DL‐IDS: a deep learning–based intrusion detection framework for securing IoT
The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and w...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 33; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.03.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and wearables. As reported in IHS Markit (see https://technology.ihs.com), the number of connected devices is projected to jump from approximately 27 billion in 2017 to 125 billion in 2030, an average annual increment of 12%. Security is a critical issue in today's IoT field because of the nature of the architecture, the types of devices, different methods of communication (mainly wireless), and the volume of data being transmitted over the network. Security becomes even more important as the number of devices connected to the IoT increases. To overcome the challenges of securing IoT devices, we propose a new deep learning–based intrusion detection system (DL‐IDS) to detect security threats in IoT environments. There are many IDSs in the literature, but they lack optimal features learning and data set management, which are significant issues that affect the accuracy of attack detection. Our proposed module combines the spider monkey optimization (SMO) algorithm and the stacked‐deep polynomial network (SDPN) to achieve optimal detection recognition; SMO selects the optimal features in the data sets and SDPN classifies the data as normal or anomalies. The types of anomalies detected by DL‐IDS include denial of service (DoS), user‐to‐root (U2R) attack, probe attack, and remote‐to‐local (R2L) attack. Extensive analysis indicates that the proposed DL‐IDS achieves better performance in terms of accuracy, precision, recall, and F‐score.
The paper proposes a novel DL‐IDS to identify severe anomalies. An SMO algorithm is used to extract the most relevant features from the data set. An SDPN is then applied to identify the optimal features and classify the data as normal or anomalous in different attack categories (eg, DoS, U2R, R2L, and probe). DL‐IDS system achieved superior results; in accuracy (99.02%), precision (99.38%), recall (98.91%), and F1‐score (99.14%) using the NSL‐;KDD data set. |
---|---|
AbstractList | The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and wearables. As reported in IHS Markit (see https://technology.ihs.com), the number of connected devices is projected to jump from approximately 27 billion in 2017 to 125 billion in 2030, an average annual increment of 12%. Security is a critical issue in today's IoT field because of the nature of the architecture, the types of devices, different methods of communication (mainly wireless), and the volume of data being transmitted over the network. Security becomes even more important as the number of devices connected to the IoT increases. To overcome the challenges of securing IoT devices, we propose a new deep learning–based intrusion detection system (DL‐IDS) to detect security threats in IoT environments. There are many IDSs in the literature, but they lack optimal features learning and data set management, which are significant issues that affect the accuracy of attack detection. Our proposed module combines the spider monkey optimization (SMO) algorithm and the stacked‐deep polynomial network (SDPN) to achieve optimal detection recognition; SMO selects the optimal features in the data sets and SDPN classifies the data as normal or anomalies. The types of anomalies detected by DL‐IDS include denial of service (DoS), user‐to‐root (U2R) attack, probe attack, and remote‐to‐local (R2L) attack. Extensive analysis indicates that the proposed DL‐IDS achieves better performance in terms of accuracy, precision, recall, and F‐score.
The paper proposes a novel DL‐IDS to identify severe anomalies. An SMO algorithm is used to extract the most relevant features from the data set. An SDPN is then applied to identify the optimal features and classify the data as normal or anomalous in different attack categories (eg, DoS, U2R, R2L, and probe). DL‐IDS system achieved superior results; in accuracy (99.02%), precision (99.38%), recall (98.91%), and F1‐score (99.14%) using the NSL‐;KDD data set. The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the number of IoT applications has increased dramatically, including smart homes, vehicular ad hoc network (VANETs), health care, smart cities, and wearables. As reported in IHS Markit (see https://technology.ihs.com ), the number of connected devices is projected to jump from approximately 27 billion in 2017 to 125 billion in 2030, an average annual increment of 12%. Security is a critical issue in today's IoT field because of the nature of the architecture, the types of devices, different methods of communication (mainly wireless), and the volume of data being transmitted over the network. Security becomes even more important as the number of devices connected to the IoT increases. To overcome the challenges of securing IoT devices, we propose a new deep learning–based intrusion detection system (DL‐IDS) to detect security threats in IoT environments. There are many IDSs in the literature, but they lack optimal features learning and data set management, which are significant issues that affect the accuracy of attack detection. Our proposed module combines the spider monkey optimization (SMO) algorithm and the stacked‐deep polynomial network (SDPN) to achieve optimal detection recognition; SMO selects the optimal features in the data sets and SDPN classifies the data as normal or anomalies. The types of anomalies detected by DL‐IDS include denial of service (DoS), user‐to‐root (U2R) attack, probe attack, and remote‐to‐local (R2L) attack. Extensive analysis indicates that the proposed DL‐IDS achieves better performance in terms of accuracy, precision, recall, and F‐score. |
Author | Liu, Dandan Otoum, Yazan Nayak, Amiya |
Author_xml | – sequence: 1 givenname: Yazan orcidid: 0000-0002-5500-3060 surname: Otoum fullname: Otoum, Yazan email: yazan.otoum@uottawa.ca organization: University of Ottawa – sequence: 2 givenname: Dandan surname: Liu fullname: Liu, Dandan organization: Wuhan University – sequence: 3 givenname: Amiya surname: Nayak fullname: Nayak, Amiya organization: University of Ottawa |
BookMark | eNp1kN9KwzAUxoNMcM6Bj5BLbzqTJmla72Tzz2CgYL0uaXIi1a4dScbY3R5B8A33JLbOCxE9N-eD830fnN8pGjRtAwidUzKhhMSXEMKEpYQdoWFMExqxjIrBD32Cxt6_km6kiAVPh-hxttjv3uezpyussAFY4RqUa6rmZb_7KJUHg6smuLWv2qa7B9ChV9apJWxa94Zt67AHvXZdBM_b_AwdW1V7GH_vEXq-vcmn99Hi4W4-vV5EOk4Ei8q0FFxClmlFwFgDzEot4iTTTAtZcplwkxjJS5CUQ6qMMjIzmTGK8SyxMRuhi0Ovdq33DmyxctVSuW1BSdHDKDoYRQ-js05-WXUVVP9HcKqq_wpEh8CmqmH7b3Fxk-df_k9xMXSR |
CitedBy_id | crossref_primary_10_1007_s10922_021_09589_6 crossref_primary_10_3390_technologies13030121 crossref_primary_10_1109_ACCESS_2021_3087201 crossref_primary_10_1007_s10586_021_03388_z crossref_primary_10_26599_TST_2023_9010033 crossref_primary_10_3390_s21196346 crossref_primary_10_3390_app13179937 crossref_primary_10_1109_ACCESS_2022_3172304 crossref_primary_10_1007_s11042_024_18919_0 crossref_primary_10_1007_s11042_023_16853_1 crossref_primary_10_1016_j_jisa_2022_103196 crossref_primary_10_3390_electronics11213541 crossref_primary_10_3390_electronics12194050 crossref_primary_10_1016_j_cose_2023_103297 crossref_primary_10_1007_s11042_024_19617_7 crossref_primary_10_1007_s12652_021_03169_x crossref_primary_10_1109_ACCESS_2024_3375878 crossref_primary_10_1186_s40537_024_00957_y crossref_primary_10_1080_00051144_2023_2269646 crossref_primary_10_3390_app11125713 crossref_primary_10_3390_iot2030022 crossref_primary_10_1109_ACCESS_2024_3369915 crossref_primary_10_1016_j_iot_2023_100709 crossref_primary_10_1109_TSE_2024_3363611 crossref_primary_10_18359_rcin_6534 crossref_primary_10_1109_COMST_2022_3233793 crossref_primary_10_1002_cpe_7401 crossref_primary_10_1016_j_eswa_2022_119330 crossref_primary_10_1007_s11235_024_01237_z crossref_primary_10_1007_s00500_023_09452_7 crossref_primary_10_32604_cmc_2024_046396 crossref_primary_10_1007_s11227_024_06737_y crossref_primary_10_35940_ijrte_E8182_13050125 crossref_primary_10_1080_19393555_2023_2218852 crossref_primary_10_3390_a15070239 crossref_primary_10_1109_JIOT_2023_3288544 crossref_primary_10_1002_ett_4757 crossref_primary_10_1155_2024_3909173 crossref_primary_10_1080_00051144_2024_2304369 crossref_primary_10_3934_mbe_2023602 crossref_primary_10_3233_JIFS_221351 crossref_primary_10_1111_exsy_13726 crossref_primary_10_1007_s42979_024_03429_5 crossref_primary_10_1007_s10462_023_10437_z crossref_primary_10_1007_s11227_024_06915_y crossref_primary_10_1080_09540091_2022_2149698 crossref_primary_10_1109_TII_2023_3314208 crossref_primary_10_1155_2024_5551759 crossref_primary_10_1007_s12065_024_00949_0 crossref_primary_10_1007_s10586_024_04310_z crossref_primary_10_1007_s10586_024_04495_3 crossref_primary_10_3390_electronics13214153 crossref_primary_10_32604_iasc_2023_035874 crossref_primary_10_1109_ACCESS_2022_3145002 crossref_primary_10_3390_s22124459 crossref_primary_10_1109_JIOT_2021_3088056 crossref_primary_10_1002_ett_4522 crossref_primary_10_3390_app131910977 crossref_primary_10_53759_7669_jmc202404073 crossref_primary_10_3390_electronics12041044 crossref_primary_10_1109_ACCESS_2022_3161566 crossref_primary_10_3390_electronics9101565 crossref_primary_10_1016_j_procs_2024_11_089 crossref_primary_10_1038_s41598_023_42678_x crossref_primary_10_3390_electronics13163210 crossref_primary_10_37391_ijeer_120308 crossref_primary_10_1109_ACCESS_2022_3195053 crossref_primary_10_1016_j_eswa_2023_121912 crossref_primary_10_1007_s11042_024_20059_4 crossref_primary_10_1109_ACCESS_2024_3493384 crossref_primary_10_1002_dac_5661 crossref_primary_10_1109_ACCESS_2022_3220622 crossref_primary_10_1109_ACCESS_2023_3241588 crossref_primary_10_1007_s11036_021_01892_5 crossref_primary_10_1016_j_iotcps_2023_09_003 crossref_primary_10_1109_MIC_2023_3264700 crossref_primary_10_1142_S0218213023500653 crossref_primary_10_1002_cpe_7134 crossref_primary_10_1016_j_ins_2023_03_052 crossref_primary_10_32604_cmc_2023_043173 crossref_primary_10_1007_s00500_023_09610_x crossref_primary_10_22144_ctujoisd_2023_030 crossref_primary_10_1109_JIOT_2024_3384374 crossref_primary_10_1109_TNSM_2022_3193099 crossref_primary_10_1007_s00521_024_10306_y crossref_primary_10_1186_s13677_023_00527_2 crossref_primary_10_1007_s11277_024_11009_2 crossref_primary_10_1142_S1756973724500021 crossref_primary_10_61186_jist_44500_12_46_90 crossref_primary_10_1109_ACCESS_2024_3476136 crossref_primary_10_1155_2020_6689134 crossref_primary_10_3390_inventions8050122 crossref_primary_10_3390_math11194080 crossref_primary_10_1002_ett_4149 crossref_primary_10_1002_itl2_640 crossref_primary_10_1109_ACCESS_2022_3153716 crossref_primary_10_3390_electronics11091502 crossref_primary_10_1002_ett_4287 crossref_primary_10_1016_j_iotcps_2023_12_003 crossref_primary_10_3233_WEB_230109A crossref_primary_10_1002_cpe_7445 crossref_primary_10_1109_ACCESS_2024_3442529 crossref_primary_10_3390_s22176617 crossref_primary_10_1007_s41870_024_02026_2 crossref_primary_10_1016_j_measen_2024_101263 crossref_primary_10_1007_s10115_024_02162_y crossref_primary_10_7717_peerj_cs_721 crossref_primary_10_1109_TCE_2023_3277856 crossref_primary_10_3390_a16020075 crossref_primary_10_1109_MSMC_2023_3344943 crossref_primary_10_3390_electronics13061004 crossref_primary_10_1007_s10586_022_03607_1 crossref_primary_10_1109_ACCESS_2020_3012411 crossref_primary_10_1007_s12083_024_01721_y crossref_primary_10_1109_TCE_2024_3367330 crossref_primary_10_1016_j_iotcps_2024_01_003 crossref_primary_10_3390_s22186806 crossref_primary_10_3390_app13052894 crossref_primary_10_1007_s10586_024_04365_y crossref_primary_10_1016_j_cose_2023_103315 crossref_primary_10_1007_s13042_025_02544_w crossref_primary_10_1002_ett_4609 crossref_primary_10_1007_s12008_023_01671_4 crossref_primary_10_1109_JIOT_2022_3224649 crossref_primary_10_1002_ett_3999 crossref_primary_10_1002_ett_4567 |
Cites_doi | 10.1109/ICC.2019.8761658 10.3390/jsan8010016 10.1007/s12293-013-0128-0 10.1007/s10916-018-1045-z 10.1145/2820975.2820980 10.1109/CISDA.2009.5356528 10.1016/j.future.2018.03.007 10.1016/j.future.2017.08.043 10.1109/ICC.2018.8422832 10.1109/MCOM.2018.1700332 10.1109/MNET.2018.1700202 10.1016/j.comcom.2019.09.010 10.1016/j.neucom.2016.01.074 10.1109/JIOT.2017.2683200 10.1016/j.adhoc.2019.02.001 10.1109/ISBI.2016.7493399 10.3390/s19081788 10.1109/TSUSC.2018.2809665 10.1109/IJCNN.2018.8489489 10.1109/INFCOMW.2018.8407032 10.1007/s11235-017-0345-9 10.1109/TII.2019.2922699 10.1016/j.comnet.2018.03.012 10.1016/j.jisa.2018.05.002 10.1093/comjnl/bxz064 10.1109/SPW.2018.00013 10.1109/PST.2016.7906930 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.3803 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_3803 ETT3803 |
Genre | article |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2653-b8b547e99ca0edfde3f7c5269c3c57b4764d6d74be714e8adad79d9dda3496f23 |
ISSN | 2161-3915 |
IngestDate | Thu Apr 24 23:07:10 EDT 2025 Tue Jul 01 03:49:22 EDT 2025 Wed Jan 22 16:26:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2653-b8b547e99ca0edfde3f7c5269c3c57b4764d6d74be714e8adad79d9dda3496f23 |
ORCID | 0000-0002-5500-3060 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1002_ett_3803 crossref_citationtrail_10_1002_ett_3803 wiley_primary_10_1002_ett_3803_ETT3803 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2022 |
References | 2019; 8 2018; 141 2019; 4 2017; 3 2017; 4 2019; 148 2009 2019 2019; 19 2018 2016 2018; 41 2018; 85 2015 2018; 82 2018; 67 2018; 56 2018; 32 2018; 42 2014; 6 2016; 194 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Tama BA (e_1_2_7_21_1) 2017; 3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_20_1 Kotb Y (e_1_2_7_5_1) 2019 |
References_xml | – year: 2019 article-title: An intrusion detection system for connected vehicles in smart cities publication-title: Ad Hoc Netw – year: 2009 – year: 2019 article-title: A profitable and energy‐efficient cooperative fog solution for IoT services publication-title: IEEE Trans Ind Inform – volume: 41 start-page: 1 year: 2018 end-page: 11 article-title: Identification of malicious activities in industrial Internet of Things based on deep learning models publication-title: J Inf Secur Appl – volume: 67 start-page: 423 issue: 3 year: 2018 end-page: 441 article-title: Security in Internet of Things: issues, challenges, taxonomy, and architecture publication-title: Telecommunication Systems – volume: 3 year: 2017 article-title: Attack classification analysis of IoT network via deep learning approach publication-title: Res Br Inf Commun Technol Evol – volume: 4 start-page: 88 year: 2019 end-page: 95 article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning publication-title: IEEE Trans Sustain Comput – volume: 194 start-page: 87 year: 2016 end-page: 94 article-title: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset publication-title: Neurocomputing – volume: 8 start-page: 16 issue: 1 year: 2019 article-title: A mechanism for securing IoT‐enabled applications at the fog layer publication-title: J Sens Actuator Netw – volume: 141 start-page: 199 year: 2018 end-page: 221 article-title: Internet of Things security: a top‐down survey publication-title: Computer Networks – volume: 4 start-page: 1125 issue: 5 year: 2017 end-page: 1142 article-title: A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications publication-title: IEEE Internet Things J – volume: 42 start-page: 186 year: 2018 article-title: Maintaining security privacy in health care system using learning based deep‐q‐networks publication-title: J Med Syst – volume: 56 start-page: 169 issue: 2 year: 2018 end-page: 175 article-title: Deep learning: the frontier for distributed attack detection in fog‐to‐things computing publication-title: IEEE Commun Mag – year: 2016 – year: 2018 – volume: 6 start-page: 31 issue: 1 year: 2014 end-page: 47 article-title: Spider monkey optimization algorithm for numerical optimization publication-title: Memetic Computing – volume: 85 start-page: 88 year: 2018 end-page: 96 article-title: A deep Recurrent Neural Network based approach for Internet of Things malware threat hunting publication-title: Future Gener Comput Syst – start-page: 1 year: 2019 end-page: 26 article-title: Cloud‐based multi‐agent cooperation for IoT devices using workflow‐nets publication-title: J Grid Comput – year: 2019 article-title: DeepDetect: detection of distributed denial of service attacks using deep learning publication-title: Comput J – volume: 19 start-page: 1788 issue: 8 year: 2019 article-title: The security of big data in fog‐enabled IoT applications including blockchain: a survey publication-title: Sensors – volume: 148 start-page: 86 year: 2019 end-page: 97 article-title: QoS enhancement with deep learning‐based interference prediction in mobile IoT publication-title: Computer Communications – volume: 32 start-page: 96 issue: 1 year: 2018 end-page: 101 article-title: Learning IoT in edge: deep learning for the Internet of Things with edge computing publication-title: IEEE Network – year: 2019 – year: 2015 – volume: 82 start-page: 761 year: 2018 end-page: 768 article-title: Distributed attack detection scheme using deep learning approach for Internet of Things publication-title: Future Gener Comput Syst – ident: e_1_2_7_2_1 doi: 10.1109/ICC.2019.8761658 – ident: e_1_2_7_4_1 doi: 10.3390/jsan8010016 – ident: e_1_2_7_26_1 doi: 10.1007/s12293-013-0128-0 – ident: e_1_2_7_22_1 doi: 10.1007/s10916-018-1045-z – ident: e_1_2_7_18_1 doi: 10.1145/2820975.2820980 – ident: e_1_2_7_29_1 doi: 10.1109/CISDA.2009.5356528 – ident: e_1_2_7_20_1 doi: 10.1016/j.future.2018.03.007 – ident: e_1_2_7_31_1 doi: 10.1016/j.future.2017.08.043 – ident: e_1_2_7_19_1 doi: 10.1109/ICC.2018.8422832 – volume: 3 year: 2017 ident: e_1_2_7_21_1 article-title: Attack classification analysis of IoT network via deep learning approach publication-title: Res Br Inf Commun Technol Evol – ident: e_1_2_7_25_1 doi: 10.1109/MCOM.2018.1700332 – ident: e_1_2_7_17_1 doi: 10.1109/MNET.2018.1700202 – ident: e_1_2_7_12_1 doi: 10.1016/j.comcom.2019.09.010 – ident: e_1_2_7_27_1 doi: 10.1016/j.neucom.2016.01.074 – ident: e_1_2_7_14_1 doi: 10.1109/JIOT.2017.2683200 – ident: e_1_2_7_13_1 doi: 10.1016/j.adhoc.2019.02.001 – ident: e_1_2_7_28_1 doi: 10.1109/ISBI.2016.7493399 – ident: e_1_2_7_8_1 doi: 10.3390/s19081788 – start-page: 1 year: 2019 ident: e_1_2_7_5_1 article-title: Cloud‐based multi‐agent cooperation for IoT devices using workflow‐nets publication-title: J Grid Comput – ident: e_1_2_7_23_1 doi: 10.1109/TSUSC.2018.2809665 – ident: e_1_2_7_32_1 – ident: e_1_2_7_24_1 doi: 10.1109/IJCNN.2018.8489489 – ident: e_1_2_7_30_1 doi: 10.1109/INFCOMW.2018.8407032 – ident: e_1_2_7_15_1 doi: 10.1007/s11235-017-0345-9 – ident: e_1_2_7_3_1 doi: 10.1109/TII.2019.2922699 – ident: e_1_2_7_7_1 doi: 10.1016/j.comnet.2018.03.012 – ident: e_1_2_7_6_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.jisa.2018.05.002 – ident: e_1_2_7_11_1 doi: 10.1093/comjnl/bxz064 – ident: e_1_2_7_16_1 doi: 10.1109/SPW.2018.00013 – ident: e_1_2_7_9_1 doi: 10.1109/PST.2016.7906930 |
SSID | ssj0000752548 |
Score | 2.5896401 |
Snippet | The Internet of Things (IoT) is comprised of numerous devices connected through wired or wireless networks, including sensors and actuators. Recently, the... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | DL‐IDS: a deep learning–based intrusion detection framework for securing IoT |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3803 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFOUAjISgkOVZRPHeXBbsUUtagtSU6mcIj8mVSXYrdT00D31JyDxD_tLGNtxYsRWKlyiyBlZkefLjD2ZmY-QN5orlYCQUTYpmgj9cRlJDiJCQ8hTYCwpwAT09w-ynaP08zE_Ho2WYXVJK8dqubKu5H-0imOoV1Ml-w-a7SfFAbxH_eIVNYzXW-l4NuQq7M4OXd2yBjjzXBAn_jEzzsp0WTIlFkbhGlpwJOGNz86yCYfnLvx-srW7qMJ9azXQitv_C6as2NIbtYZHJywyOd9qfbQ-yE_80i4cofI3sQyygE4vujJ3PQweiEthTfT0x-mlCKMSeKDt07Kc8UpiE9cqXanmGFaMddbXtcHoUMYCP9x7qb-MvGsaC207ZsWEDY7M_7zvZfhNUtZ_b1eVeXKHrCd4xEAbuT6d7e8d9hE63Ezh6dlSGvoX992LJ8l7P_Ef-5nwfGM3KNUDcr87WdCpg8lDMoL5I3Iv6Df5mHyd7V1f_USofKCCGqBQD5Trq18WIrSHCO0hQnuIUIQI9RChCJEn5OjTdvVxJ-ooNSKVZJxFspA8zaEslZiAbjSwJleGZF4xxXOZ5lmqM52nEvI4hUJoofNSl1oLQyzQJOwpWZsv5vCMUK0UxII3okhFWuq41DJuComfe844zr5B3vmFqVXXb97QnnyvXafspMYlrM0SbpDXveSZ67GyQuatXdsbBepOnc9vK7hJ7g7AfUHWcHXhJW4wW_mqQ8JvPRx9XA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DL%E2%80%90IDS%3A+a+deep+learning%E2%80%93based+intrusion+detection+framework+for+securing+IoT&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Otoum%2C+Yazan&rft.au=Liu%2C+Dandan&rft.au=Nayak%2C+Amiya&rft.date=2022-03-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3803&rft.externalDBID=10.1002%252Fett.3803&rft.externalDocID=ETT3803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |