.2017.08.043
– ident: e_1_2_7_19_1
  doi: 10.1109/ICC.2018.8422832
– volume: 3
  year: 2017
  ident: e_1_2_7_21_1
  article-title: Attack classification analysis of IoT network via deep learning approach
  publication-title: Res Br Inf Commun Technol Evol
– ident: e_1_2_7_25_1
  doi: 10.1109/MCOM.2018.1700332
– ident: e_1_2_7_17_1
  doi: 10.1109/MNET.2018.1700202
– ident: e_1_2_7_12_1
  doi: 10.1016/j.comcom.2019.09.010
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neucom.2016.01.074
– ident: e_1_2_7_14_1
  doi: 10.1109/JIOT.2017.2683200
– ident: e_1_2_7_13_1
  doi: 10.1016/j.adhoc.2019.02.001
– ident: e_1_2_7_28_1
  doi: 10.1109/ISBI.2016.7493399
– ident: e_1_2_7_8_1
  doi: 10.3390/s19081788
– start-page: 1
  year: 2019
  ident: e_1_2_7_5_1
  article-title: Cloud‐based multi‐agent cooperation for IoT devices using workflow‐nets
  publication-title: J Grid Comput
– ident: e_1_2_7_23_1
  doi: 10.1109/TSUSC.2018.2809665
– ident: e_1_2_7_32_1
– ident: e_1_2_7_24_1
  doi: 10.1109/IJCNN.2018.8489489
– ident: e_1_2_7_30_1
  doi: 10.1109/INFCOMW.2018.8407032
– ident: e_1_2_7_15_1
  doi: 10.1007/s11235-017-0345-9
– ident: e_1_2_7_3_1
  doi: 10.1109/TII.2019.2922699
– ident: e_1_2_7_7_1
  doi: 10.1016/j.comnet.2018.03.012
– ident: e_1_2_7_6_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jisa.2018.05.002
– ident: e_1_2_7_11_1
  doi: 10.1093/comjnl/bxz064
– ident: e_1_2_7_16_1
  doi: 10.1109/SPW.2018.00013
– ident: e_1_2_7_9_1
  doi: 10.1109/PST.2016.7906930
SSID ssj0000752548
Score 2.5896401
Snippet The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title DL‐IDS: a deep learning–based intrusion detection framework for securing IoT
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3803
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFOUAjISgkOVZRPHeXBbsUUtagtSU6mcIj8mVSXYrdT00D31JyDxD_tLGNtxYsRWKlyiyBlZkefLjD2ZmY-QN5orlYCQUTYpmgj9cRlJDiJCQ8hTYCwpwAT09w-ynaP08zE_Ho2WYXVJK8dqubKu5H-0imOoV1Ml-w-a7SfFAbxH_eIVNYzXW-l4NuQq7M4OXd2yBjjzXBAn_jEzzsp0WTIlFkbhGlpwJOGNz86yCYfnLvx-srW7qMJ9azXQitv_C6as2NIbtYZHJywyOd9qfbQ-yE_80i4cofI3sQyygE4vujJ3PQweiEthTfT0x-mlCKMSeKDt07Kc8UpiE9cqXanmGFaMddbXtcHoUMYCP9x7qb-MvGsaC207ZsWEDY7M_7zvZfhNUtZ_b1eVeXKHrCd4xEAbuT6d7e8d9hE63Ezh6dlSGvoX992LJ8l7P_Ef-5nwfGM3KNUDcr87WdCpg8lDMoL5I3Iv6Df5mHyd7V1f_USofKCCGqBQD5Trq18WIrSHCO0hQnuIUIQI9RChCJEn5OjTdvVxJ-ooNSKVZJxFspA8zaEslZiAbjSwJleGZF4xxXOZ5lmqM52nEvI4hUJoofNSl1oLQyzQJOwpWZsv5vCMUK0UxII3okhFWuq41DJuComfe844zr5B3vmFqVXXb97QnnyvXafspMYlrM0SbpDXveSZ67GyQuatXdsbBepOnc9vK7hJ7g7AfUHWcHXhJW4wW_mqQ8JvPRx9XA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DL%E2%80%90IDS%3A+a+deep+learning%E2%80%93based+intrusion+detection+framework+for+securing+IoT&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Otoum%2C+Yazan&rft.au=Liu%2C+Dandan&rft.au=Nayak%2C+Amiya&rft.date=2022-03-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3803&rft.externalDBID=10.1002%252Fett.3803&rft.externalDocID=ETT3803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon