An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning

As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of developme...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 32; no. 7
Main Authors Khamparia, Aditya, Singh, Prakash Kumar, Rani, Poonam, Samanta, Debabrata, Khanna, Ashish, Bhushan, Bharat
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2021
Online AccessGet full text

Cover

Loading…
Abstract As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of development allow patients to have proper diagnosis and treatment. The goal of this article is to present a novel deep learning internet of health and things (IoHT) driven framework for skin lesion classification in skin images using the concept of transfer learning. In proposed framework, automatic features are extracted from images using different pretrained architectures like VGG19, Inception V3, ResNet50, and SqueezeNet, which are fed into fully connected layer of convolutional neural network for classification of skin benign and malignant cells using dense and max pooling operation. In addition, the proposed system is fully integrated with an IoHT framework and can be used remotely to assist medical specialists in the diagnosis and treatment of skin cancer. It has been observed that performance metric evaluation of proposed framework outperformed other pretrained architectures in term of precision, recall, and accuracy in detection and classification of skin cancer from skin lesion images. Proposed deep learning IoHT framework. IoHT, internet of health and things.
AbstractList As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of development allow patients to have proper diagnosis and treatment. The goal of this article is to present a novel deep learning internet of health and things (IoHT) driven framework for skin lesion classification in skin images using the concept of transfer learning. In proposed framework, automatic features are extracted from images using different pretrained architectures like VGG19, Inception V3, ResNet50, and SqueezeNet, which are fed into fully connected layer of convolutional neural network for classification of skin benign and malignant cells using dense and max pooling operation. In addition, the proposed system is fully integrated with an IoHT framework and can be used remotely to assist medical specialists in the diagnosis and treatment of skin cancer. It has been observed that performance metric evaluation of proposed framework outperformed other pretrained architectures in term of precision, recall, and accuracy in detection and classification of skin cancer from skin lesion images. Proposed deep learning IoHT framework. IoHT, internet of health and things.
As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin cancers and 132 000 melanoma skin cancers arise worldwide annually. The detection and classification of skin cancer in early stage of development allow patients to have proper diagnosis and treatment. The goal of this article is to present a novel deep learning internet of health and things (IoHT) driven framework for skin lesion classification in skin images using the concept of transfer learning. In proposed framework, automatic features are extracted from images using different pretrained architectures like VGG19, Inception V3, ResNet50, and SqueezeNet, which are fed into fully connected layer of convolutional neural network for classification of skin benign and malignant cells using dense and max pooling operation. In addition, the proposed system is fully integrated with an IoHT framework and can be used remotely to assist medical specialists in the diagnosis and treatment of skin cancer. It has been observed that performance metric evaluation of proposed framework outperformed other pretrained architectures in term of precision, recall, and accuracy in detection and classification of skin cancer from skin lesion images.
Author Khanna, Ashish
Khamparia, Aditya
Singh, Prakash Kumar
Rani, Poonam
Samanta, Debabrata
Bhushan, Bharat
Author_xml – sequence: 1
  givenname: Aditya
  orcidid: 0000-0001-9019-8230
  surname: Khamparia
  fullname: Khamparia, Aditya
  email: aditya.khamparia88@gmail.com
  organization: Lovely Professional University
– sequence: 2
  givenname: Prakash Kumar
  surname: Singh
  fullname: Singh, Prakash Kumar
  organization: REC Mainpuri
– sequence: 3
  givenname: Poonam
  surname: Rani
  fullname: Rani, Poonam
  organization: Netaji Subhash University of Technology
– sequence: 4
  givenname: Debabrata
  surname: Samanta
  fullname: Samanta, Debabrata
  organization: CHRIST University
– sequence: 5
  givenname: Ashish
  surname: Khanna
  fullname: Khanna, Ashish
  organization: Department of Computer Science and Engineering, Maharaja Agrasen Institute of Technology
– sequence: 6
  givenname: Bharat
  surname: Bhushan
  fullname: Bhushan, Bharat
  organization: Birla Institute of Technology, Mesra
BookMark eNp1UE1LAzEQDVLBWgv-hBy9bM1mk_04llI_oOClnpc0mdjYbbYk0dKbF-_9jf4Ss62CiM4cZjLz3iPzzlHPthYQukzJKCWEXkMIo6zKsxPUp2meJlmV8t6P_gwNvX8mMQpOOSv76H1ssbEBnIWAW42XIJqwxGFp7JP_eNsrZ17BYgWwwQ0IZ-McayfWsG3dCuvWxV0AGUxrsbAKy0Z4b7SR4jCKkn5lLJbCSnD4xXf84IT1Oj6_FS_QqRaNh-FXHaDHm-l8cpfMHm7vJ-NZImnOs4QumCaVWoiS5bwQwJksqGI8XiKZhLKoGF8UeU55pbUumUoJV7IsK01l1uUAXR11pWu9d6DrjTNr4XZ1SurOwTo6WHcORujoF1SacLgp_t40fxGSI2FrGtj9K1xP5_MD_hMqbIe5
CitedBy_id crossref_primary_10_1007_s11042_023_14605_9
crossref_primary_10_48121_jihsam_1533583
crossref_primary_10_1007_s41870_022_01035_3
crossref_primary_10_1002_ima_22971
crossref_primary_10_26599_TST_2023_9010033
crossref_primary_10_4018_IJDWM_325059
crossref_primary_10_1016_j_neucom_2023_126719
crossref_primary_10_17714_gumusfenbil_1069894
crossref_primary_10_3390_s22155652
crossref_primary_10_1002_ima_22932
crossref_primary_10_1515_med_2022_0439
crossref_primary_10_19127_mbsjohs_876667
crossref_primary_10_1007_s40745_023_00503_2
crossref_primary_10_1109_ACCESS_2021_3108183
crossref_primary_10_2478_jsiot_2024_0018
crossref_primary_10_1016_j_jestch_2024_101632
crossref_primary_10_1016_j_jksuci_2023_101665
crossref_primary_10_32604_cmc_2022_029265
crossref_primary_10_1155_2022_5890666
crossref_primary_10_1080_21681163_2022_2117647
crossref_primary_10_3390_genes13101916
crossref_primary_10_1515_dx_2024_0012
crossref_primary_10_1007_s11042_023_16883_9
crossref_primary_10_1007_s12626_025_00181_x
crossref_primary_10_1155_2021_3400943
crossref_primary_10_3390_cancers15143604
crossref_primary_10_48084_etasr_8336
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_1007_s11042_024_18824_6
crossref_primary_10_1080_00051144_2023_2293515
crossref_primary_10_3390_s23073548
crossref_primary_10_1111_srt_13524
crossref_primary_10_3390_cancers15205016
crossref_primary_10_7759_cureus_33274
crossref_primary_10_1016_j_bspc_2024_106112
crossref_primary_10_1186_s10033_021_00629_5
crossref_primary_10_1109_ACCESS_2021_3095297
crossref_primary_10_3390_s22114008
crossref_primary_10_3390_electronics12020403
crossref_primary_10_1002_ett_4278
crossref_primary_10_1007_s11227_022_04584_3
crossref_primary_10_1109_ACCESS_2023_3324042
crossref_primary_10_3390_pr11030910
crossref_primary_10_3390_diagnostics12102472
crossref_primary_10_3390_su132313296
crossref_primary_10_1051_bioconf_20248601095
crossref_primary_10_1051_bioconf_20248601094
crossref_primary_10_1051_bioconf_20248601093
crossref_primary_10_1155_2021_9806011
crossref_primary_10_1051_bioconf_20248601092
crossref_primary_10_1051_bioconf_20248601091
crossref_primary_10_2174_1872212117666230222093128
crossref_primary_10_4018_IJWLTT_285569
crossref_primary_10_1051_e3sconf_202455601006
crossref_primary_10_1051_e3sconf_202455601005
crossref_primary_10_1155_2022_8135715
crossref_primary_10_3389_fpls_2023_1239594
crossref_primary_10_1109_ACCESS_2022_3199613
crossref_primary_10_3390_diagnostics12122974
crossref_primary_10_3390_s22030799
crossref_primary_10_3390_s22218311
crossref_primary_10_1080_08839514_2024_2364145
crossref_primary_10_1080_13682199_2023_2229018
crossref_primary_10_1016_j_neunet_2023_01_022
Cites_doi 10.3322/caac.21492
10.1016/j.eswa.2017.05.003
10.1002/jemt.23009
10.1016/j.knosys.2018.05.042
10.1016/j.mpmed.2017.04.003
10.1016/j.procs.2015.03.090
10.1016/j.mpmed.2017.04.008
10.1016/j.ejca.2019.02.005
10.1016/j.cmpb.2018.11.001
10.1007/s00034-019-01041-0
10.1016/j.bspc.2019.02.013
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.3963
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_3963
ETT3963
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2653-2b4f09dba84657ae54c72d45548c4ce87945b766259fff84d105dc889f2c3c3c3
ISSN 2161-3915
IngestDate Tue Jul 01 03:49:23 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
Wed Jan 22 16:30:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2653-2b4f09dba84657ae54c72d45548c4ce87945b766259fff84d105dc889f2c3c3c3
ORCID 0000-0001-9019-8230
PageCount 12
ParticipantIDs crossref_primary_10_1002_ett_3963
crossref_citationtrail_10_1002_ett_3963
wiley_primary_10_1002_ett_3963_ETT3963
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2021
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2017; 84
2015; 45
2019; 51
2017; 45
2018; 158
2018; 81
2019; 39
2020; 16
2019
2019; 168
2018; 82
2019; 111
2018; 68
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Khamparia A (e_1_2_5_14_1) 2018; 82
Mendes D. B. (e_1_2_5_6_1)
Khamparia A (e_1_2_5_16_1) 2020; 16
Milton MAA (e_1_2_5_10_1)
References_xml – volume: 168
  start-page: 11
  year: 2019
  end-page: 19
  article-title: Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding
  publication-title: Comput Meth Programs Biomed
– volume: 158
  start-page: 118
  year: 2018
  end-page: 135
  article-title: Intelligent skin cancer detection using enhanced particle swarm optimization
  publication-title: Knowl Based Syst
– volume: 84
  start-page: 92
  year: 2017
  end-page: 101
  article-title: Effective features to classify skin lesions in dermoscopic images
  publication-title: Expert Syst Appl
– volume: 45
  start-page: 435
  issue: 7
  year: 2017
  end-page: 437
  article-title: Benign skin lesions
  publication-title: Medicine
– volume: 51
  start-page: 59
  year: 2019
  end-page: 72
  article-title: Automated detection of melanocytes related pigmented skin lesions: a clinical framework
  publication-title: Biomed Signal Process Control
– volume: 45
  start-page: 76
  issue: C
  year: 2015
  end-page: 85
  article-title: Segmentation and classification of skin lesions for disease diagnosis
  publication-title: Procedia Comput Sci
– volume: 16
  start-page: 12
  year: 2020
  end-page: 25
  article-title: Internet of health things‐driven deep learning system for detection and classification of cervical cells using transfer learning
  publication-title: J Supercomput
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  end-page: 424
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 45
  start-page: 431
  issue: 7
  year: 2017
  end-page: 434
  article-title: Skin cancer
  publication-title: Medicine
– volume: 111
  start-page: 148
  year: 2019
  end-page: 154
  article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task
  publication-title: Eur J Cancer
– year: 2019
– volume: 82
  start-page: 1
  year: 2018
  end-page: 15
  article-title: A novel deep learning‐based multi‐model ensemble method for the prediction of neuromuscular disorders
  publication-title: Neural Comput Appl
– volume: 81
  start-page: 528
  issue: 6
  year: 2018
  end-page: 543
  article-title: An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach
  publication-title: Microsc Res Tech
– volume: 39
  start-page: 818
  issue: 2
  year: 2019
  end-page: 836
  article-title: Seasonal crops disease prediction and classification using deep convolutional encoder network
  publication-title: Circ Syst Signal Process
– ident: e_1_2_5_2_1
  doi: 10.3322/caac.21492
– ident: e_1_2_5_7_1
  doi: 10.1016/j.eswa.2017.05.003
– ident: e_1_2_5_8_1
  doi: 10.1002/jemt.23009
– ident: e_1_2_5_9_1
  doi: 10.1016/j.knosys.2018.05.042
– volume: 16
  start-page: 12
  year: 2020
  ident: e_1_2_5_16_1
  article-title: Internet of health things‐driven deep learning system for detection and classification of cervical cells using transfer learning
  publication-title: J Supercomput
– ident: e_1_2_5_3_1
  doi: 10.1016/j.mpmed.2017.04.003
– ident: e_1_2_5_5_1
  doi: 10.1016/j.procs.2015.03.090
– ident: e_1_2_5_4_1
  doi: 10.1016/j.mpmed.2017.04.008
– volume-title: Automated Skin Lesion Classification Using Ensemble of Deep Neural Networks in ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection Challenge
  ident: e_1_2_5_10_1
– ident: e_1_2_5_18_1
– ident: e_1_2_5_17_1
– ident: e_1_2_5_13_1
  doi: 10.1016/j.ejca.2019.02.005
– volume-title: Skin Lesions Classification Using Convolutional Neural Networks in Clinical Images
  ident: e_1_2_5_6_1
– ident: e_1_2_5_12_1
  doi: 10.1016/j.cmpb.2018.11.001
– ident: e_1_2_5_15_1
  doi: 10.1007/s00034-019-01041-0
– ident: e_1_2_5_19_1
– ident: e_1_2_5_11_1
  doi: 10.1016/j.bspc.2019.02.013
– volume: 82
  start-page: 1
  year: 2018
  ident: e_1_2_5_14_1
  article-title: A novel deep learning‐based multi‐model ensemble method for the prediction of neuromuscular disorders
  publication-title: Neural Comput Appl
SSID ssj0000752548
Score 2.5395012
Snippet As specified by World Health Organization, the occurrence of skin cancer has been growing over the past decades. At present, 2 to 3 million nonmelanoma skin...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3963
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9gIHxCrKpkFCcLAcksk4to8WFFVAEVJdqTdrViqVOpXjXDhx4c7_4d_wS3izxilBKiiS44xmXqK8T2_zWxB6XsopJ0XBUwXqKKWi5Gk5EzIFXavyIptIYWcDHn6cHxzTdyfZyWj0c5C1tOr5WHzdWlfyP1yFNeCrqZL9B85GorAA98BfuAKH4XolHletbffQtaoPRp-JqtpRnDGLQXZGoCVSqYswI-JzokNOlk0zlKpXfmS4qXIzBrXJIIrW5PLMZKsbfHTJauknS4C9Cx8DxaGRW69nkNuHEaYG2c5C6s3QnWFFyjLpQ2h_kMz4_tR2gXRpvJUEPyHqjiMg4wJBHTtjy9PEpoivH1bZAVXJpwX4F-fxDDsH-DAvXRnvXDleDHaQaUyM9TKRTE24rHQVoGO1Zc0L9XXQdOVTkf_QFa73rOr78az0QnajHfclNRmTF12jZ9LAycacvIZ2CfgoIGR3qzeHH45iiA-sMXC_7UzE8BND--MJeRW-eMMgGjpI1sKpb6Gb3jXBlcPZbTRS7R10Y9Cw8i76XrU4IA4vNHaIww5xv779cFjDBms4IANHrGHAGo5Yw4A1vIk1Q9JgDTusYYs1HLAWKd5Dx2_369cHqR_kkQoyz2Yp4VRPSskZGLtZzlRGRU4kBUu2EFSoAnRCxvO5ccW11gWVYPRLURSlJmJmXvfRTrto1QOEC65zLRnN9FRQLhiHs5TJck4o0wXP9tDL8G82wne5N8NWvjSX2baHnsWdF66zy5Y9LyxD_rqh2a9r8_7wCsQeoetrSD9GO323Uk_Aou35U4-c35RerWs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+internet+of+health+things%E2%80%90driven+deep+learning+framework+for+detection+and+classification+of+skin+cancer+using+transfer+learning&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Khamparia%2C+Aditya&rft.au=Singh%2C+Prakash+Kumar&rft.au=Rani%2C+Poonam&rft.au=Samanta%2C+Debabrata&rft.date=2021-07-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=32&rft.issue=7&rft_id=info:doi/10.1002%2Fett.3963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_3963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon