Machine learning for cooperative spectrum sensing and sharing: A survey
With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in C...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 33; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in CRNs, namely spectrum sensing (SS) and spectrum sharing. The application of machine learning (ML) techniques has added new aspects to SS and spectrum sharing. This paper offers a survey on various ML‐based algorithms in the cooperative spectrum sensing (CSS) and dynamic spectrum sharing (DSS) domain, with its emphasis on types of features extracted from primary user signal, types of ML algorithm, and performance metrics utilized for evaluation of ML algorithms. Starting with the basic principles and challenges of SS, this paper also justifies the applicability of supervised, unsupervised, and reinforcement ML algorithms in the CSS domain. The application of ML algorithms, to solve the DSS problem has also been reviewed. Finally, the survey paper is concluded with some suggested open research challenges and future directions for ML application in next‐generation communication technologies.
With the rapid development of next‐generation wireless communication technologies and increasing the requirement of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in the sensing and sharing of spectrum in cognitive radio networks. The application of ML techniques has added new aspects to these fundamental problems. |
---|---|
AbstractList | With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in CRNs, namely spectrum sensing (SS) and spectrum sharing. The application of machine learning (ML) techniques has added new aspects to SS and spectrum sharing. This paper offers a survey on various ML‐based algorithms in the cooperative spectrum sensing (CSS) and dynamic spectrum sharing (DSS) domain, with its emphasis on types of features extracted from primary user signal, types of ML algorithm, and performance metrics utilized for evaluation of ML algorithms. Starting with the basic principles and challenges of SS, this paper also justifies the applicability of supervised, unsupervised, and reinforcement ML algorithms in the CSS domain. The application of ML algorithms, to solve the DSS problem has also been reviewed. Finally, the survey paper is concluded with some suggested open research challenges and future directions for ML application in next‐generation communication technologies.
With the rapid development of next‐generation wireless communication technologies and increasing the requirement of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in the sensing and sharing of spectrum in cognitive radio networks. The application of ML techniques has added new aspects to these fundamental problems. With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to introduce learning and reasoning capabilities in cognitive radio networks (CRN). In particular, our focus is on two fundamental applications in CRNs, namely spectrum sensing (SS) and spectrum sharing. The application of machine learning (ML) techniques has added new aspects to SS and spectrum sharing. This paper offers a survey on various ML‐based algorithms in the cooperative spectrum sensing (CSS) and dynamic spectrum sharing (DSS) domain, with its emphasis on types of features extracted from primary user signal, types of ML algorithm, and performance metrics utilized for evaluation of ML algorithms. Starting with the basic principles and challenges of SS, this paper also justifies the applicability of supervised, unsupervised, and reinforcement ML algorithms in the CSS domain. The application of ML algorithms, to solve the DSS problem has also been reviewed. Finally, the survey paper is concluded with some suggested open research challenges and future directions for ML application in next‐generation communication technologies. |
Author | Kumar, Sandeep Singh, Kuldeep Janu, Dimpal |
Author_xml | – sequence: 1 givenname: Dimpal surname: Janu fullname: Janu, Dimpal organization: Malaviya National Institute of Technology – sequence: 2 givenname: Kuldeep orcidid: 0000-0002-2350-1700 surname: Singh fullname: Singh, Kuldeep organization: Malaviya National Institute of Technology – sequence: 3 givenname: Sandeep orcidid: 0000-0002-5750-6112 surname: Kumar fullname: Kumar, Sandeep email: sann.kaushik@gmail.com organization: Bharat Electronics Ltd |
BookMark | eNp1kE1PwkAQhjcGExFJ_Al79FLcj2639UYIggnGC56bYXcqa8qW7BZM_71FPBijc5n38LyTyXNNBr7xSMgtZxPOmLjHtp2kUokLMhQ844ksuBr8yFdkHOM760crodJ8SBbPYLbOI60Rgnf-jVZNoKZp9higdUekcY-mDYcdjejjCQBvadxC6PMDndJ4CEfsbshlBXXE8fcekdfH-Xq2TFYvi6fZdJUYkSmR2FxYoSDXkkur5QbBaAFMZDLjVvGUFRtVaamLIlcph8JoxpW2he6xTFmQIzI53zWhiTFgVRrX9o82vg3g6pKz8mSi7E2UJxN94e5XYR_cDkL3F5qc0Q9XY_cvV87X6y_-EyjNbfA |
CitedBy_id | crossref_primary_10_3390_electronics12214514 crossref_primary_10_3390_app122211706 crossref_primary_10_3390_fi16010014 crossref_primary_10_1109_ACCESS_2023_3238799 crossref_primary_10_1088_1402_4896_aca56d crossref_primary_10_1155_2023_2953986 crossref_primary_10_3233_JIFS_230438 crossref_primary_10_1007_s11277_022_09880_y crossref_primary_10_1080_0954898X_2024_2393245 crossref_primary_10_2174_0126662558271215231204053038 crossref_primary_10_1002_ett_4714 crossref_primary_10_1002_ett_4454 crossref_primary_10_1109_TVT_2022_3214348 crossref_primary_10_1002_spy2_415 crossref_primary_10_12720_jait_14_6_1321_1330 crossref_primary_10_1002_ett_4470 crossref_primary_10_1109_LSENS_2023_3327558 crossref_primary_10_1109_ACCESS_2023_3305388 crossref_primary_10_1109_LCOMM_2023_3241664 crossref_primary_10_3390_electronics11203280 crossref_primary_10_1080_03772063_2025_2475116 crossref_primary_10_1109_ACCESS_2022_3210254 crossref_primary_10_3390_s22228946 crossref_primary_10_3390_s24247907 crossref_primary_10_1002_ett_4927 crossref_primary_10_1109_JSYST_2024_3376986 crossref_primary_10_3390_e23121611 |
Cites_doi | 10.1002/ett.3569 10.1109/TWC.2016.2612627 10.1155/2017/2895680 10.1109/GLOCOM.2016.7841503 10.1016/0893-9659(94)00112-P 10.1109/TNSM.2020.3000274 10.1145/1234388.1234390 10.1016/j.aeue.2019.152994 10.1109/ACCESS.2018.2831240 10.1109/ISWCS.2008.4726105 10.1109/MWC.2016.1500356WC 10.1109/ACSSC.2004.1399240 10.1109/TCCN.2017.2729546 10.1109/JSTSP.2013.2259797 10.1109/TCCN.2020.2970697 10.23919/EUSIPCO.2019.8903028 10.1137/S0895479803436937 10.1109/PIMRC.2010.5671686 10.3390/s19183863 10.1002/dac.3856 10.1109/CISP-BMEI.2017.8302156 10.1109/TAAI.2013.52 10.1016/j.aeue.2018.10.027 10.1016/j.dsp.2015.10.006 10.1109/JIOT.2018.2847731 10.1109/ACCESS.2015.2507158 10.1109/TVT.2015.2487047 10.1016/j.aeue.2018.05.031 10.1109/WINCOM.2015.7381345 10.1109/PIMRC.2017.8292449 10.1155/2018/6104502 10.1016/j.adhoc.2020.102390 10.1109/CyberC.2014.80 10.1109/UEMCON.2016.7777887 10.1109/NSysS.2017.7885815 10.1109/WCNC.2016.7564840 10.1109/NCC.2016.7561130 10.1016/j.neucom.2011.07.027 10.3390/s19010126 10.1109/TSP.2018.2870379 10.1049/iet-com.2018.5245 10.1016/j.dcan.2016.09.002 10.1109/ICSPCS.2015.7391780 10.1007/978-3-030-00006-6_20 10.1016/j.phycom.2016.05.002 10.1109/TWC.2014.2349938 10.1109/JSAC.2021.3087254 10.1007/978-3-319-24540-9_66 10.1109/TVT.2019.2943997 10.1109/ISCIT.2016.7751703 10.1109/TNET.2009.2039490 10.1007/s11277-018-5712-7 10.1007/978-0-387-45528-0 10.1109/LCOMM.2012.092812.121648 10.1109/TWC.2020.2981320 10.1109/JSAC.2013.131120 10.1080/00207217.2018.1460870 10.1109/GlobalSIP.2014.7032309 10.23919/JCC.2020.02.002 10.1109/COMST.2014.2320099 10.1186/s13638-019-1338-z 10.1109/CAC.2018.8623801 10.1109/ACCESS.2018.2825603 10.3390/app8030421 10.1002/ett.3949 10.1109/DYSPAN.2005.1542630 10.1109/PIMRC.2007.4394211 10.1109/JSTSP.2013.2261798 10.1109/COMST.2017.2773628 10.1002/ett.4270 10.1109/SURV.2012.100412.00017 10.1109/MWC.2016.7462490 10.1109/TVT.2008.2005267 10.1007/s11277-018-5677-6 10.1109/DYSPAN.2011.5936261 10.1109/ACCESS.2019.2936511 10.1016/j.aeue.2018.07.029 10.1109/DYSPAN.2007.33 10.1109/ICTC.2017.8191025 10.1109/GlobalSIP.2014.7032326 10.1109/ACCESS.2018.2842099 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.4352 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_4352 ETT4352 |
Genre | article |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2652-d82d25a87313d73beac72a026361d51409b5f737998541a9c70157d97c7265da3 |
ISSN | 2161-3915 |
IngestDate | Thu Apr 24 23:08:54 EDT 2025 Tue Jul 01 03:49:26 EDT 2025 Wed Jan 22 16:27:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2652-d82d25a87313d73beac72a026361d51409b5f737998541a9c70157d97c7265da3 |
ORCID | 0000-0002-5750-6112 0000-0002-2350-1700 |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1002_ett_4352 crossref_primary_10_1002_ett_4352 wiley_primary_10_1002_ett_4352_ETT4352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2019; 2019 2017; 3 2010; 18 2020; 17 2019; 19 2012; 16 2013; 7 2020; 19 2018; 6 2009; 58 2020; 6 2018; 8 2013; 15 2021; 112 2019; 68 2021; 39 2014; 16 2008; 26 2014; 13 2020; 43 2018; 32 2016; 49 2019; 7 2018; 100 2012; 80 2019; 6 2015; 3 2017; 2017 2019; 30 2018; 105 2011 2010 2018; 101 2017; 24 2008 2007 2006 2005 2004 2018; 66 2018; 20 2016; 15 1995; 8 2018; 2018 2016; 2 2020; 31 2021 2013; 31 2016; 65 2016; 20 2019 2018 2017 2016 2015 2014 2018; 94 2018; 93 2013 2020; 114 2018; 12 2018; 97 2018; 15 2016; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 Yadav P (e_1_2_7_4_1) 2021 e_1_2_7_28_1 e_1_2_7_73_1 Kaur A (e_1_2_7_90_1) 2020; 43 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_8_1 Wang Y (e_1_2_7_57_1) 2018; 2018 Ranjan A. (e_1_2_7_16_1) 2016 Basumatary N (e_1_2_7_49_1) 2017 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 Zhou X (e_1_2_7_13_1) 2018; 15 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Bhatti DMS (e_1_2_7_63_1) 2018 Wang Y (e_1_2_7_59_1) 2019; 2019 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – year: 2011 – volume: 39 start-page: 2526 issue: 8 year: 2021 end-page: 2540 article-title: A deep reinforcement learning framework for contention‐based Spectrum sharing publication-title: IEEE J Selected Areas Commun – volume: 17 start-page: 1337 issue: 3 year: 2020 end-page: 1348 article-title: Energy‐efficient resource allocation in cognitive radio networks under cooperative multi‐agent model‐free reinforcement learning schemes publication-title: IEEE Trans Netw Serv Manag – year: 2005 – volume: 2018 start-page: 1 issue: 1 year: 2018 end-page: 10 article-title: A spectrum sensing method based on empirical mode decomposition and K‐means clustering algorithm publication-title: Wirel Commun Mobile Comput – volume: 2 start-page: 196 issue: 4 year: 2016 end-page: 205 article-title: Kernel fuzzy c‐means clustering on energy detection based cooperative spectrum sensing publication-title: Digit Commun Netw – volume: 7 start-page: 595 issue: 4 year: 2013 end-page: 604 article-title: Riemannian medians and means with applications to radar signal processing publication-title: IEEE J Selected Topics Signal Process – volume: 100 start-page: 1845 issue: 4 year: 2018 end-page: 1857 article-title: Performance of ED based spectrum sensing over α–η–μ fading channel publication-title: Wirel Pers Commun – volume: 93 start-page: 26 year: 2018 end-page: 31 article-title: Energy detection based spectrum sensing for gamma shadowed α–η–μ and α–κ–μ fading channels publication-title: AEU Int J Electron Commun – volume: 15 start-page: 8093 issue: 12 year: 2016 end-page: 8106 article-title: Enhanced dynamic spectrum access in multiband cognitive radio networks via optimized resource allocation publication-title: IEEE Trans Wirel Commun – volume: 94 start-page: 359 year: 2018 end-page: 366 article-title: Distributed cooperative spectrum sensing based on reinforcement learning in cognitive radio networks publication-title: AEU‐Int J Electron C – volume: 26 start-page: 735 issue: 3 year: 2008 end-page: 747 article-title: A differential geometric approach to the geometric mean of symmetric positive‐definite matrices publication-title: SIAM J Matrix Anal Appl – volume: 15 start-page: 16 issue: 12 year: 2018 end-page: 48 article-title: Intelligent wireless communications enabled by cognitive radio and machine learning publication-title: China Commun – volume: 66 start-page: 5634 issue: 21 year: 2018 end-page: 5647 article-title: Mobile collaborative spectrum sensing for heterogeneous networks: a Bayesian machine learning approach publication-title: IEEE Trans Signal Process – volume: 65 start-page: 6853 issue: 9 year: 2016 end-page: 6860 article-title: Analysis of Spectrum occupancy using machine learning algorithms publication-title: IEEE Trans Veh Technol – volume: 7 start-page: 858 issue: 5 year: 2013 end-page: 868 article-title: Multiagent reinforcement learning based Spectrum sensing policies for cognitive radio networks publication-title: IEEE J Selected Topics Signal Process – volume: 6 start-page: 926 issue: 3 year: 2020 end-page: 934 article-title: A novel spectrum sharing scheme using dynamic long short‐term memory with CP‐OFDMA in 5G networks publication-title: IEEE Trans Cognit Commun Netw – volume: 2019 start-page: 1 year: 2019 end-page: 13 article-title: A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment publication-title: Complexity – year: 2018 – volume: 6 start-page: 25377 year: 2018 end-page: 25388 article-title: Spatio‐temporal Spectrum sensing in cognitive radio networks using Beamformer‐aided SVM algorithms publication-title: IEEE Access – year: 2014 – volume: 8 start-page: 421 issue: 3 year: 2018 article-title: Throughput maximization using an SVM for multi‐class hypothesis‐based spectrum sensing in cognitive radio publication-title: Appl Sci – volume: 6 start-page: 5962 issue: 4 year: 2019 end-page: 5970 article-title: A novel multichannel internet of things based on dynamic spectrum sharing in 5G communication publication-title: IEEE Internet Things J – volume: 2017 start-page: 1 year: 2017 end-page: 10 article-title: A spectrum sensing method based on signal feature and clustering algorithm in cognitive wireless multimedia sensor networks publication-title: Adv Multimedia – volume: 17 start-page: 14 issue: 2 year: 2020 end-page: 29 article-title: Generative neural network based spectrum sharing using linear sum assignment problems publication-title: China Commun – year: 2021 article-title: A comprehensive survey of physical layer security over fading channels: classifications, applications, and challenges publication-title: Trans Emerg Telecommun Technol – volume: 43 start-page: 1874 year: 2020 end-page: 4907 article-title: A reinforcement learning based evolutionary multi‐objective optimization algorithm for spectrum allocation in cognitive radio networks publication-title: Phys Commun – year: 2008 – volume: 3 start-page: 390 issue: 3 year: 2017 end-page: 403 article-title: Negotiable auction based on mixed graph: a novel Spectrum sharing framework publication-title: IEEE Trans Cognit Commun Netw – volume: 30 issue: 5 year: 2019 article-title: An integrated performance evaluation of ED‐based spectrum sensing over α−κ−μ and α−κ−μ‐extreme fading channels publication-title: Trans Emerg Telecommun Technol – year: 2004 – volume: 19 start-page: 126 issue: 1 year: 2019 article-title: A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances new challenges and future research directions publication-title: Sensors – volume: 80 start-page: 102 year: 2012 end-page: 110 article-title: Reinforcement learning based sensing policy optimization for energy efficient cognitive radio networks publication-title: Neurocomputing – year: 2016 article-title: Design and analysis of spectrum sensing in cognitive radio based on energy detection – volume: 16 start-page: 1996 issue: 4 year: 2014 end-page: 2018 article-title: Machine learning in wireless sensor networks: algorithms, strategies, and applications publication-title: IEEE Commun Surv Tutor – volume: 31 issue: 7 year: 2020 article-title: Performance analysis of Beaulieu‐Xie fading channel with MRC diversity reception publication-title: Trans Emerg Telecommun Technol – volume: 6 start-page: 25463 year: 2018 end-page: 25473 article-title: Intelligent power control for spectrum sharing in cognitive radios: a deep reinforcement learning approach publication-title: IEEE Access – year: 2019 – year: 2015 – volume: 105 start-page: 1433 issue: 9 year: 2018 end-page: 1450 article-title: Performance of MRC receiver over Hoyt‐lognormal composite fading channel publication-title: Int J Electron – volume: 97 start-page: 273 year: 2018 end-page: 279 article-title: ED performance over α‐η‐μ/IG and α‐κ‐μ/IG generalized fading channels with diversity reception and cooperative sensing: a unified approach publication-title: AEU Int J Electron Commun – volume: 15 start-page: 1136 issue: 3 year: 2013 end-page: 1159 article-title: A survey on machine‐learning techniques in cognitive radios publication-title: IEEE Commun Surv Tutor – volume: 20 start-page: 61 year: 2016 end-page: 73 article-title: A survey on compressive sensing techniques for cognitive radio networks publication-title: Phys Commun – year: 2007 – volume: 16 start-page: 1812 issue: 11 year: 2012 end-page: 1815 article-title: Adaptive compressive spectrum sensing for wideband cognitive radios publication-title: IEEE Commun Lett – volume: 32 issue: 2 year: 2018 article-title: An enhanced two‐phase SVM algorithm for cooperative spectrum sensing in cognitive radio networks publication-title: Int J Commun Syst – volume: 114 start-page: 152 year: 2020 end-page: 994 article-title: Clustering formation in cognitive radio networks using machine learning publication-title: Int J Electron Commun – volume: 112 start-page: 1570 year: 2021 end-page: 8705 article-title: CR‐IoTNet: machine learning based joint spectrum sensing and allocation for cognitive radio enabled IoT cellular networks publication-title: Ad Hoc Netw – volume: 18 start-page: 1181 issue: 4 year: 2010 end-page: 1194 article-title: Cooperative adaptive spectrum sharing in cognitive radio networks publication-title: IEEE/ACM Trans Netw – volume: 12 start-page: 2485 issue: 19 year: 2018 end-page: 2492 article-title: Improved cooperative spectrum sensing model based on machine learning for cognitive radio networks publication-title: IET Commun – year: 2016 – volume: 31 start-page: 2209 issue: 11 year: 2013 end-page: 2221 article-title: Machine learning techniques for cooperative spectrum sensing in cognitive radio networks publication-title: IEEE J Selected Areas Commun – volume: 6 start-page: 29532 year: 2018 end-page: 29540 article-title: On covariance matrix based Spectrum sensing over frequency‐selective channels publication-title: IEEE Access – volume: 7 start-page: 119620 year: 2019 end-page: 119630 article-title: A multi‐antenna spectrum sensing scheme based on main information extraction and genetic algorithm clustering publication-title: IEEE Access – year: 2010 – volume: 20 start-page: 674 issue: 1 year: 2018 end-page: 707 article-title: Dynamic spectrum sharing in 5G wireless networks with full‐duplex technology: recent advances and research challenges publication-title: IEEE Commun Surv Tutor – volume: 58 start-page: 1804 issue: 4 year: 2009 end-page: 1815 article-title: Spectrum‐sensing algorithms for cognitive radio based on statistical covariances publication-title: IEEE Trans Veh Technol – volume: 49 start-page: 104 year: 2016 end-page: 115 article-title: On optimal fuzzy c‐means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks publication-title: Digit Signal Process – volume: 3 start-page: 2771 year: 2015 end-page: 2783 article-title: Heuristically accelerated reinforcement learning for dynamic secondary spectrum sharing publication-title: IEEE Access – volume: 19 start-page: 4209 issue: 6 year: 2020 end-page: 4219 article-title: Power control based on deep reinforcement learning for spectrum sharing publication-title: IEEE Trans Wirel Commun – volume: 13 start-page: 6968 issue: 12 year: 2014 end-page: 6981 article-title: Detection of signals with observations in multiple subbands: a scheme of wideband Spectrum sensing for cognitive radio with multiple antennas publication-title: IEEE Trans Wirel Commun – volume: 101 start-page: 723 issue: 2 year: 2018 end-page: 734 article-title: Energy detection in Hoyt/gamma fading channel with micro‐diversity reception publication-title: Wirel Pers Commun – start-page: 85 year: 2017 end-page: 92 – year: 2006 – volume: 2019 start-page: 17 issue: 1 year: 2019 end-page: 29 article-title: A cooperative spectrum sensing method based on information geometry and fuzzy c‐means clustering algorithm publication-title: EURASIP J Wirel Commun Netw – volume: 8 start-page: 65 issue: 1 year: 1995 end-page: 69 article-title: Statistical tests based on geodesic distances publication-title: Appl Math Lett – volume: 68 start-page: 11374 issue: 11 year: 2019 end-page: 11378 article-title: A machine learning‐enabled Spectrum sensing method for OFDM systems publication-title: IEEE Trans Veh Technol – year: 2017 – volume: 23 start-page: 94 issue: 2 year: 2016 end-page: 101 article-title: Advanced spectrum sharing in 5G cognitive heterogeneous networks publication-title: IEEE Wirel Commun – volume: 19 start-page: 3863 issue: 18 year: 2019 end-page: 3881 article-title: Multiple‐antenna cooperative spectrum sensing based on the wavelet transform and Gaussian mixture model publication-title: Sensors – volume: 24 start-page: 98 issue: 2 year: 2017 end-page: 105 article-title: Machine learning paradigms for next‐generation wireless networks publication-title: IEEE Wirel Commun – year: 2013 – ident: e_1_2_7_3_1 doi: 10.1002/ett.3569 – ident: e_1_2_7_81_1 doi: 10.1109/TWC.2016.2612627 – ident: e_1_2_7_55_1 doi: 10.1155/2017/2895680 – ident: e_1_2_7_42_1 doi: 10.1109/GLOCOM.2016.7841503 – ident: e_1_2_7_73_1 doi: 10.1016/0893-9659(94)00112-P – volume: 2019 start-page: 1 year: 2019 ident: e_1_2_7_59_1 article-title: A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment publication-title: Complexity – ident: e_1_2_7_82_1 doi: 10.1109/TNSM.2020.3000274 – volume: 43 start-page: 1874 year: 2020 ident: e_1_2_7_90_1 article-title: A reinforcement learning based evolutionary multi‐objective optimization algorithm for spectrum allocation in cognitive radio networks publication-title: Phys Commun – ident: e_1_2_7_7_1 doi: 10.1145/1234388.1234390 – ident: e_1_2_7_67_1 doi: 10.1016/j.aeue.2019.152994 – ident: e_1_2_7_84_1 doi: 10.1109/ACCESS.2018.2831240 – ident: e_1_2_7_21_1 doi: 10.1109/ISWCS.2008.4726105 – ident: e_1_2_7_34_1 doi: 10.1109/MWC.2016.1500356WC – ident: e_1_2_7_5_1 doi: 10.1109/ACSSC.2004.1399240 – volume-title: International Conference on Information and Communication Technology Convergence (ICTC) year: 2018 ident: e_1_2_7_63_1 – ident: e_1_2_7_78_1 doi: 10.1109/TCCN.2017.2729546 – ident: e_1_2_7_70_1 doi: 10.1109/JSTSP.2013.2259797 – volume: 15 start-page: 16 issue: 12 year: 2018 ident: e_1_2_7_13_1 article-title: Intelligent wireless communications enabled by cognitive radio and machine learning publication-title: China Commun – ident: e_1_2_7_87_1 doi: 10.1109/TCCN.2020.2970697 – ident: e_1_2_7_41_1 doi: 10.23919/EUSIPCO.2019.8903028 – ident: e_1_2_7_75_1 doi: 10.1137/S0895479803436937 – ident: e_1_2_7_68_1 doi: 10.1109/PIMRC.2010.5671686 – ident: e_1_2_7_62_1 doi: 10.3390/s19183863 – ident: e_1_2_7_39_1 doi: 10.1002/dac.3856 – ident: e_1_2_7_54_1 doi: 10.1109/CISP-BMEI.2017.8302156 – ident: e_1_2_7_40_1 doi: 10.1109/TAAI.2013.52 – ident: e_1_2_7_8_1 doi: 10.1016/j.aeue.2018.10.027 – ident: e_1_2_7_10_1 – ident: e_1_2_7_64_1 doi: 10.1016/j.dsp.2015.10.006 – ident: e_1_2_7_2_1 – ident: e_1_2_7_76_1 doi: 10.1109/JIOT.2018.2847731 – ident: e_1_2_7_83_1 doi: 10.1109/ACCESS.2015.2507158 – ident: e_1_2_7_38_1 doi: 10.1109/TVT.2015.2487047 – ident: e_1_2_7_9_1 doi: 10.1016/j.aeue.2018.05.031 – ident: e_1_2_7_23_1 doi: 10.1109/WINCOM.2015.7381345 – ident: e_1_2_7_51_1 doi: 10.1109/PIMRC.2017.8292449 – volume: 2018 start-page: 1 issue: 1 year: 2018 ident: e_1_2_7_57_1 article-title: A spectrum sensing method based on empirical mode decomposition and K‐means clustering algorithm publication-title: Wirel Commun Mobile Comput doi: 10.1155/2018/6104502 – ident: e_1_2_7_89_1 doi: 10.1016/j.adhoc.2020.102390 – ident: e_1_2_7_36_1 doi: 10.1109/CyberC.2014.80 – ident: e_1_2_7_22_1 doi: 10.1109/UEMCON.2016.7777887 – ident: e_1_2_7_17_1 doi: 10.1109/NSysS.2017.7885815 – ident: e_1_2_7_37_1 doi: 10.1109/WCNC.2016.7564840 – ident: e_1_2_7_52_1 doi: 10.1109/NCC.2016.7561130 – ident: e_1_2_7_71_1 doi: 10.1016/j.neucom.2011.07.027 – ident: e_1_2_7_14_1 doi: 10.3390/s19010126 – ident: e_1_2_7_48_1 doi: 10.1109/TSP.2018.2870379 – ident: e_1_2_7_50_1 doi: 10.1049/iet-com.2018.5245 – ident: e_1_2_7_65_1 doi: 10.1016/j.dcan.2016.09.002 – ident: e_1_2_7_43_1 doi: 10.1109/ICSPCS.2015.7391780 – ident: e_1_2_7_58_1 doi: 10.1007/978-3-030-00006-6_20 – ident: e_1_2_7_26_1 doi: 10.1016/j.phycom.2016.05.002 – ident: e_1_2_7_27_1 doi: 10.1109/TWC.2014.2349938 – ident: e_1_2_7_88_1 doi: 10.1109/JSAC.2021.3087254 – ident: e_1_2_7_11_1 doi: 10.1007/978-3-319-24540-9_66 – ident: e_1_2_7_46_1 doi: 10.1109/TVT.2019.2943997 – ident: e_1_2_7_53_1 doi: 10.1109/ISCIT.2016.7751703 – ident: e_1_2_7_79_1 doi: 10.1109/TNET.2009.2039490 – ident: e_1_2_7_18_1 doi: 10.1007/s11277-018-5712-7 – ident: e_1_2_7_35_1 doi: 10.1007/978-0-387-45528-0 – ident: e_1_2_7_28_1 doi: 10.1109/LCOMM.2012.092812.121648 – ident: e_1_2_7_85_1 doi: 10.1109/TWC.2020.2981320 – start-page: 85 volume-title: Advances in Electronics, Communication and Computing year: 2017 ident: e_1_2_7_49_1 – ident: e_1_2_7_15_1 doi: 10.1109/JSAC.2013.131120 – ident: e_1_2_7_19_1 doi: 10.1080/00207217.2018.1460870 – volume-title: International Conference on Signal and Information Processing (IConSIP) year: 2016 ident: e_1_2_7_16_1 – ident: e_1_2_7_47_1 doi: 10.1109/GlobalSIP.2014.7032309 – ident: e_1_2_7_86_1 doi: 10.23919/JCC.2020.02.002 – ident: e_1_2_7_33_1 doi: 10.1109/COMST.2014.2320099 – ident: e_1_2_7_60_1 doi: 10.1186/s13638-019-1338-z – ident: e_1_2_7_56_1 doi: 10.1109/CAC.2018.8623801 – ident: e_1_2_7_44_1 doi: 10.1109/ACCESS.2018.2825603 – ident: e_1_2_7_45_1 doi: 10.3390/app8030421 – ident: e_1_2_7_6_1 doi: 10.1002/ett.3949 – ident: e_1_2_7_25_1 doi: 10.1109/DYSPAN.2005.1542630 – ident: e_1_2_7_31_1 doi: 10.1109/PIMRC.2007.4394211 – ident: e_1_2_7_74_1 doi: 10.1109/JSTSP.2013.2261798 – ident: e_1_2_7_80_1 doi: 10.1109/COMST.2017.2773628 – start-page: e4270 year: 2021 ident: e_1_2_7_4_1 article-title: A comprehensive survey of physical layer security over fading channels: classifications, applications, and challenges publication-title: Trans Emerg Telecommun Technol doi: 10.1002/ett.4270 – ident: e_1_2_7_12_1 doi: 10.1109/SURV.2012.100412.00017 – ident: e_1_2_7_77_1 doi: 10.1109/MWC.2016.7462490 – ident: e_1_2_7_30_1 doi: 10.1109/TVT.2008.2005267 – ident: e_1_2_7_20_1 doi: 10.1007/s11277-018-5677-6 – ident: e_1_2_7_69_1 doi: 10.1109/DYSPAN.2011.5936261 – ident: e_1_2_7_61_1 doi: 10.1109/ACCESS.2019.2936511 – ident: e_1_2_7_72_1 doi: 10.1016/j.aeue.2018.07.029 – ident: e_1_2_7_32_1 doi: 10.1109/DYSPAN.2007.33 – ident: e_1_2_7_66_1 doi: 10.1109/ICTC.2017.8191025 – ident: e_1_2_7_24_1 doi: 10.1109/GlobalSIP.2014.7032326 – ident: e_1_2_7_29_1 doi: 10.1109/ACCESS.2018.2842099 |
SSID | ssj0000752548 |
Score | 2.3939874 |
Snippet | With the rapid development of next‐generation wireless communication technologies and the increasing demand of spectrum resources, it becomes necessary to... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Machine learning for cooperative spectrum sensing and sharing: A survey |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4352 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLa2cmGHCQYTbDB50rQdqnSNHccJt2p0q7Z1lwaJW2THjjhAW7XpDvx6nh07CdBJsEsSuY5T-X2y33t-33sIfUoSlcRlSgNSShFEKooCSVkSDCNaDjUjkeaGOzz9E08uop-X7LKlK1p2SSUHxe1WXsn_SBXaQK6GJfsMyTaDQgM8g3zhChKG65NkPLWRkNqXfqhDIovFYqldPm_Lo1xtbvprE6fu6IjrK7FyNOdRf71Z_b1_tJu1FcTtUYJhENtKRpUpmdPlk6z7lXfMd0MRxXxjVzJDwGziN2YwgvXg_NpcK62X7RGSC_GeGW-2a3deCEI6Xgi7WJHQ-LHSmpo50Fva3Gpbp73oourRIl4nhdVVNQBdjrQblT-cf7B_NVGFdQZmksObuXnzJdohYDyQHtoZnU9_zxrfG6hJYBfbYoX-L_q8xEPy1X_4nqbStVys6pHtodfOZsCjGgD76IWev0GvOpkkD9APBwXsoYABCrgDBeyhgB0UMMw3dlA4wyNcA-EQXXwfZ98mgauRERQkZiRQCVGEiYTTkCpOJeyjnAgwrGkcKmaymUlWcsrBqmZRKNKCg_7HVcqhW8yUoG9Rb76Y6yOEBVMKftIyNTmLklJIybhOlRJhKFhaHKMvfj7ywiWQN3VMrvOHE3-MPjY9l3XSlC19Ptsp_WeHfJxl5v7uCYO9R7stKE9QD6ZTn4KyWMkPTvZ3u8Jt5Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+cooperative+spectrum+sensing+and+sharing%3A+A+survey&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Janu%2C+Dimpal&rft.au=Singh%2C+Kuldeep&rft.au=Kumar%2C+Sandeep&rft.date=2022-01-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=1&rft_id=info:doi/10.1002%2Fett.4352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |