1.4 µm-Thick Transparent Radio Frequency Transmission Lines Based on Instant Fusion of Polyethylene Terephthalate Through Surface of Ag Nanowires

Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has be...

Full description

Saved in:
Bibliographic Details
Published inElectronic materials letters Vol. 14; no. 5; pp. 599 - 609
Main Authors Kim, Sang-Woo, Kim, Kwang-Seok, Park, Myeongkoo, Nah, Wansoo, Kim, Dae Up, Lee, Cheul-Ro, Jung, Seung-Boo, Kim, Jong-Woong
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.09.2018
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1738-8090
2093-6788
DOI10.1007/s13391-018-0069-3

Cover

Abstract Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency. Graphical Abstract
AbstractList Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency.Graphical Abstract
Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency. Graphical Abstract
Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrodebecause of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmissionlines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremelythin (1.4 μm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmissionlines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 μm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light toselectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the activediffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physicalshape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlyingpolymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWsand the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricatedelectrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency. KCI Citation Count: 4
Author Kim, Kwang-Seok
Nah, Wansoo
Kim, Sang-Woo
Lee, Cheul-Ro
Kim, Dae Up
Jung, Seung-Boo
Kim, Jong-Woong
Park, Myeongkoo
Author_xml – sequence: 1
  givenname: Sang-Woo
  surname: Kim
  fullname: Kim, Sang-Woo
  organization: SKKU Advanced Institute of Nano Technology, Sungkyunkwan University
– sequence: 2
  givenname: Kwang-Seok
  surname: Kim
  fullname: Kim, Kwang-Seok
  organization: Carbon and Light Materials Application Group, Korea Institute of Industrial Technology
– sequence: 3
  givenname: Myeongkoo
  surname: Park
  fullname: Park, Myeongkoo
  organization: College of Information and Communication Engineering, Sungkyunkwan University
– sequence: 4
  givenname: Wansoo
  surname: Nah
  fullname: Nah, Wansoo
  organization: College of Information and Communication Engineering, Sungkyunkwan University
– sequence: 5
  givenname: Dae Up
  surname: Kim
  fullname: Kim, Dae Up
  organization: Carbon and Light Materials Application Group, Korea Institute of Industrial Technology
– sequence: 6
  givenname: Cheul-Ro
  surname: Lee
  fullname: Lee, Cheul-Ro
  organization: School of Advanced Materials Engineering, Chonbuk National University
– sequence: 7
  givenname: Seung-Boo
  surname: Jung
  fullname: Jung, Seung-Boo
  email: sbjung@skku.edu
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 8
  givenname: Jong-Woong
  orcidid: 0000-0003-4010-056X
  surname: Kim
  fullname: Kim, Jong-Woong
  email: wyjd@jbnu.ac.kr
  organization: School of Advanced Materials Engineering, Chonbuk National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002380823$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kUtuFDEQhi0UJIaQA7CzxIpFBz_64V4OEQMjjQgKzdpy3OVpZ3rswXYrmnNwAS7BBXIyPGkkpEiwKpXq-0ql-l-iM-cdIPSakktKSPMuUs5bWhAqCkLqtuDP0IKRlhd1I8QZWtCGi0KQlrxAFzHeEUIYp1XN-QL9oJflw8-HX_uiG6ze4S4oFw8qgEv4RvXW41WA7xM4fZxnexuj9Q5vrIOI36sIPc7t2sWksrOaHqfe4C9-PEIajiM4wB0EOAxpUKNKuRuCn7YD_joFozSc6OUWf1bO39sA8RV6btQY4eJPPUffVh-6q0_F5vrj-mq5KTSrK14oVRHD2pYxwbVujal71qqmb1pGzK02tCaCip6pHqAsSwM8k7da9ETUIBrBz9Hbea8LRu60lV7Zx7r1chfk8qZbS95UomZNZt_M7CH4_I6Y5J2fgsvnSUbqqiyreWMzUzr4GAMYqW1SKX8kBWVHSYk8BSbnwGQOTJ4Ckzyb9Il5CHavwvG_DpudmFm3hfD3pn9LvwHwAKwI
CitedBy_id crossref_primary_10_1002_admt_202101277
crossref_primary_10_1039_C9TA04634H
crossref_primary_10_1007_s13391_020_00213_4
crossref_primary_10_1021_acsami_8b20136
Cites_doi 10.1038/nature12314
10.1039/c2jm35545k
10.1038/nmat3238
10.1088/0957-4484/21/4/045301
10.1002/adfm.201202523
10.1016/j.jiec.2015.03.013
10.1038/pj.2011.20
10.1021/acsnano.5b01835
10.1002/adma.201100304
10.1039/C5TC04030B
10.1038/srep18298
10.1002/adfm.201700845
10.1038/nmat3755
10.1038/srep09464
10.1038/ncomms1772
10.1039/C4RA05691D
10.7567/JJAP.56.05EC01
10.1002/admt.201600062
10.1038/ncomms7080
10.1002/adfm.201501046
10.1039/C7TC01423F
10.1021/am405972e
10.1039/C6TA09779K
10.1039/c3nr03152g
10.1038/nphoton.2013.188
10.1021/acsami.5b09386
10.1021/acsami.6b14535
10.1039/c2nr30485f
10.1038/nnano.2013.84
10.1038/srep06074
10.1002/adma.201505381
10.1002/adma.201504441
10.1038/nnano.2015.324
10.1016/S1748-0132(07)70017-8
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Korean Institute of Metals and Materials 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
ACYCR
DOI 10.1007/s13391-018-0069-3
DatabaseName CrossRef
ProQuest Computer Science Collection
Korean Citation Index
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-6788
EndPage 609
ExternalDocumentID oai_kci_go_kr_ARTI_3758627
10_1007_s13391_018_0069_3
GroupedDBID -EM
06D
0R~
0VY
203
2KG
2VQ
30V
4.4
406
408
5GY
8UJ
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HZB
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z83
Z88
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
85H
ABRTQ
JQ2
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
ID FETCH-LOGICAL-c2653-aa50f2992283cc9ff6d29a7d7920fbcf160818d2adee444fe3228bc8d086e8783
IEDL.DBID U2A
ISSN 1738-8090
IngestDate Tue Nov 21 21:45:40 EST 2023
Wed Sep 17 13:52:03 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
Tue Jul 01 01:05:01 EDT 2025
Fri Feb 21 02:30:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Radio frequency
Transmission circuits
Ag nanowires
Flash light
Photoinduced
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2653-aa50f2992283cc9ff6d29a7d7920fbcf160818d2adee444fe3228bc8d086e8783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4010-056X
PQID 2065445878
PQPubID 2043637
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3758627
proquest_journals_2065445878
crossref_citationtrail_10_1007_s13391_018_0069_3
crossref_primary_10_1007_s13391_018_0069_3
springer_journals_10_1007_s13391_018_0069_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180900
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 9
  year: 2018
  text: 20180900
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Electronic materials letters
PublicationTitleAbbrev Electron. Mater. Lett
PublicationYear 2018
Publisher The Korean Institute of Metals and Materials
Springer Nature B.V
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: Springer Nature B.V
– name: 대한금속·재료학회
References Kaltenbrunner, White, Głowacki, Sekitani, Someya, Sariciftci, Bauer (CR13) 2012; 3
White, Kaltenbrunner, Głowacki, Gutnichenko, Kettlgruber, Graz, Aazou, Ulbricht, Egbe, Miron, Major, Scharber, Sekitani, Someya, Bauer, Sariciftci (CR14) 2013; 7
Pang, Hernandez, Feng, Müllen (CR9) 2011; 23
Ni, Liu, Wang, Yang (CR24) 2015; 28
Gotoh, Yasukawa, Kobayashi (CR26) 2011; 43
Jiu, Sugahara, Nogi, Araki, Suganuma, Uchida, Shinozaki (CR33) 2013; 5
Song, Myers, Adams, Zhu (CR12) 2014; 6
Pyo, Lee, Kim, Kim (CR34) 2016; 4
Ho, Ling, Yap, Wang, Dong, Zhao, Cheng (CR4) 2017; 27
Ok, Kim, Park, Kim, Lee, Hong, Kwak, Kim, Han, Kim (CR23) 2015; 5
Perez-Roldan, Debarnot, Poncin-Epaillard (CR27) 2014; 4
Hwang, Lee, Trung, Roh, Kim, Kim, Lee (CR3) 2015; 9
Jiu, Nogi, Sugahara, Tokuno, Araki, Komoda, Suganuma, Uchida, Shinozaki (CR32) 2012; 22
Komoda, Nogi, Suganuma, Kohno, Akiyama, Otsuka (CR21) 2012; 4
Govorov, Richardson (CR29) 2007; 2
Lee, Byeon, Lee, Baek, Lee, Hong, Lee (CR10) 2014; 4
Han, Park, Oh, Jung, Kim (CR11) 2017; 5
Lee, Reuveny, Reeder, Lee, Jin, Liu, Yokota, Sekitani, Isoyama, Abe, Suo, Someya (CR2) 2016; 11
Song, Han, Ju, Kim (CR31) 2016; 8
Trung, Ramasundaram, Hwang, Lee (CR5) 2016; 28
Wu, Kong, Ruan, Hsu, Wang, Yu, Carney, Hu, Fan, Cui (CR8) 2013; 8
Reuveny, Lee, Yokota, Fuketa, Siket, Lee, Sekitani, Sakurai, Bauer, Someya (CR15) 2016; 28
Krantz, Stubhan, Richter, Spallek, Litzov, Matt, Spiecker, Brabec (CR7) 2013; 23
Melzer, Kaltenbrunner, Makarov, Karnaushenko, Karnaushenko, Sekitani, Someya, Schmidt (CR16) 2015; 6
Garnett, Cai, Cha, Mahmood, Connor, Christoforo, Cui, McGehee, Brongersma (CR30) 2012; 11
You, Kim, Ju, Kim (CR6) 2017; 9
Jun, Han, Kim, Ju, Kim (CR25) 2017; 5
Jun, Ju, Kim (CR28) 2016; 1
Huang, Leng, Zhu, Zhang, Chen, Chang, Aqeeli, Geim, Novoselov, Hu (CR20) 2016; 5
Kaltenbrunner, Sekitan, Reeder, Yokota, Kuribara, Tokuhara, Drack, Schwödiauer, Graz, Bauer-Gogonea, Bauer, Someya (CR18) 2013; 499
Kim, Ryu, Ok, Kwak, Park, Park, Han, Kim, Ko, Son, Kim (CR22) 2015; 25
Webb, Bonifas, Behnaz, Zhang, Yu, Cheng, Shi, Bian, Liu, Kim (CR1) 2013; 12
Elwi, Al-Rizzo, Rucker, Dervishi, Li, Biris (CR19) 2010; 21
Hayata, Okamoto, Takeoka, Iwase, Fujie, Iwata (CR17) 2017; 56
M Kaltenbrunner (69_CR13) 2012; 3
MD Ho (69_CR4) 2017; 27
J Jiu (69_CR32) 2012; 22
S Jun (69_CR28) 2016; 1
CJ Han (69_CR11) 2017; 5
K Gotoh (69_CR26) 2011; 43
A Reuveny (69_CR15) 2016; 28
N Komoda (69_CR21) 2012; 4
MS White (69_CR14) 2013; 7
CH Song (69_CR31) 2016; 8
MJ Perez-Roldan (69_CR27) 2014; 4
S Pang (69_CR9) 2011; 23
H Hayata (69_CR17) 2017; 56
J Jiu (69_CR33) 2013; 5
S Jun (69_CR25) 2017; 5
BU Hwang (69_CR3) 2015; 9
B You (69_CR6) 2017; 9
J Krantz (69_CR7) 2013; 23
X Huang (69_CR20) 2016; 5
TQ Trung (69_CR5) 2016; 28
K-H Ok (69_CR23) 2015; 5
Y Kim (69_CR22) 2015; 25
EC Garnett (69_CR30) 2012; 11
L Song (69_CR12) 2014; 6
H Wu (69_CR8) 2013; 8
H Ni (69_CR24) 2015; 28
S Lee (69_CR2) 2016; 11
SM Lee (69_CR10) 2014; 4
AO Govorov (69_CR29) 2007; 2
K Pyo (69_CR34) 2016; 4
M Kaltenbrunner (69_CR18) 2013; 499
TA Elwi (69_CR19) 2010; 21
M Melzer (69_CR16) 2015; 6
RC Webb (69_CR1) 2013; 12
References_xml – volume: 499
  start-page: 458
  year: 2013
  end-page: 463
  ident: CR18
  article-title: An ultra-lightweight design for imperceptible plastic electronics
  publication-title: Nature
  doi: 10.1038/nature12314
– volume: 22
  start-page: 23561
  year: 2012
  end-page: 23567
  ident: CR32
  article-title: Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35545k
– volume: 11
  start-page: 241
  year: 2012
  end-page: 249
  ident: CR30
  article-title: Self-limited plasmonic welding of silver nanowire junctions
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3238
– volume: 21
  start-page: 045301
  year: 2010
  ident: CR19
  article-title: Multi-walled carbon nanotube-based RF antennas
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/4/045301
– volume: 23
  start-page: 1711
  year: 2013
  end-page: 1717
  ident: CR7
  article-title: Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202523
– volume: 28
  start-page: 16
  year: 2015
  end-page: 27
  ident: CR24
  article-title: A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.03.013
– volume: 43
  start-page: 545
  year: 2011
  end-page: 551
  ident: CR26
  article-title: Wettability characteristics of poly(ethylene terephthalate) films treated by atmospheric pressure plasma and ultraviolet excimer light
  publication-title: Polym. J.
  doi: 10.1038/pj.2011.20
– volume: 9
  start-page: 8801
  year: 2015
  end-page: 8810
  ident: CR3
  article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01835
– volume: 23
  start-page: 2779
  year: 2011
  end-page: 2795
  ident: CR9
  article-title: Graphene as transparent electrode material for organic electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100304
– volume: 4
  start-page: 972
  year: 2016
  end-page: 977
  ident: CR34
  article-title: Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels–Alder network
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04030B
– volume: 5
  start-page: 18298
  year: 2016
  ident: CR20
  article-title: Highly flexible and conductive printed graphene for wireless wearable communications applications
  publication-title: Sci. Rep.
  doi: 10.1038/srep18298
– volume: 27
  start-page: 1700845
  year: 2017
  ident: CR4
  article-title: Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700845
– volume: 12
  start-page: 938
  year: 2013
  ident: CR1
  article-title: Ultrathin conformal devices for precise and continuous thermal characterization of human skin
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3755
– volume: 5
  start-page: 9464
  year: 2015
  ident: CR23
  article-title: Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes
  publication-title: Sci. Rep.
  doi: 10.1038/srep09464
– volume: 3
  start-page: 770
  year: 2012
  ident: CR13
  article-title: Ultrathin and lightweight organic solar cells with high flexibility
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1772
– volume: 4
  start-page: 31409
  year: 2014
  end-page: 31415
  ident: CR27
  article-title: Processing of plasma-modified and polymer-grafted hydrophilic PET surfaces, and study of their aging and bioadhesive properties
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05691D
– volume: 56
  start-page: 05EC01
  year: 2017
  ident: CR17
  article-title: Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.05EC01
– volume: 1
  start-page: 1600062
  year: 2016
  ident: CR28
  article-title: Ultra-facile fabrication of stretchable and transparent capacitive sensor employing photo-assisted patterning of silver nanowire networks
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600062
– volume: 6
  start-page: 6080
  year: 2015
  ident: CR16
  article-title: Imperceptible magnetoelectronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7080
– volume: 25
  start-page: 4580
  year: 2015
  end-page: 4589
  ident: CR22
  article-title: Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501046
– volume: 5
  start-page: 9986
  year: 2017
  end-page: 9994
  ident: CR11
  article-title: Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01423F
– volume: 6
  start-page: 4248
  year: 2014
  end-page: 4253
  ident: CR12
  article-title: Stretchable and reversibly deformable radio frequency antennas based on silver nanowires
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405972e
– volume: 5
  start-page: 3221
  year: 2017
  end-page: 3229
  ident: CR25
  article-title: A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09779K
– volume: 5
  start-page: 11820
  year: 2013
  end-page: 11828
  ident: CR33
  article-title: High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: the effect of the thermal properties of substrates on the performance of silver films
  publication-title: Nanoscale
  doi: 10.1039/c3nr03152g
– volume: 7
  start-page: 811
  year: 2013
  end-page: 816
  ident: CR14
  article-title: Ultrathin, highly flexible and stretchable PLEDs
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.188
– volume: 8
  start-page: 480
  year: 2016
  end-page: 489
  ident: CR31
  article-title: Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.5b09386
– volume: 9
  start-page: 5486
  year: 2017
  end-page: 5494
  ident: CR6
  article-title: Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14535
– volume: 4
  start-page: 3148
  year: 2012
  end-page: 3153
  ident: CR21
  article-title: Printed silver nanowire antennas with low signal loss at high-frequency radio
  publication-title: Nanoscale
  doi: 10.1039/c2nr30485f
– volume: 8
  start-page: 421
  year: 2013
  end-page: 425
  ident: CR8
  article-title: A transparent electrode based on a metal nanotrough network
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.84
– volume: 4
  start-page: 6074
  year: 2014
  ident: CR10
  article-title: Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals
  publication-title: Sci. Rep.
  doi: 10.1038/srep06074
– volume: 28
  start-page: 3298
  year: 2016
  end-page: 3304
  ident: CR15
  article-title: High-frequency, conformable organic amplifiers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505381
– volume: 28
  start-page: 502
  year: 2016
  end-page: 509
  ident: CR5
  article-title: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504441
– volume: 11
  start-page: 472
  year: 2016
  ident: CR2
  article-title: A transparent bending-insensitive pressure sensor
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.324
– volume: 2
  start-page: 30
  year: 2007
  end-page: 38
  ident: CR29
  article-title: Generating heat with metal nanoparticles
  publication-title: Nanotoday
  doi: 10.1016/S1748-0132(07)70017-8
– volume: 3
  start-page: 770
  year: 2012
  ident: 69_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1772
– volume: 56
  start-page: 05EC01
  year: 2017
  ident: 69_CR17
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.05EC01
– volume: 5
  start-page: 9464
  year: 2015
  ident: 69_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/srep09464
– volume: 1
  start-page: 1600062
  year: 2016
  ident: 69_CR28
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600062
– volume: 12
  start-page: 938
  year: 2013
  ident: 69_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3755
– volume: 27
  start-page: 1700845
  year: 2017
  ident: 69_CR4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700845
– volume: 7
  start-page: 811
  year: 2013
  ident: 69_CR14
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.188
– volume: 2
  start-page: 30
  year: 2007
  ident: 69_CR29
  publication-title: Nanotoday
  doi: 10.1016/S1748-0132(07)70017-8
– volume: 4
  start-page: 6074
  year: 2014
  ident: 69_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/srep06074
– volume: 6
  start-page: 4248
  year: 2014
  ident: 69_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405972e
– volume: 5
  start-page: 11820
  year: 2013
  ident: 69_CR33
  publication-title: Nanoscale
  doi: 10.1039/c3nr03152g
– volume: 9
  start-page: 5486
  year: 2017
  ident: 69_CR6
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14535
– volume: 21
  start-page: 045301
  year: 2010
  ident: 69_CR19
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/4/045301
– volume: 23
  start-page: 2779
  year: 2011
  ident: 69_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100304
– volume: 28
  start-page: 3298
  year: 2016
  ident: 69_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505381
– volume: 4
  start-page: 3148
  year: 2012
  ident: 69_CR21
  publication-title: Nanoscale
  doi: 10.1039/c2nr30485f
– volume: 22
  start-page: 23561
  year: 2012
  ident: 69_CR32
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35545k
– volume: 499
  start-page: 458
  year: 2013
  ident: 69_CR18
  publication-title: Nature
  doi: 10.1038/nature12314
– volume: 43
  start-page: 545
  year: 2011
  ident: 69_CR26
  publication-title: Polym. J.
  doi: 10.1038/pj.2011.20
– volume: 4
  start-page: 972
  year: 2016
  ident: 69_CR34
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04030B
– volume: 5
  start-page: 9986
  year: 2017
  ident: 69_CR11
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01423F
– volume: 25
  start-page: 4580
  year: 2015
  ident: 69_CR22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501046
– volume: 4
  start-page: 31409
  year: 2014
  ident: 69_CR27
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05691D
– volume: 8
  start-page: 480
  year: 2016
  ident: 69_CR31
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.5b09386
– volume: 23
  start-page: 1711
  year: 2013
  ident: 69_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202523
– volume: 28
  start-page: 502
  year: 2016
  ident: 69_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504441
– volume: 11
  start-page: 472
  year: 2016
  ident: 69_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.324
– volume: 11
  start-page: 241
  year: 2012
  ident: 69_CR30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3238
– volume: 5
  start-page: 18298
  year: 2016
  ident: 69_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/srep18298
– volume: 9
  start-page: 8801
  year: 2015
  ident: 69_CR3
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01835
– volume: 6
  start-page: 6080
  year: 2015
  ident: 69_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7080
– volume: 28
  start-page: 16
  year: 2015
  ident: 69_CR24
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.03.013
– volume: 8
  start-page: 421
  year: 2013
  ident: 69_CR8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.84
– volume: 5
  start-page: 3221
  year: 2017
  ident: 69_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09779K
SSID ssj0002315633
ssib031263255
Score 2.1208975
Snippet Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity,...
Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrodebecause of it high conductivity,...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 599
SubjectTerms Adhesion tests
Characterization and Evaluation of Materials
Chemistry and Materials Science
Circuit design
Condensed Matter Physics
Coplanar waveguides
Diffusion
Electrodes
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Nanowires
Optical and Electronic Materials
Polyethylene terephthalate
Reflectance
Silver
Transmission lines
Transmittance
전자/정보통신공학
Title 1.4 µm-Thick Transparent Radio Frequency Transmission Lines Based on Instant Fusion of Polyethylene Terephthalate Through Surface of Ag Nanowires
URI https://link.springer.com/article/10.1007/s13391-018-0069-3
https://www.proquest.com/docview/2065445878
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002380823
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Electronic Materials Letters, 2018, 14(5), , pp.599-609
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVou4EF4imGlspCrEBGie04yXJAHVpeQjAjlZXl-NGZznRSZTKLfgc_wE_wA_0y7s2jQxEgsYoiO4mSc30f8b3nEvIscUXqjDEsiWLHpJI5KyAQYkUSpxY8UhUaSqEPH9XhRL49To67Ou5Vn-3eb0k2mnpT7CYEZunEGUN6XSa2yE4CoTuuxgkf9kIkYmQg74otTxs-FwhRmpbycQqLO4vyq93NP931mn3aWlbhmuv5225pY4RGd8jtznukwxbuu-SGX94jt37hFLxPvsUv5eX3yx9nbDyd2Tlt2cux5Kumn42blXRUtenTF-0YAI1_zOh7TICnr8CqOQqnR43fWNPRuhktA_1ULi484Ap2ytOxr_z5tJ6aBTirdNx2-6Ff1lUw1uPs4QkFzV0iFfLqAZmMDsavD1nXeYFZrhLBjEmiwJGyNhPW5iEox3OTujTnUShsiBUy4TlunPdSyuBBLWSFzRwESD5LM_GQbC_LpX9EqPF5BspdYtG9TEEuEu5UiFzhVeoypwYk6r-3th0tOXbHWOgNoTJCpAEijRBpMSDPry45bzk5_jX5KYCo53amkUkbjyelnlca4oUjLSBcUjwdkL0eY92t4ZXmWHcrE3idAXnR474Z_usTH__X7F1ykzfSh2lre2S7rtb-Cfg5dbFPdoZvvr472G_k-yeeAvUe
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZYdwFcMP4mCgMsxBXIVX4cO7ns0ErLuglBJo0ry_HPWlqaKU0vxmvwArzEXmBPtuP8rGwCpF1FkU8S2fnsc459zncQehvpjGspJYk8XxPKaEIycIRIFvlcgUXKbEUpdHDIhkf003F03ORxL9to9_ZIslqp18luYeiidPyYOHpdEm6gTQouuNdBm_2P3_b3WhiFvuMgb9Itv1eMLuCkVEXlfQ7TO_aSq_PNv733mobaWBT2mvF547y0UkODLZS2HaijT2a9VZn11M8b3I637OFD9KAxS3G_xtEjdMcsHqP7f5AVPkG__B69-H1x_oOkk6ma4ZoW3eWSlfiL1NMcD4o6LvusbgMEua04PHaR9XgX1KXGcDuqDNISD1ZVa27x53x-ZgAwoAANTk1hTiflRM7BCsZpXUYIf10VVirjpPsnGFRC7jiWl0_R0WAv_TAkTUkHogIWhUTKyLOB48KNQ6USa5kOEsk1TwLPZsr6zFHs6UBqYyil1sB6E2cq1uB5mZjH4TbqLPKFeYawNEkMWoO6bH7KAXBRoJn1dGYY17FmXeS1v1Gohu_cld2YizVTsxtvAeMt3HiLsIveXT1yWpN9_E_4DWBDzNRUOIpudz3JxawQ4IiMRAh-GAt4F-200BHN4rAUgUvopRF0p4vet0hYN__zi89vJf0a3R2mB2MxHh3uv0D3ggpWLjZuB3XKYmVegjFVZq-ayXMJYNITTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEF3RIiF4QFxFoMAK8QRaaq_Xa_sxXKIGSlVBIvVttd5LExLsyHEe-h38AD_BD_TLmPGloQiQeLKsXduyz-xcvDNnCHke2zyxWmsWB6FlQoqM5RAIsTwOEwMeqfQNpdDHI3kwFe9P4pOuz-m6z3bvtyTbmgZkaSrq_ZX1-9vCtyjCjJ0wZUi1y6IdchW0cYiCPuXDXqCiENnIu8LLLw23C4QrTXv5MIGFngbZxU7nn-56yVbtFJW_5Ib-tnPaGKTRLXKz8yTpsIX-Nrniijvkxi_8gnfJt_CVOP9-_uMrm8zmZkFbJnMs_6rpJ23nJR1VbSr1WTsGoOPfM3qIyfD0NVg4S-F03PiQNR1tmtHS0-NyeeYAY7BZjk5c5VazeqaX4LjSSdv5h37eVF4bh7OHpxS0eIm0yOt7ZDp6N3lzwLouDMxwGUdM6zjwHOlr08iYzHtpeaYTm2Q88LnxoURWPMu1dU4I4R2oiDQ3qYVgyaVJGt0nu0VZuAeEapeloOgFFuCLBGQk5lb6wOZOJja1ckCC_nsr01GUY6eMpdqSKyNECiBSCJGKBuTFxSWrlp_jX5OfAYhqYeYKWbXxeFqqRaUgdhirCEInyZMB2esxVt16XiuONbgihtcZkJc97tvhvz7x4X_NfkquHb8dqcPx0YdH5DpvBBGz2fbIbl1t3GNwf-r8SSPiPwHHpPq5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1.4+%C2%B5m-Thick+Transparent+Radio+Frequency+Transmission+Lines+Based+on+Instant+Fusion+of+Polyethylene+Terephthalate+Through+Surface+of+Ag+Nanowires&rft.jtitle=Electronic+materials+letters&rft.au=Sang-Woo%2C+Kim&rft.au=Kwang-Seok%2C+Kim&rft.au=Park%2C+Myeongkoo&rft.au=Nah%2C+Wansoo&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1738-8090&rft.eissn=2093-6788&rft.volume=14&rft.issue=5&rft.spage=599&rft.epage=609&rft_id=info:doi/10.1007%2Fs13391-018-0069-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-8090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-8090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-8090&client=summon