Machine learning for cooperative spectrum sensing and sharing: A survey

With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in C...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 33; no. 1
Main Authors Janu, Dimpal, Singh, Kuldeep, Kumar, Sandeep
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2022
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in CRNs, namely spectrum sensing (SS) and spectrum sharing. The application of machine learning (ML) techniques has added new aspects to SS and spectrum sharing. This paper offers a survey on various ML‐based algorithms in the cooperative spectrum sensing (CSS) and dynamic spectrum sharing (DSS) domain, with its emphasis on types of features extracted from primary user signal, types of ML algorithm, and performance metrics utilized for evaluation of ML algorithms. Starting with the basic principles and challenges of SS, this paper also justifies the applicability of supervised, unsupervised, and reinforcement ML algorithms in the CSS domain. The application of ML algorithms, to solve the DSS problem has also been reviewed. Finally, the survey paper is concluded with some suggested open research challenges and future directions for ML application in next‐generation communication technologies. With the rapid development of next‐generation wireless communication technologies and increasing the requirement of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in the sensing and sharing of spectrum in cognitive radio networks. The application of ML techniques has added new aspects to these fundamental problems.
AbstractList With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in CRNs, namely spectrum sensing (SS) and spectrum sharing. The application of machine learning (ML) techniques has added new aspects to SS and spectrum sharing. This paper offers a survey on various ML‐based algorithms in the cooperative spectrum sensing (CSS) and dynamic spectrum sharing (DSS) domain, with its emphasis on types of features extracted from primary user signal, types of ML algorithm, and performance metrics utilized for evaluation of ML algorithms. Starting with the basic principles and challenges of SS, this paper also justifies the applicability of supervised, unsupervised, and reinforcement ML algorithms in the CSS domain. The application of ML algorithms, to solve the DSS problem has also been reviewed. Finally, the survey paper is concluded with some suggested open research challenges and future directions for ML application in next‐generation communication technologies. With the rapid development of next‐generation wireless communication technologies and increasing the requirement of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in the sensing and sharing of spectrum in cognitive radio networks. The application of ML techniques has added new aspects to these fundamental problems.
With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in CRNs, namely spectrum sensing (SS) and spectrum sharing. The application of machine learning (ML) techniques has added new aspects to SS and spectrum sharing. This paper offers a survey on various ML‐based algorithms in the cooperative spectrum sensing (CSS) and dynamic spectrum sharing (DSS) domain, with its emphasis on types of features extracted from primary user signal, types of ML algorithm, and performance metrics utilized for evaluation of ML algorithms. Starting with the basic principles and challenges of SS, this paper also justifies the applicability of supervised, unsupervised, and reinforcement ML algorithms in the CSS domain. The application of ML algorithms, to solve the DSS problem has also been reviewed. Finally, the survey paper is concluded with some suggested open research challenges and future directions for ML application in next‐generation communication technologies.
Author Kumar, Sandeep
Singh, Kuldeep
Janu, Dimpal
Author_xml – sequence: 1
  givenname: Dimpal
  surname: Janu
  fullname: Janu, Dimpal
  organization: Malaviya National Institute of Technology
– sequence: 2
  givenname: Kuldeep
  orcidid: 0000-0002-2350-1700
  surname: Singh
  fullname: Singh, Kuldeep
  organization: Malaviya National Institute of Technology
– sequence: 3
  givenname: Sandeep
  orcidid: 0000-0002-5750-6112
  surname: Kumar
  fullname: Kumar, Sandeep
  email: sann.kaushik@gmail.com
  organization: Bharat Electronics Ltd
BookMark eNp1kE1PwkAQhjcGExFJ_Al79FLcj2639UYIggnGC56bYXcqa8qW7BZM_71FPBijc5n38LyTyXNNBr7xSMgtZxPOmLjHtp2kUokLMhQ844ksuBr8yFdkHOM760crodJ8SBbPYLbOI60Rgnf-jVZNoKZp9higdUekcY-mDYcdjejjCQBvadxC6PMDndJ4CEfsbshlBXXE8fcekdfH-Xq2TFYvi6fZdJUYkSmR2FxYoSDXkkur5QbBaAFMZDLjVvGUFRtVaamLIlcph8JoxpW2he6xTFmQIzI53zWhiTFgVRrX9o82vg3g6pKz8mSi7E2UJxN94e5XYR_cDkL3F5qc0Q9XY_cvV87X6y_-EyjNbfA
CitedBy_id crossref_primary_10_3390_electronics12214514
crossref_primary_10_3390_app122211706
crossref_primary_10_3390_fi16010014
crossref_primary_10_1109_ACCESS_2023_3238799
crossref_primary_10_1088_1402_4896_aca56d
crossref_primary_10_1155_2023_2953986
crossref_primary_10_3233_JIFS_230438
crossref_primary_10_1007_s11277_022_09880_y
crossref_primary_10_1080_0954898X_2024_2393245
crossref_primary_10_2174_0126662558271215231204053038
crossref_primary_10_1002_ett_4714
crossref_primary_10_1002_ett_4454
crossref_primary_10_1109_TVT_2022_3214348
crossref_primary_10_1002_spy2_415
crossref_primary_10_12720_jait_14_6_1321_1330
crossref_primary_10_1002_ett_4470
crossref_primary_10_1109_LSENS_2023_3327558
crossref_primary_10_1109_ACCESS_2023_3305388
crossref_primary_10_1109_LCOMM_2023_3241664
crossref_primary_10_3390_electronics11203280
crossref_primary_10_1080_03772063_2025_2475116
crossref_primary_10_1109_ACCESS_2022_3210254
crossref_primary_10_3390_s22228946
crossref_primary_10_3390_s24247907
crossref_primary_10_1002_ett_4927
crossref_primary_10_1109_JSYST_2024_3376986
crossref_primary_10_3390_e23121611
Cites_doi 10.1002/ett.3569
10.1109/TWC.2016.2612627
10.1155/2017/2895680
10.1109/GLOCOM.2016.7841503
10.1016/0893-9659(94)00112-P
10.1109/TNSM.2020.3000274
10.1145/1234388.1234390
10.1016/j.aeue.2019.152994
10.1109/ACCESS.2018.2831240
10.1109/ISWCS.2008.4726105
10.1109/MWC.2016.1500356WC
10.1109/ACSSC.2004.1399240
10.1109/TCCN.2017.2729546
10.1109/JSTSP.2013.2259797
10.1109/TCCN.2020.2970697
10.23919/EUSIPCO.2019.8903028
10.1137/S0895479803436937
10.1109/PIMRC.2010.5671686
10.3390/s19183863
10.1002/dac.3856
10.1109/CISP-BMEI.2017.8302156
10.1109/TAAI.2013.52
10.1016/j.aeue.2018.10.027
10.1016/j.dsp.2015.10.006
10.1109/JIOT.2018.2847731
10.1109/ACCESS.2015.2507158
10.1109/TVT.2015.2487047
10.1016/j.aeue.2018.05.031
10.1109/WINCOM.2015.7381345
10.1109/PIMRC.2017.8292449
10.1155/2018/6104502
10.1016/j.adhoc.2020.102390
10.1109/CyberC.2014.80
10.1109/UEMCON.2016.7777887
10.1109/NSysS.2017.7885815
10.1109/WCNC.2016.7564840
10.1109/NCC.2016.7561130
10.1016/j.neucom.2011.07.027
10.3390/s19010126
10.1109/TSP.2018.2870379
10.1049/iet-com.2018.5245
10.1016/j.dcan.2016.09.002
10.1109/ICSPCS.2015.7391780
10.1007/978-3-030-00006-6_20
10.1016/j.phycom.2016.05.002
10.1109/TWC.2014.2349938
10.1109/JSAC.2021.3087254
10.1007/978-3-319-24540-9_66
10.1109/TVT.2019.2943997
10.1109/ISCIT.2016.7751703
10.1109/TNET.2009.2039490
10.1007/s11277-018-5712-7
10.1007/978-0-387-45528-0
10.1109/LCOMM.2012.092812.121648
10.1109/TWC.2020.2981320
10.1109/JSAC.2013.131120
10.1080/00207217.2018.1460870
10.1109/GlobalSIP.2014.7032309
10.23919/JCC.2020.02.002
10.1109/COMST.2014.2320099
10.1186/s13638-019-1338-z
10.1109/CAC.2018.8623801
10.1109/ACCESS.2018.2825603
10.3390/app8030421
10.1002/ett.3949
10.1109/DYSPAN.2005.1542630
10.1109/PIMRC.2007.4394211
10.1109/JSTSP.2013.2261798
10.1109/COMST.2017.2773628
10.1002/ett.4270
10.1109/SURV.2012.100412.00017
10.1109/MWC.2016.7462490
10.1109/TVT.2008.2005267
10.1007/s11277-018-5677-6
10.1109/DYSPAN.2011.5936261
10.1109/ACCESS.2019.2936511
10.1016/j.aeue.2018.07.029
10.1109/DYSPAN.2007.33
10.1109/ICTC.2017.8191025
10.1109/GlobalSIP.2014.7032326
10.1109/ACCESS.2018.2842099
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.4352
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_4352
ETT4352
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2652-d82d25a87313d73beac72a026361d51409b5f737998541a9c70157d97c7265da3
ISSN 2161-3915
IngestDate Thu Apr 24 23:08:54 EDT 2025
Tue Jul 01 03:49:26 EDT 2025
Wed Jan 22 16:27:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2652-d82d25a87313d73beac72a026361d51409b5f737998541a9c70157d97c7265da3
ORCID 0000-0002-5750-6112
0000-0002-2350-1700
PageCount 28
ParticipantIDs crossref_citationtrail_10_1002_ett_4352
crossref_primary_10_1002_ett_4352
wiley_primary_10_1002_ett_4352_ETT4352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2019; 2019
2017; 3
2010; 18
2020; 17
2019; 19
2012; 16
2013; 7
2020; 19
2018; 6
2009; 58
2020; 6
2018; 8
2013; 15
2021; 112
2019; 68
2021; 39
2014; 16
2008; 26
2014; 13
2020; 43
2018; 32
2016; 49
2019; 7
2018; 100
2012; 80
2019; 6
2015; 3
2017; 2017
2019; 30
2018; 105
2011
2010
2018; 101
2017; 24
2008
2007
2006
2005
2004
2018; 66
2018; 20
2016; 15
1995; 8
2018; 2018
2016; 2
2020; 31
2021
2013; 31
2016; 65
2016; 20
2019
2018
2017
2016
2015
2014
2018; 94
2018; 93
2013
2020; 114
2018; 12
2018; 97
2018; 15
2016; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
Yadav P (e_1_2_7_4_1) 2021
e_1_2_7_28_1
e_1_2_7_73_1
Kaur A (e_1_2_7_90_1) 2020; 43
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_8_1
Wang Y (e_1_2_7_57_1) 2018; 2018
Ranjan A. (e_1_2_7_16_1) 2016
Basumatary N (e_1_2_7_49_1) 2017
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
Zhou X (e_1_2_7_13_1) 2018; 15
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Bhatti DMS (e_1_2_7_63_1) 2018
Wang Y (e_1_2_7_59_1) 2019; 2019
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 39
  start-page: 2526
  issue: 8
  year: 2021
  end-page: 2540
  article-title: A deep reinforcement learning framework for contention‐based Spectrum sharing
  publication-title: IEEE J Selected Areas Commun
– volume: 17
  start-page: 1337
  issue: 3
  year: 2020
  end-page: 1348
  article-title: Energy‐efficient resource allocation in cognitive radio networks under cooperative multi‐agent model‐free reinforcement learning schemes
  publication-title: IEEE Trans Netw Serv Manag
– year: 2005
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  end-page: 10
  article-title: A spectrum sensing method based on empirical mode decomposition and K‐means clustering algorithm
  publication-title: Wirel Commun Mobile Comput
– volume: 2
  start-page: 196
  issue: 4
  year: 2016
  end-page: 205
  article-title: Kernel fuzzy c‐means clustering on energy detection based cooperative spectrum sensing
  publication-title: Digit Commun Netw
– volume: 7
  start-page: 595
  issue: 4
  year: 2013
  end-page: 604
  article-title: Riemannian medians and means with applications to radar signal processing
  publication-title: IEEE J Selected Topics Signal Process
– volume: 100
  start-page: 1845
  issue: 4
  year: 2018
  end-page: 1857
  article-title: Performance of ED based spectrum sensing over α–η–μ fading channel
  publication-title: Wirel Pers Commun
– volume: 93
  start-page: 26
  year: 2018
  end-page: 31
  article-title: Energy detection based spectrum sensing for gamma shadowed α–η–μ and α–κ–μ fading channels
  publication-title: AEU Int J Electron Commun
– volume: 15
  start-page: 8093
  issue: 12
  year: 2016
  end-page: 8106
  article-title: Enhanced dynamic spectrum access in multiband cognitive radio networks via optimized resource allocation
  publication-title: IEEE Trans Wirel Commun
– volume: 94
  start-page: 359
  year: 2018
  end-page: 366
  article-title: Distributed cooperative spectrum sensing based on reinforcement learning in cognitive radio networks
  publication-title: AEU‐Int J Electron C
– volume: 26
  start-page: 735
  issue: 3
  year: 2008
  end-page: 747
  article-title: A differential geometric approach to the geometric mean of symmetric positive‐definite matrices
  publication-title: SIAM J Matrix Anal Appl
– volume: 15
  start-page: 16
  issue: 12
  year: 2018
  end-page: 48
  article-title: Intelligent wireless communications enabled by cognitive radio and machine learning
  publication-title: China Commun
– volume: 66
  start-page: 5634
  issue: 21
  year: 2018
  end-page: 5647
  article-title: Mobile collaborative spectrum sensing for heterogeneous networks: a Bayesian machine learning approach
  publication-title: IEEE Trans Signal Process
– volume: 65
  start-page: 6853
  issue: 9
  year: 2016
  end-page: 6860
  article-title: Analysis of Spectrum occupancy using machine learning algorithms
  publication-title: IEEE Trans Veh Technol
– volume: 7
  start-page: 858
  issue: 5
  year: 2013
  end-page: 868
  article-title: Multiagent reinforcement learning based Spectrum sensing policies for cognitive radio networks
  publication-title: IEEE J Selected Topics Signal Process
– volume: 6
  start-page: 926
  issue: 3
  year: 2020
  end-page: 934
  article-title: A novel spectrum sharing scheme using dynamic long short‐term memory with CP‐OFDMA in 5G networks
  publication-title: IEEE Trans Cognit Commun Netw
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 13
  article-title: A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment
  publication-title: Complexity
– year: 2018
– volume: 6
  start-page: 25377
  year: 2018
  end-page: 25388
  article-title: Spatio‐temporal Spectrum sensing in cognitive radio networks using Beamformer‐aided SVM algorithms
  publication-title: IEEE Access
– year: 2014
– volume: 8
  start-page: 421
  issue: 3
  year: 2018
  article-title: Throughput maximization using an SVM for multi‐class hypothesis‐based spectrum sensing in cognitive radio
  publication-title: Appl Sci
– volume: 6
  start-page: 5962
  issue: 4
  year: 2019
  end-page: 5970
  article-title: A novel multichannel internet of things based on dynamic spectrum sharing in 5G communication
  publication-title: IEEE Internet Things J
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 10
  article-title: A spectrum sensing method based on signal feature and clustering algorithm in cognitive wireless multimedia sensor networks
  publication-title: Adv Multimedia
– volume: 17
  start-page: 14
  issue: 2
  year: 2020
  end-page: 29
  article-title: Generative neural network based spectrum sharing using linear sum assignment problems
  publication-title: China Commun
– year: 2021
  article-title: A comprehensive survey of physical layer security over fading channels: classifications, applications, and challenges
  publication-title: Trans Emerg Telecommun Technol
– volume: 43
  start-page: 1874
  year: 2020
  end-page: 4907
  article-title: A reinforcement learning based evolutionary multi‐objective optimization algorithm for spectrum allocation in cognitive radio networks
  publication-title: Phys Commun
– year: 2008
– volume: 3
  start-page: 390
  issue: 3
  year: 2017
  end-page: 403
  article-title: Negotiable auction based on mixed graph: a novel Spectrum sharing framework
  publication-title: IEEE Trans Cognit Commun Netw
– volume: 30
  issue: 5
  year: 2019
  article-title: An integrated performance evaluation of ED‐based spectrum sensing over α−κ−μ and α−κ−μ‐extreme fading channels
  publication-title: Trans Emerg Telecommun Technol
– year: 2004
– volume: 19
  start-page: 126
  issue: 1
  year: 2019
  article-title: A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances new challenges and future research directions
  publication-title: Sensors
– volume: 80
  start-page: 102
  year: 2012
  end-page: 110
  article-title: Reinforcement learning based sensing policy optimization for energy efficient cognitive radio networks
  publication-title: Neurocomputing
– year: 2016
  article-title: Design and analysis of spectrum sensing in cognitive radio based on energy detection
– volume: 16
  start-page: 1996
  issue: 4
  year: 2014
  end-page: 2018
  article-title: Machine learning in wireless sensor networks: algorithms, strategies, and applications
  publication-title: IEEE Commun Surv Tutor
– volume: 31
  issue: 7
  year: 2020
  article-title: Performance analysis of Beaulieu‐Xie fading channel with MRC diversity reception
  publication-title: Trans Emerg Telecommun Technol
– volume: 6
  start-page: 25463
  year: 2018
  end-page: 25473
  article-title: Intelligent power control for spectrum sharing in cognitive radios: a deep reinforcement learning approach
  publication-title: IEEE Access
– year: 2019
– year: 2015
– volume: 105
  start-page: 1433
  issue: 9
  year: 2018
  end-page: 1450
  article-title: Performance of MRC receiver over Hoyt‐lognormal composite fading channel
  publication-title: Int J Electron
– volume: 97
  start-page: 273
  year: 2018
  end-page: 279
  article-title: ED performance over α‐η‐μ/IG and α‐κ‐μ/IG generalized fading channels with diversity reception and cooperative sensing: a unified approach
  publication-title: AEU Int J Electron Commun
– volume: 15
  start-page: 1136
  issue: 3
  year: 2013
  end-page: 1159
  article-title: A survey on machine‐learning techniques in cognitive radios
  publication-title: IEEE Commun Surv Tutor
– volume: 20
  start-page: 61
  year: 2016
  end-page: 73
  article-title: A survey on compressive sensing techniques for cognitive radio networks
  publication-title: Phys Commun
– year: 2007
– volume: 16
  start-page: 1812
  issue: 11
  year: 2012
  end-page: 1815
  article-title: Adaptive compressive spectrum sensing for wideband cognitive radios
  publication-title: IEEE Commun Lett
– volume: 32
  issue: 2
  year: 2018
  article-title: An enhanced two‐phase SVM algorithm for cooperative spectrum sensing in cognitive radio networks
  publication-title: Int J Commun Syst
– volume: 114
  start-page: 152
  year: 2020
  end-page: 994
  article-title: Clustering formation in cognitive radio networks using machine learning
  publication-title: Int J Electron Commun
– volume: 112
  start-page: 1570
  year: 2021
  end-page: 8705
  article-title: CR‐IoTNet: machine learning based joint spectrum sensing and allocation for cognitive radio enabled IoT cellular networks
  publication-title: Ad Hoc Netw
– volume: 18
  start-page: 1181
  issue: 4
  year: 2010
  end-page: 1194
  article-title: Cooperative adaptive spectrum sharing in cognitive radio networks
  publication-title: IEEE/ACM Trans Netw
– volume: 12
  start-page: 2485
  issue: 19
  year: 2018
  end-page: 2492
  article-title: Improved cooperative spectrum sensing model based on machine learning for cognitive radio networks
  publication-title: IET Commun
– year: 2016
– volume: 31
  start-page: 2209
  issue: 11
  year: 2013
  end-page: 2221
  article-title: Machine learning techniques for cooperative spectrum sensing in cognitive radio networks
  publication-title: IEEE J Selected Areas Commun
– volume: 6
  start-page: 29532
  year: 2018
  end-page: 29540
  article-title: On covariance matrix based Spectrum sensing over frequency‐selective channels
  publication-title: IEEE Access
– volume: 7
  start-page: 119620
  year: 2019
  end-page: 119630
  article-title: A multi‐antenna spectrum sensing scheme based on main information extraction and genetic algorithm clustering
  publication-title: IEEE Access
– year: 2010
– volume: 20
  start-page: 674
  issue: 1
  year: 2018
  end-page: 707
  article-title: Dynamic spectrum sharing in 5G wireless networks with full‐duplex technology: recent advances and research challenges
  publication-title: IEEE Commun Surv Tutor
– volume: 58
  start-page: 1804
  issue: 4
  year: 2009
  end-page: 1815
  article-title: Spectrum‐sensing algorithms for cognitive radio based on statistical covariances
  publication-title: IEEE Trans Veh Technol
– volume: 49
  start-page: 104
  year: 2016
  end-page: 115
  article-title: On optimal fuzzy c‐means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks
  publication-title: Digit Signal Process
– volume: 3
  start-page: 2771
  year: 2015
  end-page: 2783
  article-title: Heuristically accelerated reinforcement learning for dynamic secondary spectrum sharing
  publication-title: IEEE Access
– volume: 19
  start-page: 4209
  issue: 6
  year: 2020
  end-page: 4219
  article-title: Power control based on deep reinforcement learning for spectrum sharing
  publication-title: IEEE Trans Wirel Commun
– volume: 13
  start-page: 6968
  issue: 12
  year: 2014
  end-page: 6981
  article-title: Detection of signals with observations in multiple subbands: a scheme of wideband Spectrum sensing for cognitive radio with multiple antennas
  publication-title: IEEE Trans Wirel Commun
– volume: 101
  start-page: 723
  issue: 2
  year: 2018
  end-page: 734
  article-title: Energy detection in Hoyt/gamma fading channel with micro‐diversity reception
  publication-title: Wirel Pers Commun
– start-page: 85
  year: 2017
  end-page: 92
– year: 2006
– volume: 2019
  start-page: 17
  issue: 1
  year: 2019
  end-page: 29
  article-title: A cooperative spectrum sensing method based on information geometry and fuzzy c‐means clustering algorithm
  publication-title: EURASIP J Wirel Commun Netw
– volume: 8
  start-page: 65
  issue: 1
  year: 1995
  end-page: 69
  article-title: Statistical tests based on geodesic distances
  publication-title: Appl Math Lett
– volume: 68
  start-page: 11374
  issue: 11
  year: 2019
  end-page: 11378
  article-title: A machine learning‐enabled Spectrum sensing method for OFDM systems
  publication-title: IEEE Trans Veh Technol
– year: 2017
– volume: 23
  start-page: 94
  issue: 2
  year: 2016
  end-page: 101
  article-title: Advanced spectrum sharing in 5G cognitive heterogeneous networks
  publication-title: IEEE Wirel Commun
– volume: 19
  start-page: 3863
  issue: 18
  year: 2019
  end-page: 3881
  article-title: Multiple‐antenna cooperative spectrum sensing based on the wavelet transform and Gaussian mixture model
  publication-title: Sensors
– volume: 24
  start-page: 98
  issue: 2
  year: 2017
  end-page: 105
  article-title: Machine learning paradigms for next‐generation wireless networks
  publication-title: IEEE Wirel Commun
– year: 2013
– ident: e_1_2_7_3_1
  doi: 10.1002/ett.3569
– ident: e_1_2_7_81_1
  doi: 10.1109/TWC.2016.2612627
– ident: e_1_2_7_55_1
  doi: 10.1155/2017/2895680
– ident: e_1_2_7_42_1
  doi: 10.1109/GLOCOM.2016.7841503
– ident: e_1_2_7_73_1
  doi: 10.1016/0893-9659(94)00112-P
– volume: 2019
  start-page: 1
  year: 2019
  ident: e_1_2_7_59_1
  article-title: A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment
  publication-title: Complexity
– ident: e_1_2_7_82_1
  doi: 10.1109/TNSM.2020.3000274
– volume: 43
  start-page: 1874
  year: 2020
  ident: e_1_2_7_90_1
  article-title: A reinforcement learning based evolutionary multi‐objective optimization algorithm for spectrum allocation in cognitive radio networks
  publication-title: Phys Commun
– ident: e_1_2_7_7_1
  doi: 10.1145/1234388.1234390
– ident: e_1_2_7_67_1
  doi: 10.1016/j.aeue.2019.152994
– ident: e_1_2_7_84_1
  doi: 10.1109/ACCESS.2018.2831240
– ident: e_1_2_7_21_1
  doi: 10.1109/ISWCS.2008.4726105
– ident: e_1_2_7_34_1
  doi: 10.1109/MWC.2016.1500356WC
– ident: e_1_2_7_5_1
  doi: 10.1109/ACSSC.2004.1399240
– volume-title: International Conference on Information and Communication Technology Convergence (ICTC)
  year: 2018
  ident: e_1_2_7_63_1
– ident: e_1_2_7_78_1
  doi: 10.1109/TCCN.2017.2729546
– ident: e_1_2_7_70_1
  doi: 10.1109/JSTSP.2013.2259797
– volume: 15
  start-page: 16
  issue: 12
  year: 2018
  ident: e_1_2_7_13_1
  article-title: Intelligent wireless communications enabled by cognitive radio and machine learning
  publication-title: China Commun
– ident: e_1_2_7_87_1
  doi: 10.1109/TCCN.2020.2970697
– ident: e_1_2_7_41_1
  doi: 10.23919/EUSIPCO.2019.8903028
– ident: e_1_2_7_75_1
  doi: 10.1137/S0895479803436937
– ident: e_1_2_7_68_1
  doi: 10.1109/PIMRC.2010.5671686
– ident: e_1_2_7_62_1
  doi: 10.3390/s19183863
– ident: e_1_2_7_39_1
  doi: 10.1002/dac.3856
– ident: e_1_2_7_54_1
  doi: 10.1109/CISP-BMEI.2017.8302156
– ident: e_1_2_7_40_1
  doi: 10.1109/TAAI.2013.52
– ident: e_1_2_7_8_1
  doi: 10.1016/j.aeue.2018.10.027
– ident: e_1_2_7_10_1
– ident: e_1_2_7_64_1
  doi: 10.1016/j.dsp.2015.10.006
– ident: e_1_2_7_2_1
– ident: e_1_2_7_76_1
  doi: 10.1109/JIOT.2018.2847731
– ident: e_1_2_7_83_1
  doi: 10.1109/ACCESS.2015.2507158
– ident: e_1_2_7_38_1
  doi: 10.1109/TVT.2015.2487047
– ident: e_1_2_7_9_1
  doi: 10.1016/j.aeue.2018.05.031
– ident: e_1_2_7_23_1
  doi: 10.1109/WINCOM.2015.7381345
– ident: e_1_2_7_51_1
  doi: 10.1109/PIMRC.2017.8292449
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  ident: e_1_2_7_57_1
  article-title: A spectrum sensing method based on empirical mode decomposition and K‐means clustering algorithm
  publication-title: Wirel Commun Mobile Comput
  doi: 10.1155/2018/6104502
– ident: e_1_2_7_89_1
  doi: 10.1016/j.adhoc.2020.102390
– ident: e_1_2_7_36_1
  doi: 10.1109/CyberC.2014.80
– ident: e_1_2_7_22_1
  doi: 10.1109/UEMCON.2016.7777887
– ident: e_1_2_7_17_1
  doi: 10.1109/NSysS.2017.7885815
– ident: e_1_2_7_37_1
  doi: 10.1109/WCNC.2016.7564840
– ident: e_1_2_7_52_1
  doi: 10.1109/NCC.2016.7561130
– ident: e_1_2_7_71_1
  doi: 10.1016/j.neucom.2011.07.027
– ident: e_1_2_7_14_1
  doi: 10.3390/s19010126
– ident: e_1_2_7_48_1
  doi: 10.1109/TSP.2018.2870379
– ident: e_1_2_7_50_1
  doi: 10.1049/iet-com.2018.5245
– ident: e_1_2_7_65_1
  doi: 10.1016/j.dcan.2016.09.002
– ident: e_1_2_7_43_1
  doi: 10.1109/ICSPCS.2015.7391780
– ident: e_1_2_7_58_1
  doi: 10.1007/978-3-030-00006-6_20
– ident: e_1_2_7_26_1
  doi: 10.1016/j.phycom.2016.05.002
– ident: e_1_2_7_27_1
  doi: 10.1109/TWC.2014.2349938
– ident: e_1_2_7_88_1
  doi: 10.1109/JSAC.2021.3087254
– ident: e_1_2_7_11_1
  doi: 10.1007/978-3-319-24540-9_66
– ident: e_1_2_7_46_1
  doi: 10.1109/TVT.2019.2943997
– ident: e_1_2_7_53_1
  doi: 10.1109/ISCIT.2016.7751703
– ident: e_1_2_7_79_1
  doi: 10.1109/TNET.2009.2039490
– ident: e_1_2_7_18_1
  doi: 10.1007/s11277-018-5712-7
– ident: e_1_2_7_35_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_7_28_1
  doi: 10.1109/LCOMM.2012.092812.121648
– ident: e_1_2_7_85_1
  doi: 10.1109/TWC.2020.2981320
– start-page: 85
  volume-title: Advances in Electronics, Communication and Computing
  year: 2017
  ident: e_1_2_7_49_1
– ident: e_1_2_7_15_1
  doi: 10.1109/JSAC.2013.131120
– ident: e_1_2_7_19_1
  doi: 10.1080/00207217.2018.1460870
– volume-title: International Conference on Signal and Information Processing (IConSIP)
  year: 2016
  ident: e_1_2_7_16_1
– ident: e_1_2_7_47_1
  doi: 10.1109/GlobalSIP.2014.7032309
– ident: e_1_2_7_86_1
  doi: 10.23919/JCC.2020.02.002
– ident: e_1_2_7_33_1
  doi: 10.1109/COMST.2014.2320099
– ident: e_1_2_7_60_1
  doi: 10.1186/s13638-019-1338-z
– ident: e_1_2_7_56_1
  doi: 10.1109/CAC.2018.8623801
– ident: e_1_2_7_44_1
  doi: 10.1109/ACCESS.2018.2825603
– ident: e_1_2_7_45_1
  doi: 10.3390/app8030421
– ident: e_1_2_7_6_1
  doi: 10.1002/ett.3949
– ident: e_1_2_7_25_1
  doi: 10.1109/DYSPAN.2005.1542630
– ident: e_1_2_7_31_1
  doi: 10.1109/PIMRC.2007.4394211
– ident: e_1_2_7_74_1
  doi: 10.1109/JSTSP.2013.2261798
– ident: e_1_2_7_80_1
  doi: 10.1109/COMST.2017.2773628
– start-page: e4270
  year: 2021
  ident: e_1_2_7_4_1
  article-title: A comprehensive survey of physical layer security over fading channels: classifications, applications, and challenges
  publication-title: Trans Emerg Telecommun Technol
  doi: 10.1002/ett.4270
– ident: e_1_2_7_12_1
  doi: 10.1109/SURV.2012.100412.00017
– ident: e_1_2_7_77_1
  doi: 10.1109/MWC.2016.7462490
– ident: e_1_2_7_30_1
  doi: 10.1109/TVT.2008.2005267
– ident: e_1_2_7_20_1
  doi: 10.1007/s11277-018-5677-6
– ident: e_1_2_7_69_1
  doi: 10.1109/DYSPAN.2011.5936261
– ident: e_1_2_7_61_1
  doi: 10.1109/ACCESS.2019.2936511
– ident: e_1_2_7_72_1
  doi: 10.1016/j.aeue.2018.07.029
– ident: e_1_2_7_32_1
  doi: 10.1109/DYSPAN.2007.33
– ident: e_1_2_7_66_1
  doi: 10.1109/ICTC.2017.8191025
– ident: e_1_2_7_24_1
  doi: 10.1109/GlobalSIP.2014.7032326
– ident: e_1_2_7_29_1
  doi: 10.1109/ACCESS.2018.2842099
SSID ssj0000752548
Score 2.3939874
Snippet With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Machine learning for cooperative spectrum sensing and sharing: A survey
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4352
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLa2cmGHCQYTbDB50rQdqnSNHccJt2p0q7Z1lwaJW2THjjhAW7XpDvx6nh07CdBJsEsSuY5T-X2y33t-33sIfUoSlcRlSgNSShFEKooCSVkSDCNaDjUjkeaGOzz9E08uop-X7LKlK1p2SSUHxe1WXsn_SBXaQK6GJfsMyTaDQgM8g3zhChKG65NkPLWRkNqXfqhDIovFYqldPm_Lo1xtbvprE6fu6IjrK7FyNOdRf71Z_b1_tJu1FcTtUYJhENtKRpUpmdPlk6z7lXfMd0MRxXxjVzJDwGziN2YwgvXg_NpcK62X7RGSC_GeGW-2a3deCEI6Xgi7WJHQ-LHSmpo50Fva3Gpbp73oourRIl4nhdVVNQBdjrQblT-cf7B_NVGFdQZmksObuXnzJdohYDyQHtoZnU9_zxrfG6hJYBfbYoX-L_q8xEPy1X_4nqbStVys6pHtodfOZsCjGgD76IWev0GvOpkkD9APBwXsoYABCrgDBeyhgB0UMMw3dlA4wyNcA-EQXXwfZ98mgauRERQkZiRQCVGEiYTTkCpOJeyjnAgwrGkcKmaymUlWcsrBqmZRKNKCg_7HVcqhW8yUoG9Rb76Y6yOEBVMKftIyNTmLklJIybhOlRJhKFhaHKMvfj7ywiWQN3VMrvOHE3-MPjY9l3XSlC19Ptsp_WeHfJxl5v7uCYO9R7stKE9QD6ZTn4KyWMkPTvZ3u8Jt5Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+cooperative+spectrum+sensing+and+sharing%3A+A+survey&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Janu%2C+Dimpal&rft.au=Singh%2C+Kuldeep&rft.au=Kumar%2C+Sandeep&rft.date=2022-01-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=1&rft_id=info:doi/10.1002%2Fett.4352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon