Trust based energy efficient data collection with unmanned aerial vehicle in edge network
Large‐scale sensing devices spread over a wide area and compose the supervisory control and data acquisition (SCADA) system to remotely control and monitor a specific process through collecting the sensing data from the working field. However, the trustworthy and energy efficient data collection is...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 33; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.06.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Large‐scale sensing devices spread over a wide area and compose the supervisory control and data acquisition (SCADA) system to remotely control and monitor a specific process through collecting the sensing data from the working field. However, the trustworthy and energy efficient data collection is still a challenging issue for large‐scale Internet of thing systems. In this article, a trust based energy efficient data collection with unmanned aerial vehicle (TEEDC‐UAV) scheme is proposed to prolong lifetime with trustworthy style. First, in TEEDC‐UAV scheme, an ant colony based unmanned aerial vehicle (UAV) trajectory optimization algorithm is proposed in which form the most data anchors in the working field with the trajectory as short as possible. Thus, the sensor nodes in SCADA system can be responsible for the least amount of data and greatly extend network life. Second, a trust reasoning and evolution mechanism is proposed to identify the trust degree of sensor nodes, and only trusted data will be collected so that the quality of data collection can be proved. In our proposed trust mechanism, the UAV can sense and collect data itself, so that data can be used as the baseline to identify the trust degree of sensor nodes. Finally, proved by sufficient experiment results, our proposed TEEDC‐UAV scheme can find an optimized data collection trajectory efficiently, which helps the energy consumption of the network become much more balanced. Compared with previous strategies, the network life is greatly improved by 48.9%. Meanwhile, the trust mechanism proposed in this article can also greatly improve the identification accuracy of node trust degree, which reached 91% when consuming only 8% network
life.
TEEDC‐UAV scheme is proposed to find a trust based and optimized UAV data collection trajectory in edge network efficiently. First TEEDC‐UAV get an optimized initial path, then add other sensing nodes passing through the UAV flight path as DAs (Data Anchors) to the flight path, and dynamically adjust the DAs and the UAV flight trajectory in multiple rounds of data collection to balance the energy consumption of nodes, which helps the energy consumption of network become much more balanced, and thus improves the network life. The TEEDC‐UAV scheme has good performance on the UAV path selection, network trust identification and energy consumption, as well as network life. |
---|---|
AbstractList | Large‐scale sensing devices spread over a wide area and compose the supervisory control and data acquisition (SCADA) system to remotely control and monitor a specific process through collecting the sensing data from the working field. However, the trustworthy and energy efficient data collection is still a challenging issue for large‐scale Internet of thing systems. In this article, a trust based energy efficient data collection with unmanned aerial vehicle (TEEDC‐UAV) scheme is proposed to prolong lifetime with trustworthy style. First, in TEEDC‐UAV scheme, an ant colony based unmanned aerial vehicle (UAV) trajectory optimization algorithm is proposed in which form the most data anchors in the working field with the trajectory as short as possible. Thus, the sensor nodes in SCADA system can be responsible for the least amount of data and greatly extend network life. Second, a trust reasoning and evolution mechanism is proposed to identify the trust degree of sensor nodes, and only trusted data will be collected so that the quality of data collection can be proved. In our proposed trust mechanism, the UAV can sense and collect data itself, so that data can be used as the baseline to identify the trust degree of sensor nodes. Finally, proved by sufficient experiment results, our proposed TEEDC‐UAV scheme can find an optimized data collection trajectory efficiently, which helps the energy consumption of the network become much more balanced. Compared with previous strategies, the network life is greatly improved by 48.9%. Meanwhile, the trust mechanism proposed in this article can also greatly improve the identification accuracy of node trust degree, which reached 91% when consuming only 8% network
life.
TEEDC‐UAV scheme is proposed to find a trust based and optimized UAV data collection trajectory in edge network efficiently. First TEEDC‐UAV get an optimized initial path, then add other sensing nodes passing through the UAV flight path as DAs (Data Anchors) to the flight path, and dynamically adjust the DAs and the UAV flight trajectory in multiple rounds of data collection to balance the energy consumption of nodes, which helps the energy consumption of network become much more balanced, and thus improves the network life. The TEEDC‐UAV scheme has good performance on the UAV path selection, network trust identification and energy consumption, as well as network life. Large‐scale sensing devices spread over a wide area and compose the supervisory control and data acquisition (SCADA) system to remotely control and monitor a specific process through collecting the sensing data from the working field. However, the trustworthy and energy efficient data collection is still a challenging issue for large‐scale Internet of thing systems. In this article, a trust based energy efficient data collection with unmanned aerial vehicle (TEEDC‐UAV) scheme is proposed to prolong lifetime with trustworthy style. First, in TEEDC‐UAV scheme, an ant colony based unmanned aerial vehicle (UAV) trajectory optimization algorithm is proposed in which form the most data anchors in the working field with the trajectory as short as possible. Thus, the sensor nodes in SCADA system can be responsible for the least amount of data and greatly extend network life. Second, a trust reasoning and evolution mechanism is proposed to identify the trust degree of sensor nodes, and only trusted data will be collected so that the quality of data collection can be proved. In our proposed trust mechanism, the UAV can sense and collect data itself, so that data can be used as the baseline to identify the trust degree of sensor nodes. Finally, proved by sufficient experiment results, our proposed TEEDC‐UAV scheme can find an optimized data collection trajectory efficiently, which helps the energy consumption of the network become much more balanced. Compared with previous strategies, the network life is greatly improved by 48.9%. Meanwhile, the trust mechanism proposed in this article can also greatly improve the identification accuracy of node trust degree, which reached 91% when consuming only 8% network life. |
Author | Jiang, Bo Zhu, Xiaoyu Huang, Guosheng Gui, Jinsong Wang, Tian |
Author_xml | – sequence: 1 givenname: Bo surname: Jiang fullname: Jiang, Bo organization: Central South University – sequence: 2 givenname: Guosheng surname: Huang fullname: Huang, Guosheng organization: Hunan First Normal University – sequence: 3 givenname: Tian surname: Wang fullname: Wang, Tian organization: Huaqiao University – sequence: 4 givenname: Jinsong surname: Gui fullname: Gui, Jinsong organization: Central South University – sequence: 5 givenname: Xiaoyu orcidid: 0000-0002-6815-3754 surname: Zhu fullname: Zhu, Xiaoyu email: zhuxiaoyu@csu.edu.cn organization: Central South University |
BookMark | eNp1kD1PwzAQhi1UJEqpxE_wyJLij6RxRlQVilSJJQxM0dU-twbXQY5L1X9PShkQglvuhud9pXsuySC0AQm55mzCGRO3mNJEVrk4I0PBpzyTFS8GP-4LMu66V9ZPWYgiV0PyUsddl-gKOjQUA8b1gaK1TjsMiRpIQHXrPerk2kD3Lm3oLmwhhB4HjA48_cCN0x6pCxTNGmnAtG_j2xU5t-A7HH_vEXm-n9ezRbZ8enic3S0zLaaFyJQRpirArKQENoWccZNbZSvUqEpWobFgS84FN2aVl2AUltIWDEAr2XNKjsjNqVfHtusi2uY9ui3EQ8NZc7TS9Faao5UenfxCtUtw_CxFcP6vQHYK7J3Hw7_Fzbyuv_hPFX93Cg |
CitedBy_id | crossref_primary_10_1017_S0263574723001728 crossref_primary_10_1007_s11063_021_10537_3 crossref_primary_10_1007_s11227_022_04889_3 crossref_primary_10_1109_ACCESS_2025_3538276 crossref_primary_10_3390_electronics11182942 crossref_primary_10_1109_ACCESS_2020_3037123 crossref_primary_10_1155_2021_6244525 crossref_primary_10_1109_ACCESS_2020_3043762 crossref_primary_10_1109_TGCN_2021_3068257 crossref_primary_10_1155_2020_8893064 crossref_primary_10_32604_cmc_2023_039363 crossref_primary_10_3390_math11173652 crossref_primary_10_1109_JIOT_2020_3026475 crossref_primary_10_1080_17445760_2023_2175360 crossref_primary_10_1109_JIOT_2021_3049173 crossref_primary_10_1109_JIOT_2022_3150765 crossref_primary_10_1016_j_comnet_2025_111218 crossref_primary_10_2174_0122103279255197231020060356 crossref_primary_10_1002_ett_4111 crossref_primary_10_1007_s12652_020_02719_z crossref_primary_10_1109_ACCESS_2024_3407376 crossref_primary_10_1109_ACCESS_2020_3013840 crossref_primary_10_14201_ADCAIJ202094530 crossref_primary_10_1109_TITS_2020_3023446 crossref_primary_10_4271_12_07_02_0011 crossref_primary_10_1109_ACCESS_2020_3021623 crossref_primary_10_1155_2020_8855073 crossref_primary_10_1109_TDSC_2024_3424448 crossref_primary_10_1016_j_ins_2020_07_052 crossref_primary_10_1002_cpe_7175 crossref_primary_10_1109_JIOT_2020_3024763 crossref_primary_10_1007_s11276_024_03682_9 crossref_primary_10_1109_TITS_2021_3104786 crossref_primary_10_1016_j_ins_2020_12_011 crossref_primary_10_1109_TNSE_2020_3017556 crossref_primary_10_1109_ACCESS_2021_3055026 crossref_primary_10_1007_s12083_021_01200_8 crossref_primary_10_1109_JIOT_2021_3055857 crossref_primary_10_1109_ACCESS_2021_3086534 crossref_primary_10_1109_ACCESS_2020_3011150 crossref_primary_10_1109_TITS_2020_3040557 crossref_primary_10_1186_s13677_020_00202_w crossref_primary_10_1109_JSAC_2021_3088675 crossref_primary_10_1177_15501477211028399 crossref_primary_10_1155_2020_6513920 crossref_primary_10_1109_ACCESS_2020_3027615 crossref_primary_10_1109_JSEN_2020_3038241 crossref_primary_10_1109_TNSE_2021_3057881 crossref_primary_10_1007_s00779_020_01440_0 crossref_primary_10_1109_TNSE_2020_3014455 crossref_primary_10_1155_2020_8891660 crossref_primary_10_1109_TNSM_2020_3045998 crossref_primary_10_1016_j_knosys_2020_106407 crossref_primary_10_1155_2022_1628537 crossref_primary_10_3390_s20092464 crossref_primary_10_3390_en15218016 crossref_primary_10_1109_ACCESS_2020_3019797 crossref_primary_10_1109_TNSM_2024_3394162 crossref_primary_10_1109_JPROC_2021_3119950 crossref_primary_10_1155_2020_4758103 crossref_primary_10_1109_ACCESS_2020_3034383 crossref_primary_10_1109_TITS_2021_3122567 crossref_primary_10_1007_s12243_020_00798_9 crossref_primary_10_1109_JIOT_2021_3123406 crossref_primary_10_1109_JSEN_2020_3048655 crossref_primary_10_1186_s13638_020_01767_5 crossref_primary_10_1186_s13677_020_00196_5 crossref_primary_10_1186_s13638_020_01848_5 crossref_primary_10_1007_s11036_021_01837_y crossref_primary_10_1007_s12083_024_01701_2 crossref_primary_10_4018_IJIRR_300290 crossref_primary_10_1109_JSEN_2021_3051960 crossref_primary_10_1109_ACCESS_2020_3002538 crossref_primary_10_1016_j_comcom_2020_08_006 crossref_primary_10_1109_TASE_2024_3421533 crossref_primary_10_1109_TNSE_2020_3038454 crossref_primary_10_1016_j_comcom_2020_10_019 crossref_primary_10_1109_JIOT_2022_3220840 crossref_primary_10_1109_ACCESS_2020_3033455 crossref_primary_10_1109_JIOT_2020_3039828 crossref_primary_10_1109_ACCESS_2020_3013106 |
Cites_doi | 10.1109/JIOT.2019.2952767 10.1016/j.comcom.2020.01.034 10.1007/s12083-019-00752-0 10.1016/j.pnsc.2008.03.028 10.1109/TII.2019.2897133 10.1109/JIOT.2018.2842470 10.1109/JSEN.2016.2568260 10.1016/j.comcom.2019.12.054 10.1002/ett.3871 10.1109/TNSM.2019.2962701 10.1109/PROC.1987.13932 10.1186/s13638-019-1490-5 10.1109/TSMC.2019.2938790 10.1007/s10846-015-0175-5 10.1016/j.ins.2016.12.050 10.3390/jsan8040052 10.1109/JIOT.2019.2894257 10.1016/j.adhoc.2016.02.002 10.1016/j.jbi.2019.103290 10.1109/TMC.2017.2775230 10.1016/j.jpdc.2019.06.012 10.1016/j.future.2019.04.043 10.1109/TII.2019.2962844 10.1109/TSC.2019.2922177 10.1109/SAHCN.2006.288409 10.1109/TII.2019.2931394 10.1109/SURV.2013.100113.00293 10.1109/JIOT.2018.2878834 10.1109/JIOT.2019.2951857 10.1109/JIOT.2018.2876695 10.1155/2018/6353714 10.1038/s41586-019-1493-8 10.1016/j.future.2019.07.076 10.1109/TII.2019.2940745 10.1109/TMC.2016.2595569 10.1109/JIOT.2018.2874473 10.1155/2020/7230565 10.1002/cpe.5109 10.1186/s13638‐019‐1566‐2 10.1109/TIFS.2016.2570740 10.1016/j.jpdc.2019.08.012 10.1287/opre.6.6.791 10.1016/j.jnca.2019.102409 10.1109/TII.2019.2955152 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.3942 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_3942 ETT3942 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China under Grant funderid: 61772554 |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2652-8d2d95adb33a06a401d4f8f9ece8709edfaf71121ddb47ad8e73f50aac83f8f83 |
ISSN | 2161-3915 |
IngestDate | Thu Apr 24 23:05:35 EDT 2025 Tue Jul 01 03:49:23 EDT 2025 Wed Jan 22 16:23:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2652-8d2d95adb33a06a401d4f8f9ece8709edfaf71121ddb47ad8e73f50aac83f8f83 |
Notes | Funding information National Natural Science Foundation of China under Grant, 61772554 |
ORCID | 0000-0002-6815-3754 |
PageCount | 33 |
ParticipantIDs | crossref_primary_10_1002_ett_3942 crossref_citationtrail_10_1002_ett_3942 wiley_primary_10_1002_ett_3942_ETT3942 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2022 |
References | 2019; 8 2015; 78 2019; 2019 1987; 75 2019; 6 2019; 99 2019; 10 2008; 18 2019; 12 2019; 15 2017; 390 2006 2020; 102 2016; 16 2019; 100 2019; 145 2016; 11 2018; 6 2018; 2018 2020; 2020 2018; 5 2013; 16 2020; 151 2020; 152 2017; 17 2019; 44 2020 2016; 43 2019 2018 2020; 135 2019; 133 1958; 6 2019; 572 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Wang T (e_1_2_7_45_1) 2019; 44 e_1_2_7_6_1 e_1_2_7_4_1 Wang T (e_1_2_7_44_1) 2019; 10 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 Liu Y (e_1_2_7_7_1) 2019; 10 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – year: 2019 article-title: Enabling verifiable and dynamic ranked search over outsourced data publication-title: Trans Serv Comput – year: 2019 article-title: Unsupervised online anomaly detection with parameter adaptation for KPI abrupt changes publication-title: IEEE Trans Netw Serv Manag – volume: 2019 start-page: 168 issue: 1 year: 2019 article-title: Delay and energy‐efficient data collection scheme‐based matrix filling theory for dynamic traffic IoT publication-title: EURASIP J Wirel Commun Netw – volume: 16 start-page: 5785 issue: 14 year: 2016 end-page: 5794 article-title: Priority‐based data gathering framework in UAV‐assisted wireless sensor networks publication-title: IEEE Sensors J – year: 2020 article-title: A high‐accurate content popularity prediction computational modelling for mobile edge computing by using matrix completion technology publication-title: Trans Emerg Telecommun Technol – volume: 99 year: 2019 article-title: Adversarial training based lattice LSTM for Chinese clinical named entity recognition publication-title: J Biomed Inform – volume: 8 start-page: 52 issue: 4 year: 2019 article-title: A low‐cost monitoring system and operating database for quality control in small food processing industry publication-title: J Sens Actuator Netw – volume: 43 start-page: 43 year: 2016 end-page: 55 article-title: Opportunistic communication in smart city: Experimental insight with small‐scale taxi fleets as data carriers publication-title: Ad Hoc Netw – volume: 6 start-page: 4755 issue: 3 year: 2018 end-page: 4763 article-title: Privacy preserving data aggregation scheme for mobile edge computing assisted IoT applications publication-title: IEEE Internet Things J – volume: 151 start-page: 485 year: 2020 end-page: 494 article-title: Intelligent resource allocation management for vehicles network: an A3C learning approach publication-title: Comput Commun – volume: 12 start-page: 1550 issue: 6 year: 2019 end-page: 1574 article-title: UAVs joint vehicles as data mules for fast codes dissemination for edge networking in smart city publication-title: Peer‐to‐Peer Netw Appl – volume: 16 start-page: 877 issue: 2 year: 2013 end-page: 897 article-title: Distributed mobile sink routing for wireless sensor networks: a survey publication-title: IEEE Commun Surv Tutor – volume: 6 start-page: 1856 issue: 2 year: 2018 end-page: 1865 article-title: UAV‐enabled spatial data sampling in large‐scale IoT systems using denoising autoencoder neural network publication-title: IEEE Internet Things J – volume: 15 start-page: 3632 issue: 6 year: 2019 end-page: 3641 article-title: A blockchain‐based non‐repudiation network computing service scheme for industrial IoT publication-title: IEEE Trans Ind Inf – year: 2019 article-title: A novel load balancing and low response delay framework for edge‐cloud network based on SDN publication-title: IEEE Internet Things J – volume: 135 start-page: 140 year: 2020 end-page: 155 article-title: Adaptive data and verified message disjoint security routing for gathering big data in energy harvesting networks publication-title: J Parall Distrib Comput – volume: 6 start-page: 791 issue: 6 year: 1958 end-page: 812 article-title: A method for solving traveling‐salesman problems publication-title: Oper Res – volume: 10 start-page: 61 issue: 6 year: 2019 article-title: A trust computing‐based security routing scheme for cyber physical systems publication-title: ACM Trans Intell Syst Tech (TIST) – volume: 2020 year: 2020 article-title: Relay selection joint consecutive packet routing scheme to improve performance for wake‐up radio‐enabled WSNs publication-title: Wirel Commun Mob Comput – volume: 18 start-page: 1417 issue: 11 year: 2008 end-page: 1422 article-title: An ant colony optimization method for generalized TSP problem publication-title: Prog Nat Sci – volume: 2018 start-page: 1 year: 2018 end-page: 25 article-title: Quality utilization aware based data gathering for vehicular communication networks publication-title: Wirel Commun Mob Comput – volume: 572 start-page: 595 issue: 7771 year: 2019 end-page: 602 article-title: Modern microprocessor built from complementary carbon nanotube transistors publication-title: Nature – volume: 16 start-page: 1434 issue: 5 year: 2016 end-page: 1448 article-title: Recover corrupted data in sensor networks: a matrix completion solution publication-title: IEEE Trans Mob Comput – volume: 5 start-page: 4191 issue: 5 year: 2018 end-page: 4200 article-title: A dual privacy preserving scheme in continuous location‐based services publication-title: IEEE Internet Things J – volume: 2019 year: 2019 article-title: An adaptive retransmit mechanism for delay differentiated services in industrial WSNs publication-title: EURASIP J Wirel Commun Netw – volume: 133 start-page: 93 year: 2019 end-page: 106 article-title: Intelligent route planning on large road networks with efficiency and privacy publication-title: J Parall DistribComput – volume: 11 start-page: 2013 issue: 9 year: 2016 end-page: 2027 article-title: Active trust: secure and trustable routing in wireless sensor networks publication-title: IEEE Trans Inf Forens Sec – volume: 102 start-page: 152 year: 2020 end-page: 162 article-title: A UAV‐assisted CH election framework for secure data collection in wireless sensor networks publication-title: Futur Gener Comput Syst – year: 2006 – year: 2019 article-title: A cloud‐MEC collaborative task offloading scheme with service orchestration publication-title: IEEE Internet Things J – year: 2019 article-title: Privacy‐enhanced data collection based on deep learning for internet of vehicles publication-title: IEEE Trans Ind Inf – volume: 100 start-page: 701 year: 2019 end-page: 714 article-title: An intelligent incentive mechanism for coverage of data collection in cognitive internet of things publication-title: Futur Gener Comput Syst – year: 2019 article-title: A unified trustworthy environment establishment based on edge computing in industrial IoT publication-title: IEEE Trans Ind Inform – year: 2018 article-title: Detection of hidden data attacks combined fog computing and trust evaluation method in sensor‐cloud system publication-title: Concurr Comput Pract Exp – volume: 390 start-page: 82 year: 2017 end-page: 94 article-title: An efficient privacy‐preserving compressive data gathering scheme in WSNs publication-title: Inf Sci – year: 2019 article-title: Quick convex hull‐based rendezvous planning for delay‐harsh mobile data gathering in disjoint sensor networks publication-title: IEEE Trans Syst Man Cybern Syst – year: 2019 article-title: Bidirectional prediction based underwater data collection protocol for end‐edge‐cloud orchestrated system publication-title: IEEE Trans Ind Inf – volume: 6 start-page: 1829 issue: 2 year: 2019 end-page: 1840 article-title: Optimizing trajectory of unmanned aerial vehicles for efficient data acquisition: a matrix completion approach publication-title: IEEE Internet Things J – volume: 15 start-page: 6593 issue: 12 year: 2019 end-page: 6603 article-title: A trust‐based active detection for cyber‐physical security in industrial environments publication-title: IEEE Trans Ind Inform – volume: 6 start-page: 1893 issue: 2 year: 2018 end-page: 1905 article-title: UAV‐aided projection‐based compressive data gathering in wireless sensor networks publication-title: IEEE Internet Things J – volume: 44 start-page: 109 issue: 1‐2 year: 2019 end-page: 130 article-title: A survey of fog computing in wireless sensor networks: concepts, frameworks, applications and issues publication-title: Ad Hoc Sens Wirel Netw – volume: 78 start-page: 159 issue: 1 year: 2015 end-page: 179 article-title: Optimization of wireless sensor network and UAV data acquisition publication-title: J Intell Robot Syst – volume: 10 start-page: 62 issue: 6 year: 2019 article-title: Crowdsourcing mechanism for trust evaluation in CPCS based on intelligent mobile edge computing publication-title: ACM Trans Intell Syst Tech (TIST) – volume: 152 start-page: 109 year: 2020 end-page: 118 article-title: Machine learning based code dissemination by selection of reliability mobile vehicles in 5G networks publication-title: Comput Commun – volume: 145 year: 2019 article-title: Trust and reputation for Internet of Things: fundamentals, taxonomy, and open research challenges publication-title: J Netw Comput Appl – volume: 17 start-page: 1595 issue: 7 year: 2017 end-page: 1608 article-title: Low cost and high accuracy data gathering in WSNs with matrix completion publication-title: IEEE Trans Mob Comput – volume: 75 start-page: 1645 issue: 12 year: 1987 end-page: 1658 article-title: Supervisory control and data acquisition publication-title: Proc IEEE – ident: e_1_2_7_39_1 doi: 10.1109/JIOT.2019.2952767 – ident: e_1_2_7_12_1 doi: 10.1016/j.comcom.2020.01.034 – ident: e_1_2_7_11_1 doi: 10.1007/s12083-019-00752-0 – ident: e_1_2_7_38_1 doi: 10.1016/j.pnsc.2008.03.028 – ident: e_1_2_7_43_1 doi: 10.1109/TII.2019.2897133 – ident: e_1_2_7_41_1 doi: 10.1109/JIOT.2018.2842470 – ident: e_1_2_7_49_1 doi: 10.1109/JSEN.2016.2568260 – ident: e_1_2_7_10_1 doi: 10.1016/j.comcom.2019.12.054 – ident: e_1_2_7_4_1 doi: 10.1002/ett.3871 – ident: e_1_2_7_35_1 doi: 10.1109/TNSM.2019.2962701 – ident: e_1_2_7_18_1 doi: 10.1109/PROC.1987.13932 – ident: e_1_2_7_24_1 doi: 10.1186/s13638-019-1490-5 – ident: e_1_2_7_25_1 doi: 10.1109/TSMC.2019.2938790 – ident: e_1_2_7_48_1 doi: 10.1007/s10846-015-0175-5 – ident: e_1_2_7_47_1 doi: 10.1016/j.ins.2016.12.050 – ident: e_1_2_7_19_1 doi: 10.3390/jsan8040052 – volume: 44 start-page: 109 issue: 1 year: 2019 ident: e_1_2_7_45_1 article-title: A survey of fog computing in wireless sensor networks: concepts, frameworks, applications and issues publication-title: Ad Hoc Sens Wirel Netw – ident: e_1_2_7_22_1 doi: 10.1109/JIOT.2019.2894257 – ident: e_1_2_7_26_1 doi: 10.1016/j.adhoc.2016.02.002 – ident: e_1_2_7_31_1 doi: 10.1016/j.jbi.2019.103290 – ident: e_1_2_7_37_1 – ident: e_1_2_7_30_1 doi: 10.1109/TMC.2017.2775230 – ident: e_1_2_7_23_1 doi: 10.1016/j.jpdc.2019.06.012 – ident: e_1_2_7_9_1 doi: 10.1016/j.future.2019.04.043 – ident: e_1_2_7_46_1 doi: 10.1109/TII.2019.2962844 – ident: e_1_2_7_29_1 doi: 10.1109/TSC.2019.2922177 – ident: e_1_2_7_28_1 doi: 10.1016/j.comcom.2019.12.054 – ident: e_1_2_7_36_1 doi: 10.1109/SAHCN.2006.288409 – ident: e_1_2_7_15_1 doi: 10.1109/TII.2019.2931394 – ident: e_1_2_7_33_1 doi: 10.1109/SURV.2013.100113.00293 – volume: 10 start-page: 61 issue: 6 year: 2019 ident: e_1_2_7_7_1 article-title: A trust computing‐based security routing scheme for cyber physical systems publication-title: ACM Trans Intell Syst Tech (TIST) – ident: e_1_2_7_34_1 doi: 10.1109/JIOT.2018.2878834 – ident: e_1_2_7_40_1 doi: 10.1109/JIOT.2019.2951857 – ident: e_1_2_7_20_1 doi: 10.1109/JIOT.2018.2876695 – ident: e_1_2_7_27_1 doi: 10.1155/2018/6353714 – ident: e_1_2_7_2_1 doi: 10.1038/s41586-019-1493-8 – ident: e_1_2_7_8_1 doi: 10.1016/j.future.2019.07.076 – ident: e_1_2_7_14_1 doi: 10.1109/TII.2019.2940745 – ident: e_1_2_7_6_1 doi: 10.1109/TMC.2016.2595569 – ident: e_1_2_7_42_1 doi: 10.1109/JIOT.2018.2874473 – ident: e_1_2_7_17_1 doi: 10.1155/2020/7230565 – ident: e_1_2_7_13_1 doi: 10.1002/cpe.5109 – ident: e_1_2_7_16_1 doi: 10.1186/s13638‐019‐1566‐2 – ident: e_1_2_7_32_1 doi: 10.1109/TIFS.2016.2570740 – volume: 10 start-page: 62 issue: 6 year: 2019 ident: e_1_2_7_44_1 article-title: Crowdsourcing mechanism for trust evaluation in CPCS based on intelligent mobile edge computing publication-title: ACM Trans Intell Syst Tech (TIST) – ident: e_1_2_7_5_1 doi: 10.1016/j.jpdc.2019.08.012 – ident: e_1_2_7_50_1 doi: 10.1287/opre.6.6.791 – ident: e_1_2_7_21_1 doi: 10.1016/j.jnca.2019.102409 – ident: e_1_2_7_3_1 doi: 10.1109/TII.2019.2955152 |
SSID | ssj0000752548 |
Score | 2.532561 |
Snippet | Large‐scale sensing devices spread over a wide area and compose the supervisory control and data acquisition (SCADA) system to remotely control and monitor a... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Trust based energy efficient data collection with unmanned aerial vehicle in edge network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3942 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOFU_R8pCREByiLHlvcixQWlWUC6lUTpEfk7YSZBFNOPAT-NXM2E7WFVupcIlW3pEVeT55Hpn5hrGXQhYqllqEaB3KMMuVCKtIZRilxMrMQBKGUuj4U3F4kh2d5qez2W-vamno5UL92thX8j9axTXUK3XJ_oNmp01xAX-jfvGJGsbnzXRMDRMBGSIdgG3iA0MJQR_4qfYzIDWDnQZuMq5D903QzRoI837BTzinTQ1xCDVudbYq3HdZ6_VEcfNpgTqKzWSjnkbo-P0ll0E_Jur90sQLl5J-u1pjyC0dDKvLc3DG06T17XrtgfZgMAUHR6ZN7czPUmCAO1VT2cssiSnPVdnWzQVsWHO3saXFcKgrPLs8Wa2_Ln1LIgt9v0grS9V1lVd7ksmvkzL2fL-u6Z9bbCvBkCOZs62998cfP08ZO3SuMJo2Iw7HFx_ZjKPkzbjxFf_Gj3eMw1LfZdsu0uB7Fjb32Ay6--yOxz_5gH0xAOIGQNwCiE8A4gQgvgYQJwDxEUDcAog7APGLjhOAuAPQQ3byYb9-dxi6WRuhSoocjaJOdJULLdNURIXAqFtnbdlWoABv9Ap0K9ol-uax1jJbCl3CMm3zSAhVpihXpo_YvFt18JhxCaWOkgq9L9FmQAyJEt3UVIPMYkBztsNejyfUKEdET_NQvjaWQjtp8CwbOssd9mKS_G7JVzbIvDKHfK1A4_S6e1PBJ-z2GsFP2bz_McAz9Dx7-dxB4g8HUokF |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trust+based+energy+efficient+data+collection+with+unmanned+aerial+vehicle+in+edge+network&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Jiang%2C+Bo&rft.au=Huang%2C+Guosheng&rft.au=Wang%2C+Tian&rft.au=Gui%2C+Jinsong&rft.date=2022-06-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3942&rft.externalDBID=10.1002%252Fett.3942&rft.externalDocID=ETT3942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |