1.4 µm-Thick Transparent Radio Frequency Transmission Lines Based on Instant Fusion of Polyethylene Terephthalate Through Surface of Ag Nanowires
Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has be...
Saved in:
Published in | Electronic materials letters Vol. 14; no. 5; pp. 599 - 609 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Metals and Materials
01.09.2018
Springer Nature B.V 대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-8090 2093-6788 |
DOI | 10.1007/s13391-018-0069-3 |
Cover
Abstract | Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency.
Graphical Abstract |
---|---|
AbstractList | Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency.Graphical Abstract Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency. Graphical Abstract Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrodebecause of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmissionlines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremelythin (1.4 μm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmissionlines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 μm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light toselectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the activediffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physicalshape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlyingpolymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWsand the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricatedelectrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency. KCI Citation Count: 4 |
Author | Kim, Kwang-Seok Nah, Wansoo Kim, Sang-Woo Lee, Cheul-Ro Kim, Dae Up Jung, Seung-Boo Kim, Jong-Woong Park, Myeongkoo |
Author_xml | – sequence: 1 givenname: Sang-Woo surname: Kim fullname: Kim, Sang-Woo organization: SKKU Advanced Institute of Nano Technology, Sungkyunkwan University – sequence: 2 givenname: Kwang-Seok surname: Kim fullname: Kim, Kwang-Seok organization: Carbon and Light Materials Application Group, Korea Institute of Industrial Technology – sequence: 3 givenname: Myeongkoo surname: Park fullname: Park, Myeongkoo organization: College of Information and Communication Engineering, Sungkyunkwan University – sequence: 4 givenname: Wansoo surname: Nah fullname: Nah, Wansoo organization: College of Information and Communication Engineering, Sungkyunkwan University – sequence: 5 givenname: Dae Up surname: Kim fullname: Kim, Dae Up organization: Carbon and Light Materials Application Group, Korea Institute of Industrial Technology – sequence: 6 givenname: Cheul-Ro surname: Lee fullname: Lee, Cheul-Ro organization: School of Advanced Materials Engineering, Chonbuk National University – sequence: 7 givenname: Seung-Boo surname: Jung fullname: Jung, Seung-Boo email: sbjung@skku.edu organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 8 givenname: Jong-Woong orcidid: 0000-0003-4010-056X surname: Kim fullname: Kim, Jong-Woong email: wyjd@jbnu.ac.kr organization: School of Advanced Materials Engineering, Chonbuk National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002380823$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kUtuFDEQhi0UJIaQA7CzxIpFBz_64V4OEQMjjQgKzdpy3OVpZ3rswXYrmnNwAS7BBXIyPGkkpEiwKpXq-0ql-l-iM-cdIPSakktKSPMuUs5bWhAqCkLqtuDP0IKRlhd1I8QZWtCGi0KQlrxAFzHeEUIYp1XN-QL9oJflw8-HX_uiG6ze4S4oFw8qgEv4RvXW41WA7xM4fZxnexuj9Q5vrIOI36sIPc7t2sWksrOaHqfe4C9-PEIajiM4wB0EOAxpUKNKuRuCn7YD_joFozSc6OUWf1bO39sA8RV6btQY4eJPPUffVh-6q0_F5vrj-mq5KTSrK14oVRHD2pYxwbVujal71qqmb1pGzK02tCaCip6pHqAsSwM8k7da9ETUIBrBz9Hbea8LRu60lV7Zx7r1chfk8qZbS95UomZNZt_M7CH4_I6Y5J2fgsvnSUbqqiyreWMzUzr4GAMYqW1SKX8kBWVHSYk8BSbnwGQOTJ4Ckzyb9Il5CHavwvG_DpudmFm3hfD3pn9LvwHwAKwI |
CitedBy_id | crossref_primary_10_1002_admt_202101277 crossref_primary_10_1039_C9TA04634H crossref_primary_10_1007_s13391_020_00213_4 crossref_primary_10_1021_acsami_8b20136 |
Cites_doi | 10.1038/nature12314 10.1039/c2jm35545k 10.1038/nmat3238 10.1088/0957-4484/21/4/045301 10.1002/adfm.201202523 10.1016/j.jiec.2015.03.013 10.1038/pj.2011.20 10.1021/acsnano.5b01835 10.1002/adma.201100304 10.1039/C5TC04030B 10.1038/srep18298 10.1002/adfm.201700845 10.1038/nmat3755 10.1038/srep09464 10.1038/ncomms1772 10.1039/C4RA05691D 10.7567/JJAP.56.05EC01 10.1002/admt.201600062 10.1038/ncomms7080 10.1002/adfm.201501046 10.1039/C7TC01423F 10.1021/am405972e 10.1039/C6TA09779K 10.1039/c3nr03152g 10.1038/nphoton.2013.188 10.1021/acsami.5b09386 10.1021/acsami.6b14535 10.1039/c2nr30485f 10.1038/nnano.2013.84 10.1038/srep06074 10.1002/adma.201505381 10.1002/adma.201504441 10.1038/nnano.2015.324 10.1016/S1748-0132(07)70017-8 |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: The Korean Institute of Metals and Materials 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION JQ2 ACYCR |
DOI | 10.1007/s13391-018-0069-3 |
DatabaseName | CrossRef ProQuest Computer Science Collection Korean Citation Index |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2093-6788 |
EndPage | 609 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3758627 10_1007_s13391_018_0069_3 |
GroupedDBID | -EM 06D 0R~ 0VY 203 2KG 2VQ 30V 4.4 406 408 5GY 8UJ 96X 9ZL AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD AYJHY BGNMA CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HMJXF HRMNR HZB HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z83 Z88 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 85H ABRTQ JQ2 AAFGU AAPBV AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SQXTU |
ID | FETCH-LOGICAL-c2653-aa50f2992283cc9ff6d29a7d7920fbcf160818d2adee444fe3228bc8d086e8783 |
IEDL.DBID | U2A |
ISSN | 1738-8090 |
IngestDate | Tue Nov 21 21:45:40 EST 2023 Wed Sep 17 13:52:03 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 Tue Jul 01 01:05:01 EDT 2025 Fri Feb 21 02:30:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Radio frequency Transmission circuits Ag nanowires Flash light Photoinduced |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2653-aa50f2992283cc9ff6d29a7d7920fbcf160818d2adee444fe3228bc8d086e8783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4010-056X |
PQID | 2065445878 |
PQPubID | 2043637 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3758627 proquest_journals_2065445878 crossref_citationtrail_10_1007_s13391_018_0069_3 crossref_primary_10_1007_s13391_018_0069_3 springer_journals_10_1007_s13391_018_0069_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180900 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 9 year: 2018 text: 20180900 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Electronic materials letters |
PublicationTitleAbbrev | Electron. Mater. Lett |
PublicationYear | 2018 |
Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
References | Kaltenbrunner, White, Głowacki, Sekitani, Someya, Sariciftci, Bauer (CR13) 2012; 3 White, Kaltenbrunner, Głowacki, Gutnichenko, Kettlgruber, Graz, Aazou, Ulbricht, Egbe, Miron, Major, Scharber, Sekitani, Someya, Bauer, Sariciftci (CR14) 2013; 7 Pang, Hernandez, Feng, Müllen (CR9) 2011; 23 Ni, Liu, Wang, Yang (CR24) 2015; 28 Gotoh, Yasukawa, Kobayashi (CR26) 2011; 43 Jiu, Sugahara, Nogi, Araki, Suganuma, Uchida, Shinozaki (CR33) 2013; 5 Song, Myers, Adams, Zhu (CR12) 2014; 6 Pyo, Lee, Kim, Kim (CR34) 2016; 4 Ho, Ling, Yap, Wang, Dong, Zhao, Cheng (CR4) 2017; 27 Ok, Kim, Park, Kim, Lee, Hong, Kwak, Kim, Han, Kim (CR23) 2015; 5 Perez-Roldan, Debarnot, Poncin-Epaillard (CR27) 2014; 4 Hwang, Lee, Trung, Roh, Kim, Kim, Lee (CR3) 2015; 9 Jiu, Nogi, Sugahara, Tokuno, Araki, Komoda, Suganuma, Uchida, Shinozaki (CR32) 2012; 22 Komoda, Nogi, Suganuma, Kohno, Akiyama, Otsuka (CR21) 2012; 4 Govorov, Richardson (CR29) 2007; 2 Lee, Byeon, Lee, Baek, Lee, Hong, Lee (CR10) 2014; 4 Han, Park, Oh, Jung, Kim (CR11) 2017; 5 Lee, Reuveny, Reeder, Lee, Jin, Liu, Yokota, Sekitani, Isoyama, Abe, Suo, Someya (CR2) 2016; 11 Song, Han, Ju, Kim (CR31) 2016; 8 Trung, Ramasundaram, Hwang, Lee (CR5) 2016; 28 Wu, Kong, Ruan, Hsu, Wang, Yu, Carney, Hu, Fan, Cui (CR8) 2013; 8 Reuveny, Lee, Yokota, Fuketa, Siket, Lee, Sekitani, Sakurai, Bauer, Someya (CR15) 2016; 28 Krantz, Stubhan, Richter, Spallek, Litzov, Matt, Spiecker, Brabec (CR7) 2013; 23 Melzer, Kaltenbrunner, Makarov, Karnaushenko, Karnaushenko, Sekitani, Someya, Schmidt (CR16) 2015; 6 Garnett, Cai, Cha, Mahmood, Connor, Christoforo, Cui, McGehee, Brongersma (CR30) 2012; 11 You, Kim, Ju, Kim (CR6) 2017; 9 Jun, Han, Kim, Ju, Kim (CR25) 2017; 5 Jun, Ju, Kim (CR28) 2016; 1 Huang, Leng, Zhu, Zhang, Chen, Chang, Aqeeli, Geim, Novoselov, Hu (CR20) 2016; 5 Kaltenbrunner, Sekitan, Reeder, Yokota, Kuribara, Tokuhara, Drack, Schwödiauer, Graz, Bauer-Gogonea, Bauer, Someya (CR18) 2013; 499 Kim, Ryu, Ok, Kwak, Park, Park, Han, Kim, Ko, Son, Kim (CR22) 2015; 25 Webb, Bonifas, Behnaz, Zhang, Yu, Cheng, Shi, Bian, Liu, Kim (CR1) 2013; 12 Elwi, Al-Rizzo, Rucker, Dervishi, Li, Biris (CR19) 2010; 21 Hayata, Okamoto, Takeoka, Iwase, Fujie, Iwata (CR17) 2017; 56 M Kaltenbrunner (69_CR13) 2012; 3 MD Ho (69_CR4) 2017; 27 J Jiu (69_CR32) 2012; 22 S Jun (69_CR28) 2016; 1 CJ Han (69_CR11) 2017; 5 K Gotoh (69_CR26) 2011; 43 A Reuveny (69_CR15) 2016; 28 N Komoda (69_CR21) 2012; 4 MS White (69_CR14) 2013; 7 CH Song (69_CR31) 2016; 8 MJ Perez-Roldan (69_CR27) 2014; 4 S Pang (69_CR9) 2011; 23 H Hayata (69_CR17) 2017; 56 J Jiu (69_CR33) 2013; 5 S Jun (69_CR25) 2017; 5 BU Hwang (69_CR3) 2015; 9 B You (69_CR6) 2017; 9 J Krantz (69_CR7) 2013; 23 X Huang (69_CR20) 2016; 5 TQ Trung (69_CR5) 2016; 28 K-H Ok (69_CR23) 2015; 5 Y Kim (69_CR22) 2015; 25 EC Garnett (69_CR30) 2012; 11 L Song (69_CR12) 2014; 6 H Wu (69_CR8) 2013; 8 H Ni (69_CR24) 2015; 28 S Lee (69_CR2) 2016; 11 SM Lee (69_CR10) 2014; 4 AO Govorov (69_CR29) 2007; 2 K Pyo (69_CR34) 2016; 4 M Kaltenbrunner (69_CR18) 2013; 499 TA Elwi (69_CR19) 2010; 21 M Melzer (69_CR16) 2015; 6 RC Webb (69_CR1) 2013; 12 |
References_xml | – volume: 499 start-page: 458 year: 2013 end-page: 463 ident: CR18 article-title: An ultra-lightweight design for imperceptible plastic electronics publication-title: Nature doi: 10.1038/nature12314 – volume: 22 start-page: 23561 year: 2012 end-page: 23567 ident: CR32 article-title: Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique publication-title: J. Mater. Chem. doi: 10.1039/c2jm35545k – volume: 11 start-page: 241 year: 2012 end-page: 249 ident: CR30 article-title: Self-limited plasmonic welding of silver nanowire junctions publication-title: Nat. Mater. doi: 10.1038/nmat3238 – volume: 21 start-page: 045301 year: 2010 ident: CR19 article-title: Multi-walled carbon nanotube-based RF antennas publication-title: Nanotechnology doi: 10.1088/0957-4484/21/4/045301 – volume: 23 start-page: 1711 year: 2013 end-page: 1717 ident: CR7 article-title: Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202523 – volume: 28 start-page: 16 year: 2015 end-page: 27 ident: CR24 article-title: A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.03.013 – volume: 43 start-page: 545 year: 2011 end-page: 551 ident: CR26 article-title: Wettability characteristics of poly(ethylene terephthalate) films treated by atmospheric pressure plasma and ultraviolet excimer light publication-title: Polym. J. doi: 10.1038/pj.2011.20 – volume: 9 start-page: 8801 year: 2015 end-page: 8810 ident: CR3 article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities publication-title: ACS Nano doi: 10.1021/acsnano.5b01835 – volume: 23 start-page: 2779 year: 2011 end-page: 2795 ident: CR9 article-title: Graphene as transparent electrode material for organic electronics publication-title: Adv. Mater. doi: 10.1002/adma.201100304 – volume: 4 start-page: 972 year: 2016 end-page: 977 ident: CR34 article-title: Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels–Alder network publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04030B – volume: 5 start-page: 18298 year: 2016 ident: CR20 article-title: Highly flexible and conductive printed graphene for wireless wearable communications applications publication-title: Sci. Rep. doi: 10.1038/srep18298 – volume: 27 start-page: 1700845 year: 2017 ident: CR4 article-title: Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700845 – volume: 12 start-page: 938 year: 2013 ident: CR1 article-title: Ultrathin conformal devices for precise and continuous thermal characterization of human skin publication-title: Nat. Mater. doi: 10.1038/nmat3755 – volume: 5 start-page: 9464 year: 2015 ident: CR23 article-title: Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes publication-title: Sci. Rep. doi: 10.1038/srep09464 – volume: 3 start-page: 770 year: 2012 ident: CR13 article-title: Ultrathin and lightweight organic solar cells with high flexibility publication-title: Nat. Commun. doi: 10.1038/ncomms1772 – volume: 4 start-page: 31409 year: 2014 end-page: 31415 ident: CR27 article-title: Processing of plasma-modified and polymer-grafted hydrophilic PET surfaces, and study of their aging and bioadhesive properties publication-title: RSC Adv. doi: 10.1039/C4RA05691D – volume: 56 start-page: 05EC01 year: 2017 ident: CR17 article-title: Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.05EC01 – volume: 1 start-page: 1600062 year: 2016 ident: CR28 article-title: Ultra-facile fabrication of stretchable and transparent capacitive sensor employing photo-assisted patterning of silver nanowire networks publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600062 – volume: 6 start-page: 6080 year: 2015 ident: CR16 article-title: Imperceptible magnetoelectronics publication-title: Nat. Commun. doi: 10.1038/ncomms7080 – volume: 25 start-page: 4580 year: 2015 end-page: 4589 ident: CR22 article-title: Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501046 – volume: 5 start-page: 9986 year: 2017 end-page: 9994 ident: CR11 article-title: Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01423F – volume: 6 start-page: 4248 year: 2014 end-page: 4253 ident: CR12 article-title: Stretchable and reversibly deformable radio frequency antennas based on silver nanowires publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405972e – volume: 5 start-page: 3221 year: 2017 end-page: 3229 ident: CR25 article-title: A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09779K – volume: 5 start-page: 11820 year: 2013 end-page: 11828 ident: CR33 article-title: High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: the effect of the thermal properties of substrates on the performance of silver films publication-title: Nanoscale doi: 10.1039/c3nr03152g – volume: 7 start-page: 811 year: 2013 end-page: 816 ident: CR14 article-title: Ultrathin, highly flexible and stretchable PLEDs publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.188 – volume: 8 start-page: 480 year: 2016 end-page: 489 ident: CR31 article-title: Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b09386 – volume: 9 start-page: 5486 year: 2017 end-page: 5494 ident: CR6 article-title: Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14535 – volume: 4 start-page: 3148 year: 2012 end-page: 3153 ident: CR21 article-title: Printed silver nanowire antennas with low signal loss at high-frequency radio publication-title: Nanoscale doi: 10.1039/c2nr30485f – volume: 8 start-page: 421 year: 2013 end-page: 425 ident: CR8 article-title: A transparent electrode based on a metal nanotrough network publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.84 – volume: 4 start-page: 6074 year: 2014 ident: CR10 article-title: Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals publication-title: Sci. Rep. doi: 10.1038/srep06074 – volume: 28 start-page: 3298 year: 2016 end-page: 3304 ident: CR15 article-title: High-frequency, conformable organic amplifiers publication-title: Adv. Mater. doi: 10.1002/adma.201505381 – volume: 28 start-page: 502 year: 2016 end-page: 509 ident: CR5 article-title: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201504441 – volume: 11 start-page: 472 year: 2016 ident: CR2 article-title: A transparent bending-insensitive pressure sensor publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.324 – volume: 2 start-page: 30 year: 2007 end-page: 38 ident: CR29 article-title: Generating heat with metal nanoparticles publication-title: Nanotoday doi: 10.1016/S1748-0132(07)70017-8 – volume: 3 start-page: 770 year: 2012 ident: 69_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms1772 – volume: 56 start-page: 05EC01 year: 2017 ident: 69_CR17 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.05EC01 – volume: 5 start-page: 9464 year: 2015 ident: 69_CR23 publication-title: Sci. Rep. doi: 10.1038/srep09464 – volume: 1 start-page: 1600062 year: 2016 ident: 69_CR28 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600062 – volume: 12 start-page: 938 year: 2013 ident: 69_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat3755 – volume: 27 start-page: 1700845 year: 2017 ident: 69_CR4 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700845 – volume: 7 start-page: 811 year: 2013 ident: 69_CR14 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.188 – volume: 2 start-page: 30 year: 2007 ident: 69_CR29 publication-title: Nanotoday doi: 10.1016/S1748-0132(07)70017-8 – volume: 4 start-page: 6074 year: 2014 ident: 69_CR10 publication-title: Sci. Rep. doi: 10.1038/srep06074 – volume: 6 start-page: 4248 year: 2014 ident: 69_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405972e – volume: 5 start-page: 11820 year: 2013 ident: 69_CR33 publication-title: Nanoscale doi: 10.1039/c3nr03152g – volume: 9 start-page: 5486 year: 2017 ident: 69_CR6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14535 – volume: 21 start-page: 045301 year: 2010 ident: 69_CR19 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/4/045301 – volume: 23 start-page: 2779 year: 2011 ident: 69_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201100304 – volume: 28 start-page: 3298 year: 2016 ident: 69_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201505381 – volume: 4 start-page: 3148 year: 2012 ident: 69_CR21 publication-title: Nanoscale doi: 10.1039/c2nr30485f – volume: 22 start-page: 23561 year: 2012 ident: 69_CR32 publication-title: J. Mater. Chem. doi: 10.1039/c2jm35545k – volume: 499 start-page: 458 year: 2013 ident: 69_CR18 publication-title: Nature doi: 10.1038/nature12314 – volume: 43 start-page: 545 year: 2011 ident: 69_CR26 publication-title: Polym. J. doi: 10.1038/pj.2011.20 – volume: 4 start-page: 972 year: 2016 ident: 69_CR34 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04030B – volume: 5 start-page: 9986 year: 2017 ident: 69_CR11 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01423F – volume: 25 start-page: 4580 year: 2015 ident: 69_CR22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501046 – volume: 4 start-page: 31409 year: 2014 ident: 69_CR27 publication-title: RSC Adv. doi: 10.1039/C4RA05691D – volume: 8 start-page: 480 year: 2016 ident: 69_CR31 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b09386 – volume: 23 start-page: 1711 year: 2013 ident: 69_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202523 – volume: 28 start-page: 502 year: 2016 ident: 69_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201504441 – volume: 11 start-page: 472 year: 2016 ident: 69_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.324 – volume: 11 start-page: 241 year: 2012 ident: 69_CR30 publication-title: Nat. Mater. doi: 10.1038/nmat3238 – volume: 5 start-page: 18298 year: 2016 ident: 69_CR20 publication-title: Sci. Rep. doi: 10.1038/srep18298 – volume: 9 start-page: 8801 year: 2015 ident: 69_CR3 publication-title: ACS Nano doi: 10.1021/acsnano.5b01835 – volume: 6 start-page: 6080 year: 2015 ident: 69_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms7080 – volume: 28 start-page: 16 year: 2015 ident: 69_CR24 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.03.013 – volume: 8 start-page: 421 year: 2013 ident: 69_CR8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.84 – volume: 5 start-page: 3221 year: 2017 ident: 69_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09779K |
SSID | ssj0002315633 ssib031263255 |
Score | 2.1208975 |
Snippet | Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity,... Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrodebecause of it high conductivity,... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 599 |
SubjectTerms | Adhesion tests Characterization and Evaluation of Materials Chemistry and Materials Science Circuit design Condensed Matter Physics Coplanar waveguides Diffusion Electrodes Materials Science Nanotechnology Nanotechnology and Microengineering Nanowires Optical and Electronic Materials Polyethylene terephthalate Reflectance Silver Transmission lines Transmittance 전자/정보통신공학 |
Title | 1.4 µm-Thick Transparent Radio Frequency Transmission Lines Based on Instant Fusion of Polyethylene Terephthalate Through Surface of Ag Nanowires |
URI | https://link.springer.com/article/10.1007/s13391-018-0069-3 https://www.proquest.com/docview/2065445878 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002380823 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Electronic Materials Letters, 2018, 14(5), , pp.599-609 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVou4EF4imGlspCrEBGie04yXJAHVpeQjAjlZXl-NGZznRSZTKLfgc_wE_wA_0y7s2jQxEgsYoiO4mSc30f8b3nEvIscUXqjDEsiWLHpJI5KyAQYkUSpxY8UhUaSqEPH9XhRL49To67Ou5Vn-3eb0k2mnpT7CYEZunEGUN6XSa2yE4CoTuuxgkf9kIkYmQg74otTxs-FwhRmpbycQqLO4vyq93NP931mn3aWlbhmuv5225pY4RGd8jtznukwxbuu-SGX94jt37hFLxPvsUv5eX3yx9nbDyd2Tlt2cux5Kumn42blXRUtenTF-0YAI1_zOh7TICnr8CqOQqnR43fWNPRuhktA_1ULi484Ap2ytOxr_z5tJ6aBTirdNx2-6Ff1lUw1uPs4QkFzV0iFfLqAZmMDsavD1nXeYFZrhLBjEmiwJGyNhPW5iEox3OTujTnUShsiBUy4TlunPdSyuBBLWSFzRwESD5LM_GQbC_LpX9EqPF5BspdYtG9TEEuEu5UiFzhVeoypwYk6r-3th0tOXbHWOgNoTJCpAEijRBpMSDPry45bzk5_jX5KYCo53amkUkbjyelnlca4oUjLSBcUjwdkL0eY92t4ZXmWHcrE3idAXnR474Z_usTH__X7F1ykzfSh2lre2S7rtb-Cfg5dbFPdoZvvr472G_k-yeeAvUe |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZYdwFcMP4mCgMsxBXIVX4cO7ns0ErLuglBJo0ry_HPWlqaKU0vxmvwArzEXmBPtuP8rGwCpF1FkU8S2fnsc459zncQehvpjGspJYk8XxPKaEIycIRIFvlcgUXKbEUpdHDIhkf003F03ORxL9to9_ZIslqp18luYeiidPyYOHpdEm6gTQouuNdBm_2P3_b3WhiFvuMgb9Itv1eMLuCkVEXlfQ7TO_aSq_PNv733mobaWBT2mvF547y0UkODLZS2HaijT2a9VZn11M8b3I637OFD9KAxS3G_xtEjdMcsHqP7f5AVPkG__B69-H1x_oOkk6ma4ZoW3eWSlfiL1NMcD4o6LvusbgMEua04PHaR9XgX1KXGcDuqDNISD1ZVa27x53x-ZgAwoAANTk1hTiflRM7BCsZpXUYIf10VVirjpPsnGFRC7jiWl0_R0WAv_TAkTUkHogIWhUTKyLOB48KNQ6USa5kOEsk1TwLPZsr6zFHs6UBqYyil1sB6E2cq1uB5mZjH4TbqLPKFeYawNEkMWoO6bH7KAXBRoJn1dGYY17FmXeS1v1Gohu_cld2YizVTsxtvAeMt3HiLsIveXT1yWpN9_E_4DWBDzNRUOIpudz3JxawQ4IiMRAh-GAt4F-200BHN4rAUgUvopRF0p4vet0hYN__zi89vJf0a3R2mB2MxHh3uv0D3ggpWLjZuB3XKYmVegjFVZq-ayXMJYNITTw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEF3RIiF4QFxFoMAK8QRaaq_Xa_sxXKIGSlVBIvVttd5LExLsyHEe-h38AD_BD_TLmPGloQiQeLKsXduyz-xcvDNnCHke2zyxWmsWB6FlQoqM5RAIsTwOEwMeqfQNpdDHI3kwFe9P4pOuz-m6z3bvtyTbmgZkaSrq_ZX1-9vCtyjCjJ0wZUi1y6IdchW0cYiCPuXDXqCiENnIu8LLLw23C4QrTXv5MIGFngbZxU7nn-56yVbtFJW_5Ib-tnPaGKTRLXKz8yTpsIX-Nrniijvkxi_8gnfJt_CVOP9-_uMrm8zmZkFbJnMs_6rpJ23nJR1VbSr1WTsGoOPfM3qIyfD0NVg4S-F03PiQNR1tmtHS0-NyeeYAY7BZjk5c5VazeqaX4LjSSdv5h37eVF4bh7OHpxS0eIm0yOt7ZDp6N3lzwLouDMxwGUdM6zjwHOlr08iYzHtpeaYTm2Q88LnxoURWPMu1dU4I4R2oiDQ3qYVgyaVJGt0nu0VZuAeEapeloOgFFuCLBGQk5lb6wOZOJja1ckCC_nsr01GUY6eMpdqSKyNECiBSCJGKBuTFxSWrlp_jX5OfAYhqYeYKWbXxeFqqRaUgdhirCEInyZMB2esxVt16XiuONbgihtcZkJc97tvhvz7x4X_NfkquHb8dqcPx0YdH5DpvBBGz2fbIbl1t3GNwf-r8SSPiPwHHpPq5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1.4+%C2%B5m-Thick+Transparent+Radio+Frequency+Transmission+Lines+Based+on+Instant+Fusion+of+Polyethylene+Terephthalate+Through+Surface+of+Ag+Nanowires&rft.jtitle=Electronic+materials+letters&rft.au=Sang-Woo%2C+Kim&rft.au=Kwang-Seok%2C+Kim&rft.au=Park%2C+Myeongkoo&rft.au=Nah%2C+Wansoo&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1738-8090&rft.eissn=2093-6788&rft.volume=14&rft.issue=5&rft.spage=599&rft.epage=609&rft_id=info:doi/10.1007%2Fs13391-018-0069-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-8090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-8090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-8090&client=summon |