An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning
As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of developme...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 32; no. 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of development allow patients to have proper diagnosis and treatment. The goal of this article is to present a novel deep learning internet of health and things (IoHT) driven framework for skin lesion classification in skin images using the concept of transfer learning. In proposed framework, automatic features are extracted from images using different pretrained architectures like VGG19, Inception V3, ResNet50, and SqueezeNet, which are fed into fully connected layer of convolutional neural network for classification of skin benign and malignant cells using dense and max pooling operation. In addition, the proposed system is fully integrated with an IoHT framework and can be used remotely to assist medical specialists in the diagnosis and treatment of skin cancer. It has been observed that performance metric evaluation of proposed framework outperformed other pretrained architectures in term of precision, recall, and accuracy in detection and classification of skin cancer from skin lesion images.
Proposed deep learning IoHT framework. IoHT, internet of health and things. |
---|---|
AbstractList | As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of development allow patients to have proper diagnosis and treatment. The goal of this article is to present a novel deep learning internet of health and things (IoHT) driven framework for skin lesion classification in skin images using the concept of transfer learning. In proposed framework, automatic features are extracted from images using different pretrained architectures like VGG19, Inception V3, ResNet50, and SqueezeNet, which are fed into fully connected layer of convolutional neural network for classification of skin benign and malignant cells using dense and max pooling operation. In addition, the proposed system is fully integrated with an IoHT framework and can be used remotely to assist medical specialists in the diagnosis and treatment of skin cancer. It has been observed that performance metric evaluation of proposed framework outperformed other pretrained architectures in term of precision, recall, and accuracy in detection and classification of skin cancer from skin lesion images.
Proposed deep learning IoHT framework. IoHT, internet of health and things. As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of development allow patients to have proper diagnosis and treatment. The goal of this article is to present a novel deep learning internet of health and things (IoHT) driven framework for skin lesion classification in skin images using the concept of transfer learning. In proposed framework, automatic features are extracted from images using different pretrained architectures like VGG19, Inception V3, ResNet50, and SqueezeNet, which are fed into fully connected layer of convolutional neural network for classification of skin benign and malignant cells using dense and max pooling operation. In addition, the proposed system is fully integrated with an IoHT framework and can be used remotely to assist medical specialists in the diagnosis and treatment of skin cancer. It has been observed that performance metric evaluation of proposed framework outperformed other pretrained architectures in term of precision, recall, and accuracy in detection and classification of skin cancer from skin lesion images. |
Author | Khanna, Ashish Khamparia, Aditya Singh, Prakash Kumar Rani, Poonam Samanta, Debabrata Bhushan, Bharat |
Author_xml | – sequence: 1 givenname: Aditya orcidid: 0000-0001-9019-8230 surname: Khamparia fullname: Khamparia, Aditya email: aditya.khamparia88@gmail.com organization: Lovely Professional University – sequence: 2 givenname: Prakash Kumar surname: Singh fullname: Singh, Prakash Kumar organization: REC Mainpuri – sequence: 3 givenname: Poonam surname: Rani fullname: Rani, Poonam organization: Netaji Subhash University of Technology – sequence: 4 givenname: Debabrata surname: Samanta fullname: Samanta, Debabrata organization: CHRIST University – sequence: 5 givenname: Ashish surname: Khanna fullname: Khanna, Ashish organization: Department of Computer Science and Engineering, Maharaja Agrasen Institute of Technology – sequence: 6 givenname: Bharat surname: Bhushan fullname: Bhushan, Bharat organization: Birla Institute of Technology, Mesra |
BookMark | eNp1UE1LAzEQDVLBWgv-hBy9bM1mk_04llI_oOClnpc0mdjYbbYk0dKbF-_9jf4Ss62CiM4cZjLz3iPzzlHPthYQukzJKCWEXkMIo6zKsxPUp2meJlmV8t6P_gwNvX8mMQpOOSv76H1ssbEBnIWAW42XIJqwxGFp7JP_eNsrZ17BYgWwwQ0IZ-McayfWsG3dCuvWxV0AGUxrsbAKy0Z4b7SR4jCKkn5lLJbCSnD4xXf84IT1Oj6_FS_QqRaNh-FXHaDHm-l8cpfMHm7vJ-NZImnOs4QumCaVWoiS5bwQwJksqGI8XiKZhLKoGF8UeU55pbUumUoJV7IsK01l1uUAXR11pWu9d6DrjTNr4XZ1SurOwTo6WHcORujoF1SacLgp_t40fxGSI2FrGtj9K1xP5_MD_hMqbIe5 |
CitedBy_id | crossref_primary_10_1007_s11042_023_14605_9 crossref_primary_10_48121_jihsam_1533583 crossref_primary_10_1007_s41870_022_01035_3 crossref_primary_10_1002_ima_22971 crossref_primary_10_26599_TST_2023_9010033 crossref_primary_10_4018_IJDWM_325059 crossref_primary_10_1016_j_neucom_2023_126719 crossref_primary_10_17714_gumusfenbil_1069894 crossref_primary_10_3390_s22155652 crossref_primary_10_1002_ima_22932 crossref_primary_10_1515_med_2022_0439 crossref_primary_10_19127_mbsjohs_876667 crossref_primary_10_1007_s40745_023_00503_2 crossref_primary_10_1109_ACCESS_2021_3108183 crossref_primary_10_2478_jsiot_2024_0018 crossref_primary_10_1016_j_jestch_2024_101632 crossref_primary_10_1016_j_jksuci_2023_101665 crossref_primary_10_32604_cmc_2022_029265 crossref_primary_10_1155_2022_5890666 crossref_primary_10_1080_21681163_2022_2117647 crossref_primary_10_3390_genes13101916 crossref_primary_10_1515_dx_2024_0012 crossref_primary_10_1007_s11042_023_16883_9 crossref_primary_10_1007_s12626_025_00181_x crossref_primary_10_1155_2021_3400943 crossref_primary_10_3390_cancers15143604 crossref_primary_10_48084_etasr_8336 crossref_primary_10_1007_s44196_025_00772_0 crossref_primary_10_1007_s11042_024_18824_6 crossref_primary_10_1080_00051144_2023_2293515 crossref_primary_10_3390_s23073548 crossref_primary_10_1111_srt_13524 crossref_primary_10_3390_cancers15205016 crossref_primary_10_7759_cureus_33274 crossref_primary_10_1016_j_bspc_2024_106112 crossref_primary_10_1186_s10033_021_00629_5 crossref_primary_10_1109_ACCESS_2021_3095297 crossref_primary_10_3390_s22114008 crossref_primary_10_3390_electronics12020403 crossref_primary_10_1002_ett_4278 crossref_primary_10_1007_s11227_022_04584_3 crossref_primary_10_1109_ACCESS_2023_3324042 crossref_primary_10_3390_pr11030910 crossref_primary_10_3390_diagnostics12102472 crossref_primary_10_3390_su132313296 crossref_primary_10_1051_bioconf_20248601095 crossref_primary_10_1051_bioconf_20248601094 crossref_primary_10_1051_bioconf_20248601093 crossref_primary_10_1155_2021_9806011 crossref_primary_10_1051_bioconf_20248601092 crossref_primary_10_1051_bioconf_20248601091 crossref_primary_10_2174_1872212117666230222093128 crossref_primary_10_4018_IJWLTT_285569 crossref_primary_10_1051_e3sconf_202455601006 crossref_primary_10_1051_e3sconf_202455601005 crossref_primary_10_1155_2022_8135715 crossref_primary_10_3389_fpls_2023_1239594 crossref_primary_10_1109_ACCESS_2022_3199613 crossref_primary_10_3390_diagnostics12122974 crossref_primary_10_3390_s22030799 crossref_primary_10_3390_s22218311 crossref_primary_10_1080_08839514_2024_2364145 crossref_primary_10_1080_13682199_2023_2229018 crossref_primary_10_1016_j_neunet_2023_01_022 |
Cites_doi | 10.3322/caac.21492 10.1016/j.eswa.2017.05.003 10.1002/jemt.23009 10.1016/j.knosys.2018.05.042 10.1016/j.mpmed.2017.04.003 10.1016/j.procs.2015.03.090 10.1016/j.mpmed.2017.04.008 10.1016/j.ejca.2019.02.005 10.1016/j.cmpb.2018.11.001 10.1007/s00034-019-01041-0 10.1016/j.bspc.2019.02.013 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.3963 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_3963 ETT3963 |
Genre | article |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2653-2b4f09dba84657ae54c72d45548c4ce87945b766259fff84d105dc889f2c3c3c3 |
ISSN | 2161-3915 |
IngestDate | Tue Jul 01 03:49:23 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Wed Jan 22 16:30:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2653-2b4f09dba84657ae54c72d45548c4ce87945b766259fff84d105dc889f2c3c3c3 |
ORCID | 0000-0001-9019-8230 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1002_ett_3963 crossref_citationtrail_10_1002_ett_3963 wiley_primary_10_1002_ett_3963_ETT3963 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2017; 84 2015; 45 2019; 51 2017; 45 2018; 158 2018; 81 2019; 39 2020; 16 2019 2019; 168 2018; 82 2019; 111 2018; 68 e_1_2_5_15_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Khamparia A (e_1_2_5_14_1) 2018; 82 Mendes D. B. (e_1_2_5_6_1) Khamparia A (e_1_2_5_16_1) 2020; 16 Milton MAA (e_1_2_5_10_1) |
References_xml | – volume: 168 start-page: 11 year: 2019 end-page: 19 article-title: Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding publication-title: Comput Meth Programs Biomed – volume: 158 start-page: 118 year: 2018 end-page: 135 article-title: Intelligent skin cancer detection using enhanced particle swarm optimization publication-title: Knowl Based Syst – volume: 84 start-page: 92 year: 2017 end-page: 101 article-title: Effective features to classify skin lesions in dermoscopic images publication-title: Expert Syst Appl – volume: 45 start-page: 435 issue: 7 year: 2017 end-page: 437 article-title: Benign skin lesions publication-title: Medicine – volume: 51 start-page: 59 year: 2019 end-page: 72 article-title: Automated detection of melanocytes related pigmented skin lesions: a clinical framework publication-title: Biomed Signal Process Control – volume: 45 start-page: 76 issue: C year: 2015 end-page: 85 article-title: Segmentation and classification of skin lesions for disease diagnosis publication-title: Procedia Comput Sci – volume: 16 start-page: 12 year: 2020 end-page: 25 article-title: Internet of health things‐driven deep learning system for detection and classification of cervical cells using transfer learning publication-title: J Supercomput – volume: 68 start-page: 394 issue: 6 year: 2018 end-page: 424 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 45 start-page: 431 issue: 7 year: 2017 end-page: 434 article-title: Skin cancer publication-title: Medicine – volume: 111 start-page: 148 year: 2019 end-page: 154 article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task publication-title: Eur J Cancer – year: 2019 – volume: 82 start-page: 1 year: 2018 end-page: 15 article-title: A novel deep learning‐based multi‐model ensemble method for the prediction of neuromuscular disorders publication-title: Neural Comput Appl – volume: 81 start-page: 528 issue: 6 year: 2018 end-page: 543 article-title: An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach publication-title: Microsc Res Tech – volume: 39 start-page: 818 issue: 2 year: 2019 end-page: 836 article-title: Seasonal crops disease prediction and classification using deep convolutional encoder network publication-title: Circ Syst Signal Process – ident: e_1_2_5_2_1 doi: 10.3322/caac.21492 – ident: e_1_2_5_7_1 doi: 10.1016/j.eswa.2017.05.003 – ident: e_1_2_5_8_1 doi: 10.1002/jemt.23009 – ident: e_1_2_5_9_1 doi: 10.1016/j.knosys.2018.05.042 – volume: 16 start-page: 12 year: 2020 ident: e_1_2_5_16_1 article-title: Internet of health things‐driven deep learning system for detection and classification of cervical cells using transfer learning publication-title: J Supercomput – ident: e_1_2_5_3_1 doi: 10.1016/j.mpmed.2017.04.003 – ident: e_1_2_5_5_1 doi: 10.1016/j.procs.2015.03.090 – ident: e_1_2_5_4_1 doi: 10.1016/j.mpmed.2017.04.008 – volume-title: Automated Skin Lesion Classification Using Ensemble of Deep Neural Networks in ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection Challenge ident: e_1_2_5_10_1 – ident: e_1_2_5_18_1 – ident: e_1_2_5_17_1 – ident: e_1_2_5_13_1 doi: 10.1016/j.ejca.2019.02.005 – volume-title: Skin Lesions Classification Using Convolutional Neural Networks in Clinical Images ident: e_1_2_5_6_1 – ident: e_1_2_5_12_1 doi: 10.1016/j.cmpb.2018.11.001 – ident: e_1_2_5_15_1 doi: 10.1007/s00034-019-01041-0 – ident: e_1_2_5_19_1 – ident: e_1_2_5_11_1 doi: 10.1016/j.bspc.2019.02.013 – volume: 82 start-page: 1 year: 2018 ident: e_1_2_5_14_1 article-title: A novel deep learning‐based multi‐model ensemble method for the prediction of neuromuscular disorders publication-title: Neural Comput Appl |
SSID | ssj0000752548 |
Score | 2.5395012 |
Snippet | As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3963 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9gIHxCrKpkFCcLAcksk4to8WFFVAEVJdqTdrViqVOpXjXDhx4c7_4d_wS3izxilBKiiS44xmXqK8T2_zWxB6XsopJ0XBUwXqKKWi5Gk5EzIFXavyIptIYWcDHn6cHxzTdyfZyWj0c5C1tOr5WHzdWlfyP1yFNeCrqZL9B85GorAA98BfuAKH4XolHletbffQtaoPRp-JqtpRnDGLQXZGoCVSqYswI-JzokNOlk0zlKpXfmS4qXIzBrXJIIrW5PLMZKsbfHTJauknS4C9Cx8DxaGRW69nkNuHEaYG2c5C6s3QnWFFyjLpQ2h_kMz4_tR2gXRpvJUEPyHqjiMg4wJBHTtjy9PEpoivH1bZAVXJpwX4F-fxDDsH-DAvXRnvXDleDHaQaUyM9TKRTE24rHQVoGO1Zc0L9XXQdOVTkf_QFa73rOr78az0QnajHfclNRmTF12jZ9LAycacvIZ2CfgoIGR3qzeHH45iiA-sMXC_7UzE8BND--MJeRW-eMMgGjpI1sKpb6Gb3jXBlcPZbTRS7R10Y9Cw8i76XrU4IA4vNHaIww5xv779cFjDBms4IANHrGHAGo5Yw4A1vIk1Q9JgDTusYYs1HLAWKd5Dx2_369cHqR_kkQoyz2Yp4VRPSskZGLtZzlRGRU4kBUu2EFSoAnRCxvO5ccW11gWVYPRLURSlJmJmXvfRTrto1QOEC65zLRnN9FRQLhiHs5TJck4o0wXP9tDL8G82wne5N8NWvjSX2baHnsWdF66zy5Y9LyxD_rqh2a9r8_7wCsQeoetrSD9GO323Uk_Aou35U4-c35RerWs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+internet+of+health+things%E2%80%90driven+deep+learning+framework+for+detection+and+classification+of+skin+cancer+using+transfer+learning&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Khamparia%2C+Aditya&rft.au=Singh%2C+Prakash+Kumar&rft.au=Rani%2C+Poonam&rft.au=Samanta%2C+Debabrata&rft.date=2021-07-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=32&rft.issue=7&rft_id=info:doi/10.1002%2Fett.3963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_3963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |