A systematic review on resource provisioning in fog computing

Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 34; no. 4
Main Authors Kaur, Kirandeep, Singh, Arjan, Sharma, Anju
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2023
Online AccessGet full text
ISSN2161-3915
2161-3915
DOI10.1002/ett.4731

Cover

Loading…
Abstract Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, specifically computation and storage. In cloud computing, computing resources are shared across another communication network using virtualization. However, the cloud computing mechanism cannot meet the needs of a large number of Internet of Things (IoT) services. To consider this, fog computing was introduced as a modified mechanism of the cloud paradigm by providing cloud services for the end devices. Fog computing is a decentralized computing model placed between devices, edges, data centers or the cloud. In this way, it helps to meet the demands initiated by IoT services, such as reduced latency, wide mobility coverage, and so on. Several solutions regarding resource allocation in fog computing are available in the research field, but such solutions have not achieved satisfactory results. Therefore, finding a solution by analyzing recent problems is open research. Therefore, this paper reviews different methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and introduces the limitations, advantages and future directions related to different resource provisioning techniques. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, mainly computation and storage. In cloud computing, the computing resources are shared over a different communication network with the help of virtualization. However, the cloud computing mechanism cannot fulfill the requirements of several IoT services. To consider this, Fog computing has been introduced as a modified mechanism to the cloud paradigm by providing cloud services to the end devices. Fog computing is a decentralized computing model placed in the middle of devices, edges, data centers, or the cloud. Thus, it assists in obtaining the requirements initiated by IoT services like reduced latency, large mobility coverage, and so on. There are not many sufficient solutions in the research field regarding the provisioning of resources in fog computing. Thus, this paper reviews various methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and presents the limitations, advantages, and future directions to various resource provisioning techniques in fog computing.
AbstractList Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, specifically computation and storage. In cloud computing, computing resources are shared across another communication network using virtualization. However, the cloud computing mechanism cannot meet the needs of a large number of Internet of Things (IoT) services. To consider this, fog computing was introduced as a modified mechanism of the cloud paradigm by providing cloud services for the end devices. Fog computing is a decentralized computing model placed between devices, edges, data centers or the cloud. In this way, it helps to meet the demands initiated by IoT services, such as reduced latency, wide mobility coverage, and so on. Several solutions regarding resource allocation in fog computing are available in the research field, but such solutions have not achieved satisfactory results. Therefore, finding a solution by analyzing recent problems is open research. Therefore, this paper reviews different methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and introduces the limitations, advantages and future directions related to different resource provisioning techniques.
Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, specifically computation and storage. In cloud computing, computing resources are shared across another communication network using virtualization. However, the cloud computing mechanism cannot meet the needs of a large number of Internet of Things (IoT) services. To consider this, fog computing was introduced as a modified mechanism of the cloud paradigm by providing cloud services for the end devices. Fog computing is a decentralized computing model placed between devices, edges, data centers or the cloud. In this way, it helps to meet the demands initiated by IoT services, such as reduced latency, wide mobility coverage, and so on. Several solutions regarding resource allocation in fog computing are available in the research field, but such solutions have not achieved satisfactory results. Therefore, finding a solution by analyzing recent problems is open research. Therefore, this paper reviews different methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and introduces the limitations, advantages and future directions related to different resource provisioning techniques. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, mainly computation and storage. In cloud computing, the computing resources are shared over a different communication network with the help of virtualization. However, the cloud computing mechanism cannot fulfill the requirements of several IoT services. To consider this, Fog computing has been introduced as a modified mechanism to the cloud paradigm by providing cloud services to the end devices. Fog computing is a decentralized computing model placed in the middle of devices, edges, data centers, or the cloud. Thus, it assists in obtaining the requirements initiated by IoT services like reduced latency, large mobility coverage, and so on. There are not many sufficient solutions in the research field regarding the provisioning of resources in fog computing. Thus, this paper reviews various methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and presents the limitations, advantages, and future directions to various resource provisioning techniques in fog computing.
Author Sharma, Anju
Singh, Arjan
Kaur, Kirandeep
Author_xml – sequence: 1
  givenname: Kirandeep
  surname: Kaur
  fullname: Kaur, Kirandeep
  email: kirandeep_rs17@pbi.ac.in
  organization: Punjabi University
– sequence: 2
  givenname: Arjan
  surname: Singh
  fullname: Singh, Arjan
  organization: Punjabi University
– sequence: 3
  givenname: Anju
  surname: Sharma
  fullname: Sharma, Anju
  organization: Punjab State Aeronautical College
BookMark eNp1j09LAzEQxYNUsNaCHyFHL7vmT5PNHjyUUqtQ8FLPy246KZHdZEnSln57t9aDiM5lHsPvDe_dopHzDhC6pySnhLBHSCmfFZxeoTGjkma8pGL0Q9-gaYwfZJhCMDFTY_Q0x_EUE3R1shoHOFg4Yu8GFf0-aMB98AcbrXfW7bB12Pgd1r7r92k43KFrU7cRpt97gt6fl5vFS7Z-W70u5utMMylopngjaVNDQZXcaqJBaSkUrbdGqrJspOHMaCIbKbXm23LGuGAEBG-MBEWN4BOUX_7q4GMMYCpt05DYuxRq21aUVOf-1dC_OvcfDA-_DH2wXR1Of6HZBT3aFk7_ctVys_niPwFkK2vv
CitedBy_id crossref_primary_10_1016_j_iot_2023_100918
crossref_primary_10_1002_cpe_8145
crossref_primary_10_1002_ett_70020
crossref_primary_10_1109_ACCESS_2024_3447097
crossref_primary_10_1002_cpe_70024
crossref_primary_10_1109_JIOT_2023_3312916
Cites_doi 10.1109/ACCESS.2018.2815629
10.1016/j.jnca.2020.102972
10.38094/jastt20190
10.1007/s00521-019-04507-z
10.1109/ICFC49376.2020.00012
10.1145/3132479.3132490
10.3390/electronics11040608
10.1109/GLOCOM.2018.8647378
10.1007/s13369-018-3169-3
10.1016/j.jpdc.2017.09.009
10.1007/s10723-019-09491-1
10.1016/j.jnca.2020.102915
10.1109/PERCOMW.2015.7134002
10.1109/COMPSAC.2018.10336
10.1007/s11227-018-2274-0
10.3390/e20010004
10.1109/JIOT.2015.2471260
10.2991/ijndc.k.210111.001
10.1007/978-981-15-2414-1_57
10.1007/978-981-10-5861-5_5
10.23919/JCC.2021.02.019
10.1109/KBEI.2019.8734918
10.1007/s10586-018-2848-x
10.1109/IWCMC.2018.8450410
10.1109/PADSW.2018.8644626
10.1016/j.jnca.2017.01.012
10.1016/B978-0-12-805395-9.00004-6
10.1186/s13677-020-00181-y
10.1109/ACCESS.2020.2999734
10.1016/j.jpdc.2021.02.003
10.1007/s11227-021-03702-x
10.1016/j.jpdc.2020.08.002
10.1016/j.comcom.2020.07.028
10.1515/comp-2020-0162
10.1109/EuCNC.2017.7980667
10.3390/su10113832
10.1016/j.future.2020.12.011
10.1007/s00607-021-00930-0
10.1109/SMARTCOMP.2018.00079
10.5815/ijieeb.2016.01.06
10.4018/IJKSS.2020100102
10.1016/j.future.2018.04.042
10.1007/s11227-021-03824-2
10.1007/978-3-030-46197-3_3
10.3390/computers9030076
10.1016/j.sysarc.2021.102362
10.1016/j.iot.2021.100382
10.1109/IJCNN48605.2020.9206947
10.1109/ICTON51198.2020.9203425
10.1145/3345768.3355906
10.3390/s19102238
10.1109/PDP.2017.27
10.1016/j.future.2017.07.031
10.1016/j.swevo.2021.100841
10.1109/Confluence51648.2021.9377050
10.1007/s12083-020-00952-z
10.1109/MASS.2017.33
10.1109/TNSM.2018.2888481
10.1109/TII.2018.2846549
10.1145/3368235.3368846
10.1155/2018/5109394
10.1145/3186592
10.1109/ACCESS.2020.3029583
10.1016/j.jnca.2021.103008
10.1109/MWC.001.1900311
10.1016/j.simpat.2019.101982
10.1109/ACCESS.2017.2712138
10.1109/TVT.2020.3001301
10.23919/FRUCT.2017.8250193
10.1109/TSC.2019.2895037
10.1007/978-981-13-1501-5_2
10.1109/iThings-GreenCom-CPSCom-SmartData.2016.126
10.1109/ICDCS.2017.83
10.1109/TII.2018.2843802
10.1007/s12083-018-0663-z
10.3390/s21030779
10.1080/0952813X.2020.1818294
10.3390/s18103444
10.1016/j.yofte.2017.07.001
10.1109/MCOM.2017.1600896
10.1016/j.procs.2018.07.173
10.1109/CEC.2019.8790305
10.1109/WoWMoM.2018.8449792
10.1109/MCC.2017.27
10.1155/2019/1798391
10.1016/j.osn.2017.12.007
10.1109/ICSENS.2016.7808814
10.1145/3423332
10.1007/978-3-319-75928-9_60
10.1109/ICMCIS.2019.8842693
10.1109/RTEST.2018.8397079
10.1109/WCNC.2018.8377095
10.1016/j.future.2019.10.018
10.4018/IJFC.2020010102
10.3390/bdcc2020010
10.1109/MCOM.2017.1600435CM
10.1109/NETSOFT.2019.8806671
10.1007/s10586-020-03107-0
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.4731
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_4731
ETT4731
Genre researchArticle
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2651-83b61bae7186dc0ce8c6581adf6899b6f32fc06b66cc3d9423520e53bf6e81f53
ISSN 2161-3915
IngestDate Thu Apr 24 23:02:26 EDT 2025
Tue Jul 01 03:49:29 EDT 2025
Wed Jan 22 16:21:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2651-83b61bae7186dc0ce8c6581adf6899b6f32fc06b66cc3d9423520e53bf6e81f53
PageCount 36
ParticipantIDs crossref_citationtrail_10_1002_ett_4731
crossref_primary_10_1002_ett_4731
wiley_primary_10_1002_ett_4731_ETT4731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2023
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2017; 5
2021; 24
2019; 2019
2021; 21
2017; 82
2017; 4
2019; 12
2020; 161
2019; 14
2019; 19
2020; 11
2020; 98
2018; 87
2018; 43
2020; 18
2020; 8
2022; 122
2018; 6
2018; 2
2020; 3
2021; 77
2021; 33
2017; 37
2019; 22
2018; 1
2021; 117
2018; 134
2020; 9
2018; 74
2021; 152
2021; 9
2017; 20
2021; 2
2015; 3
2019; 33
2021; 103
2020; 104
2020; 105
2020; 146
2020; 32
2021; 180
2021; 14
2018; 19
2018; 18
2021; 15
2018; 2018
2021; 11
2021; 178
2021
2020
2017; 55
2021; 18
2018; 112
2017; 13
2020; 27
2019
2018
2020; 69
2020; 25
2016
2021; 175
2022; 11
2020; 21
2018; 10
2021; 62
2018; 16
2016; 8
2018; 14
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
Verma M (e_1_2_9_63_1) 2016; 8
Ascigil O (e_1_2_9_36_1) 2021
Govoni M (e_1_2_9_98_1) 2016
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
Skarlat O (e_1_2_9_51_1) 2018; 1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Wadhwa H (e_1_2_9_73_1) 2020; 21
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Fard HM (e_1_2_9_28_1) 2019
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
Madan N (e_1_2_9_108_1) 2020; 25
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
Nazir S (e_1_2_9_82_1) 2018
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_25_1
Saeed W (e_1_2_9_72_1) 2021; 15
Wang N (e_1_2_9_44_1) 2017; 13
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 62
  year: 2021
  article-title: Task scheduling in cloud computing based on meta‐heuristics: review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evol Comput
– volume: 8
  start-page: 105311
  year: 2020
  end-page: 105319
  article-title: Resource provisioning for cyber–physical–social system in cloud‐fog‐edge computing using optimal flower pollination algorithm
  publication-title: IEEE Access
– volume: 22
  start-page: 241
  issue: 1
  year: 2019
  end-page: 270
  article-title: A fog based load forecasting strategy for smart grids using big electrical data
  publication-title: Clust Comput
– volume: 4
  start-page: 26
  issue: 2
  year: 2017
  end-page: 35
  article-title: Mobility‐aware application scheduling in fog computing
  publication-title: IEEE Cloud Comput
– volume: 146
  start-page: 96
  year: 2020
  end-page: 106
  article-title: Towards cost‐efficient resource provisioning with multiple mobile users in fog computing
  publication-title: J Parallel Distrib Comput
– volume: 175
  year: 2021
  article-title: Towards end‐to‐end resource provisioning in fog computing over low power wide area networks
  publication-title: J Netw Comput Appl
– volume: 14
  start-page: 1781
  issue: 6
  year: 2019
  end-page: 1795
  article-title: Fogspot: spot pricing for application provisioning in edge/fog computing
  publication-title: IEEE Trans Serv Comput
– volume: 55
  start-page: 52
  issue: 8
  year: 2017
  end-page: 57
  article-title: A hierarchical game framework for resource management in fog computing
  publication-title: IEEE Commun Mag
– volume: 104
  start-page: 131
  year: 2020
  end-page: 141
  article-title: Deadline‐based dynamic resource allocation and provisioning algorithms in fog‐cloud environment
  publication-title: Futur Gener Comput Syst
– start-page: 61
  year: 2016
  end-page: 75
– volume: 32
  start-page: 9745
  issue: 13
  year: 2020
  end-page: 9760
  article-title: Machine learning‐based auto‐scaling for containerized applications
  publication-title: Neural Comput & Applic
– volume: 87
  start-page: 1
  year: 2018
  end-page: 5
  article-title: Towards a proper service placement in combined Fog‐to‐Cloud (F2C) architectures
  publication-title: Futur Gener Comput Syst
– volume: 19
  start-page: 2238
  issue: 10
  year: 2019
  article-title: Resource provisioning in fog computing: from theory to practice
  publication-title: Sensors
– start-page: 55
  year: 2021
  end-page: 78
– volume: 122
  year: 2022
  article-title: Resource provisioning in edge/fog computing: a comprehensive and systematic review
  publication-title: J Syst Archit
– year: 2021
  article-title: Resource provisioning and allocation in function‐as‐a‐service edge‐clouds
  publication-title: IEEE Trans Serv Comput
– volume: 37
  start-page: 61
  year: 2017
  end-page: 68
  article-title: Cross stratum resources protection in fog‐computing‐based radio over fiber networks for 5G services
  publication-title: Opt Fiber Technol
– volume: 24
  start-page: 319
  issue: 1
  year: 2021
  end-page: 342
  article-title: Resource provisioning using workload clustering in cloud computing environment: a hybrid approach
  publication-title: Clust Comput
– year: 2018
– volume: 14
  start-page: 4656
  issue: 10
  year: 2018
  end-page: 4664
  article-title: Adaptive fog configuration for the industrial internet of things
  publication-title: IEEE Trans Ind Inform
– volume: 14
  start-page: 439
  issue: 1
  year: 2021
  end-page: 452
  article-title: Efficient caching method in fog computing for internet of everything
  publication-title: Peer‐to‐Peer Netw Appl
– start-page: 59
  year: 2019
  end-page: 76
– volume: 2
  start-page: 1
  issue: 1
  year: 2021
  end-page: 31
  article-title: Multi‐criteria–based dynamic user behaviour–aware resource allocation in fog computing
  publication-title: ACM Trans Internet Things
– volume: 15
  start-page: 35
  issue: 1
  year: 2021
  end-page: 57
  article-title: A fault tolerant data management scheme for healthcare Internet of Things in fog computing
  publication-title: KSII Trans Internet Inf Syst
– volume: 16
  start-page: 167
  issue: 1
  year: 2018
  end-page: 175
  article-title: QoS‐aware fog resource provisioning and mobile device power control in IoT networks
  publication-title: IEEE Trans Netw Serv Manag
– volume: 2
  start-page: 10
  issue: 2
  year: 2018
  article-title: Fog computing and the internet of things: a review
  publication-title: Big Data Cogn Comput
– start-page: 675
  year: 2018
  end-page: 686
– volume: 112
  start-page: 53
  year: 2018
  end-page: 66
  article-title: A dynamic tradeoff data processing framework for delay‐sensitive applications in cloud of things systems
  publication-title: J Parallel Distrib Comput
– volume: 13
  start-page: 1086
  issue: 6
  year: 2017
  end-page: 1099
  article-title: ENORM: A framework for edge node resource management
  publication-title: IEEE Trans Serv Comput
– volume: 11
  start-page: 17
  issue: 4
  year: 2020
  end-page: 30
  article-title: QoE‐based multi‐criteria decision making for resource provisioning in fog computing using AHP technique
  publication-title: Int J Knowl Syst Sci
– start-page: 13
  year: 2019
  end-page: 21
– volume: 25
  year: 2020
  article-title: On‐demand resource provisioning for vehicular networks using flying fog
  publication-title: Veh Commun
– volume: 6
  start-page: 20262
  year: 2018
  end-page: 20278
  article-title: User‐participatory fog computing architecture and its management schemes for improving feasibility
  publication-title: IEEE Access
– volume: 10
  start-page: 3832
  issue: 11
  year: 2018
  article-title: Deployment of IoT edge and fog computing technologies to develop smart building services
  publication-title: Sustainability
– volume: 178
  year: 2021
  article-title: Adopting elitism‐based genetic algorithm for minimizing multi‐objective problems of IoT service placement in fog computing environment
  publication-title: J Netw Comput Appl
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Advanced QoS provisioning and mobile fog computing for 5G
  publication-title: Wirel Commun Mob Comput
– volume: 21
  start-page: 779
  issue: 3
  year: 2021
  article-title: Recent advances in collaborative scheduling of computing tasks in an edge computing paradigm
  publication-title: Sensors
– volume: 14
  start-page: 4590
  issue: 10
  year: 2018
  end-page: 4602
  article-title: Industrial IoT data scheduling based on hierarchical fog computing: A key for enabling smart factory
  publication-title: IEEE Trans Ind Inform
– volume: 11
  start-page: 608
  issue: 4
  year: 2022
  article-title: Green demand aware fog computing: a prediction‐based dynamic resource provisioning approach
  publication-title: Electronics
– volume: 9
  start-page: 59
  issue: 1
  year: 2021
  end-page: 74
  article-title: Scheduling algorithms in fog computing: A survey
  publication-title: Int J Networked Distrib Comput
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  end-page: 21
  article-title: Latency‐aware application module management for fog computing environments
  publication-title: ACM Trans Internet Technol
– volume: 74
  start-page: 2470
  issue: 6
  year: 2018
  end-page: 2507
  article-title: Design and energy‐efficient resource management of virtualized networked fog architectures for the real‐time support of IoT applications
  publication-title: J Supercomput
– volume: 5
  start-page: 14548
  year: 2017
  end-page: 14559
  article-title: Adaptive resource balancing for serviceability maximization in fog radio access networks
  publication-title: IEEE Access
– volume: 3
  start-page: 22
  issue: 1
  year: 2020
  end-page: 40
  article-title: A review of quality of service in fog computing for the internet of things
  publication-title: Int J Fog Comput
– volume: 105
  start-page: 864
  year: 2020
  end-page: 872
  article-title: Data collection from WSNs to the cloud based on mobile fog elements
  publication-title: Futur Gener Comput Syst
– volume: 18
  start-page: 3444
  issue: 10
  year: 2018
  article-title: qCon: QoS‐aware network resource management for fog computing
  publication-title: Sensors
– volume: 161
  start-page: 109
  year: 2020
  end-page: 131
  article-title: Resource provisioning for IoT services in the fog computing environment: an autonomic approach
  publication-title: Comput Commun
– volume: 180
  year: 2021
  article-title: Context‐aware scheduling in fog computing: a survey, taxonomy, challenges and future directions
  publication-title: J Netw Comput Appl
– volume: 69
  start-page: 9244
  issue: 8
  year: 2020
  end-page: 9248
  article-title: Capacity‐aware edge caching in fog computing networks
  publication-title: IEEE Trans Veh Technol
– volume: 117
  start-page: 439
  year: 2021
  end-page: 452
  article-title: Akka framework based on the actor model for executing distributed fog computing applications
  publication-title: Futur Gener Comput Syst
– volume: 33
  start-page: 1033
  issue: 6
  year: 2021
  end-page: 1056
  article-title: A learning‐based resource provisioning approach in the fog computing environment
  publication-title: J Exp Theor Artif Intell
– volume: 8
  start-page: 183879
  year: 2020
  end-page: 183890
  article-title: ElasticFog: elastic resource provisioning in container‐based fog computing
  publication-title: IEEE Access
– volume: 11
  start-page: 262
  issue: 1
  year: 2021
  end-page: 274
  article-title: QoS based optimal resource allocation and workload balancing for fog enabled IoT
  publication-title: Open Comput Sci
– volume: 103
  start-page: 2033
  issue: 9
  year: 2021
  end-page: 2059
  article-title: Energy‐makespan optimization of workflow scheduling in fog–cloud computing
  publication-title: Computing
– volume: 33
  start-page: 114
  year: 2019
  end-page: 121
  article-title: SNA based resource optimization in optical network using fog and cloud computing
  publication-title: Opt Switch Netw
– volume: 2
  start-page: 29
  issue: 1
  year: 2021
  end-page: 40
  article-title: IoT provisioning QoS based on cloud and fog computing
  publication-title: J Appl Sci Technol Trends
– volume: 134
  start-page: 289
  year: 2018
  end-page: 296
  article-title: Fog computing: data streaming services for mobile end‐users
  publication-title: Procedia Comput Sci
– volume: 8
  start-page: 48
  issue: 1
  year: 2016
  end-page: 61
  article-title: An efficient architecture and algorithm for resource provisioning in fog computing
  publication-title: Int J Inf Eng Electron Bus
– volume: 12
  start-page: 269
  issue: 1
  year: 2019
  end-page: 279
  article-title: MiFo: A novel edge network integration framework for fog computing
  publication-title: Peer‐to‐Peer Netw Appl
– volume: 55
  start-page: 70
  issue: 2
  year: 2017
  end-page: 78
  article-title: Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture
  publication-title: IEEE Commun Mag
– volume: 43
  start-page: 7487
  issue: 12
  year: 2018
  end-page: 7498
  article-title: SSLB: self‐similarity‐based load balancing for large‐scale fog computing
  publication-title: Arab J Sci Eng
– volume: 9
  start-page: 76
  issue: 3
  year: 2020
  article-title: Fog computing for realizing smart neighborhoods in smart grids
  publication-title: Computers
– start-page: 567
  year: 2020
  end-page: 578
– volume: 77
  start-page: 13806
  issue: 12
  year: 2021
  end-page: 13827
  article-title: Resource discovery in the Internet of Things integrated with fog computing using Markov learning model
  publication-title: J Supercomput
– volume: 98
  year: 2020
  article-title: A scheduling algorithm for a fog computing system with bag‐of‐tasks jobs: simulation and performance evaluation
  publication-title: Simul Model Pract Theory
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  end-page: 42
  article-title: Resource management approaches in fog computing: a comprehensive review
  publication-title: J Grid Comput
– volume: 27
  start-page: 14
  issue: 2
  year: 2020
  end-page: 21
  article-title: AI‐enabled reliable channel modeling architecture for fog computing vehicular networks
  publication-title: IEEE Wirel Commun
– start-page: 34
  year: 2018
  end-page: 46
– volume: 14
  year: 2021
  article-title: A trust management system for fog computing services
  publication-title: Internet Things
– volume: 77
  start-page: 10562
  issue: 9
  year: 2021
  end-page: 10589
  article-title: FONS: a fog orchestrator node selection model to improve application placement in fog computing
  publication-title: J Supercomput
– volume: 21
  start-page: S1
  issue: 3
  year: 2020
  article-title: Energy based resource provisioning for Iot application in fog computing
  publication-title: J Nat Remedies
– start-page: 305
  year: 2016
  end-page: 314
– volume: 18
  start-page: 271
  issue: 2
  year: 2021
  end-page: 289
  article-title: Proactive load balancing mechanism for fog computing supported by parked vehicles in IoV‐SDN
  publication-title: China Commun
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 15
  article-title: Dynamic resource provisioning on fog landscapes
  publication-title: Secur Commun Netw
– volume: 20
  start-page: 4
  issue: 1
  year: 2017
  article-title: Fog computing: enabling the management and orchestration of smart city applications in 5G networks
  publication-title: Entropy
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  end-page: 6
  article-title: Dynamic resource provisioning for cyber‐physical systems in cloud‐fog‐edge computing
  publication-title: J Cloud Comput
– volume: 8
  start-page: 1
  issue: 4
  year: 2016
  end-page: 10
  article-title: Real time efficient scheduling algorithm for load balancing in fog computing environment
  publication-title: Int J Inf Technol Comput Sci
– volume: 152
  start-page: 98
  year: 2021
  end-page: 107
  article-title: A novel cooperative resource provisioning strategy for multi‐cloud load balancing
  publication-title: J Parallel Distrib Comput
– volume: 3
  start-page: 161
  issue: 2
  year: 2015
  end-page: 169
  article-title: Energy management‐as‐a‐service over fog computing platform
  publication-title: IEEE Internet Things J
– volume: 1
  start-page: 5
  year: 2018
  end-page: 8
  article-title: Fogframe: Iot service deployment and execution in the fog
  publication-title: KuVS‐Fachgespräch Fog Comput
– volume: 82
  start-page: 152
  year: 2017
  end-page: 165
  article-title: MIST: fog‐based data analytics scheme with cost‐efficient resource provisioning for IoT crowdsensing applications
  publication-title: J Netw Comput Appl
– ident: e_1_2_9_69_1
  doi: 10.1109/ACCESS.2018.2815629
– ident: e_1_2_9_91_1
  doi: 10.1016/j.jnca.2020.102972
– ident: e_1_2_9_15_1
  doi: 10.38094/jastt20190
– ident: e_1_2_9_107_1
– year: 2021
  ident: e_1_2_9_36_1
  article-title: Resource provisioning and allocation in function‐as‐a‐service edge‐clouds
  publication-title: IEEE Trans Serv Comput
– ident: e_1_2_9_41_1
  doi: 10.1007/s00521-019-04507-z
– ident: e_1_2_9_84_1
  doi: 10.1109/ICFC49376.2020.00012
– ident: e_1_2_9_100_1
  doi: 10.1145/3132479.3132490
– ident: e_1_2_9_27_1
  doi: 10.3390/electronics11040608
– ident: e_1_2_9_29_1
  doi: 10.1109/GLOCOM.2018.8647378
– ident: e_1_2_9_96_1
  doi: 10.1007/s13369-018-3169-3
– ident: e_1_2_9_97_1
  doi: 10.1016/j.jpdc.2017.09.009
– ident: e_1_2_9_31_1
  doi: 10.1007/s10723-019-09491-1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jnca.2020.102915
– ident: e_1_2_9_54_1
  doi: 10.1109/PERCOMW.2015.7134002
– volume: 21
  start-page: S1
  issue: 3
  year: 2020
  ident: e_1_2_9_73_1
  article-title: Energy based resource provisioning for Iot application in fog computing
  publication-title: J Nat Remedies
– ident: e_1_2_9_83_1
  doi: 10.1109/COMPSAC.2018.10336
– ident: e_1_2_9_111_1
  doi: 10.1007/s11227-018-2274-0
– ident: e_1_2_9_7_1
  doi: 10.3390/e20010004
– ident: e_1_2_9_76_1
  doi: 10.1109/JIOT.2015.2471260
– ident: e_1_2_9_34_1
  doi: 10.2991/ijndc.k.210111.001
– ident: e_1_2_9_58_1
  doi: 10.1007/978-981-15-2414-1_57
– ident: e_1_2_9_39_1
  doi: 10.1007/978-981-10-5861-5_5
– ident: e_1_2_9_105_1
  doi: 10.23919/JCC.2021.02.019
– ident: e_1_2_9_86_1
  doi: 10.1109/KBEI.2019.8734918
– ident: e_1_2_9_4_1
  doi: 10.1007/s10586-018-2848-x
– ident: e_1_2_9_81_1
  doi: 10.1109/IWCMC.2018.8450410
– start-page: 305
  volume-title: International Conference on Smart Objects and Technologies for Social Good
  year: 2016
  ident: e_1_2_9_98_1
– ident: e_1_2_9_25_1
  doi: 10.1109/PADSW.2018.8644626
– ident: e_1_2_9_53_1
  doi: 10.1016/j.jnca.2017.01.012
– volume: 8
  start-page: 1
  issue: 4
  year: 2016
  ident: e_1_2_9_63_1
  article-title: Real time efficient scheduling algorithm for load balancing in fog computing environment
  publication-title: Int J Inf Technol Comput Sci
– ident: e_1_2_9_5_1
  doi: 10.1016/B978-0-12-805395-9.00004-6
– ident: e_1_2_9_23_1
  doi: 10.1186/s13677-020-00181-y
– ident: e_1_2_9_106_1
  doi: 10.1109/ACCESS.2020.2999734
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jpdc.2021.02.003
– ident: e_1_2_9_55_1
  doi: 10.1007/s11227-021-03702-x
– ident: e_1_2_9_112_1
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jpdc.2020.08.002
– ident: e_1_2_9_37_1
  doi: 10.1016/j.comcom.2020.07.028
– ident: e_1_2_9_43_1
  doi: 10.1515/comp-2020-0162
– ident: e_1_2_9_22_1
  doi: 10.1109/EuCNC.2017.7980667
– ident: e_1_2_9_45_1
  doi: 10.3390/su10113832
– volume: 13
  start-page: 1086
  issue: 6
  year: 2017
  ident: e_1_2_9_44_1
  article-title: ENORM: A framework for edge node resource management
  publication-title: IEEE Trans Serv Comput
– ident: e_1_2_9_64_1
  doi: 10.1016/j.future.2020.12.011
– ident: e_1_2_9_92_1
  doi: 10.1007/s00607-021-00930-0
– ident: e_1_2_9_95_1
  doi: 10.1109/SMARTCOMP.2018.00079
– ident: e_1_2_9_90_1
  doi: 10.5815/ijieeb.2016.01.06
– ident: e_1_2_9_65_1
  doi: 10.4018/IJKSS.2020100102
– ident: e_1_2_9_59_1
  doi: 10.1016/j.future.2018.04.042
– ident: e_1_2_9_104_1
  doi: 10.1007/s11227-021-03824-2
– ident: e_1_2_9_6_1
  doi: 10.1007/978-3-030-46197-3_3
– ident: e_1_2_9_40_1
  doi: 10.3390/computers9030076
– ident: e_1_2_9_115_1
  doi: 10.1016/j.sysarc.2021.102362
– ident: e_1_2_9_35_1
  doi: 10.1016/j.iot.2021.100382
– volume: 1
  start-page: 5
  year: 2018
  ident: e_1_2_9_51_1
  article-title: Fogframe: Iot service deployment and execution in the fog
  publication-title: KuVS‐Fachgespräch Fog Comput
– ident: e_1_2_9_12_1
– start-page: 59
  volume-title: International Symposium on Algorithmic Aspects of Cloud Computing
  year: 2019
  ident: e_1_2_9_28_1
– ident: e_1_2_9_57_1
  doi: 10.1109/IJCNN48605.2020.9206947
– ident: e_1_2_9_11_1
  doi: 10.1109/ICTON51198.2020.9203425
– ident: e_1_2_9_49_1
  doi: 10.1145/3345768.3355906
– ident: e_1_2_9_113_1
  doi: 10.3390/s19102238
– ident: e_1_2_9_89_1
  doi: 10.1109/PDP.2017.27
– ident: e_1_2_9_109_1
  doi: 10.1016/j.future.2017.07.031
– ident: e_1_2_9_10_1
  doi: 10.1016/j.swevo.2021.100841
– ident: e_1_2_9_8_1
  doi: 10.1109/Confluence51648.2021.9377050
– ident: e_1_2_9_47_1
  doi: 10.1007/s12083-020-00952-z
– ident: e_1_2_9_75_1
  doi: 10.1109/MASS.2017.33
– ident: e_1_2_9_87_1
– ident: e_1_2_9_19_1
  doi: 10.1109/TNSM.2018.2888481
– ident: e_1_2_9_50_1
  doi: 10.1109/TII.2018.2846549
– ident: e_1_2_9_14_1
  doi: 10.1145/3368235.3368846
– ident: e_1_2_9_68_1
  doi: 10.1155/2018/5109394
– ident: e_1_2_9_70_1
  doi: 10.1145/3186592
– ident: e_1_2_9_110_1
  doi: 10.1109/ACCESS.2020.3029583
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jnca.2021.103008
– ident: e_1_2_9_16_1
  doi: 10.1109/MWC.001.1900311
– ident: e_1_2_9_20_1
  doi: 10.1016/j.simpat.2019.101982
– ident: e_1_2_9_2_1
– ident: e_1_2_9_101_1
  doi: 10.1109/ACCESS.2017.2712138
– ident: e_1_2_9_17_1
  doi: 10.1109/TVT.2020.3001301
– ident: e_1_2_9_61_1
  doi: 10.23919/FRUCT.2017.8250193
– ident: e_1_2_9_85_1
  doi: 10.1109/TSC.2019.2895037
– ident: e_1_2_9_67_1
  doi: 10.1007/978-981-13-1501-5_2
– ident: e_1_2_9_103_1
  doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.126
– ident: e_1_2_9_62_1
  doi: 10.1109/ICDCS.2017.83
– volume: 25
  year: 2020
  ident: e_1_2_9_108_1
  article-title: On‐demand resource provisioning for vehicular networks using flying fog
  publication-title: Veh Commun
– ident: e_1_2_9_88_1
  doi: 10.1109/TII.2018.2843802
– ident: e_1_2_9_93_1
  doi: 10.1007/s12083-018-0663-z
– ident: e_1_2_9_9_1
  doi: 10.3390/s21030779
– ident: e_1_2_9_114_1
  doi: 10.1080/0952813X.2020.1818294
– ident: e_1_2_9_33_1
  doi: 10.3390/s18103444
– ident: e_1_2_9_102_1
  doi: 10.1016/j.yofte.2017.07.001
– volume: 15
  start-page: 35
  issue: 1
  year: 2021
  ident: e_1_2_9_72_1
  article-title: A fault tolerant data management scheme for healthcare Internet of Things in fog computing
  publication-title: KSII Trans Internet Inf Syst
– ident: e_1_2_9_32_1
  doi: 10.1109/MCOM.2017.1600896
– ident: e_1_2_9_52_1
  doi: 10.1016/j.procs.2018.07.173
– ident: e_1_2_9_79_1
  doi: 10.1109/CEC.2019.8790305
– ident: e_1_2_9_42_1
  doi: 10.1109/WoWMoM.2018.8449792
– start-page: 34
  volume-title: International Conference on Intelligent Networking and Collaborative Systems
  year: 2018
  ident: e_1_2_9_82_1
– ident: e_1_2_9_38_1
  doi: 10.1109/MCC.2017.27
– ident: e_1_2_9_78_1
  doi: 10.1155/2019/1798391
– ident: e_1_2_9_66_1
  doi: 10.1016/j.osn.2017.12.007
– ident: e_1_2_9_71_1
  doi: 10.1109/ICSENS.2016.7808814
– ident: e_1_2_9_77_1
  doi: 10.1145/3423332
– ident: e_1_2_9_94_1
  doi: 10.1007/978-3-319-75928-9_60
– ident: e_1_2_9_99_1
  doi: 10.1109/ICMCIS.2019.8842693
– ident: e_1_2_9_80_1
  doi: 10.1109/RTEST.2018.8397079
– ident: e_1_2_9_60_1
  doi: 10.1109/WCNC.2018.8377095
– ident: e_1_2_9_74_1
  doi: 10.1016/j.future.2019.10.018
– ident: e_1_2_9_26_1
– ident: e_1_2_9_18_1
  doi: 10.4018/IJFC.2020010102
– ident: e_1_2_9_3_1
  doi: 10.3390/bdcc2020010
– ident: e_1_2_9_30_1
  doi: 10.1109/MCOM.2017.1600435CM
– ident: e_1_2_9_48_1
  doi: 10.1109/NETSOFT.2019.8806671
– ident: e_1_2_9_21_1
  doi: 10.1007/s10586-020-03107-0
SSID ssj0000752548
Score 2.3303792
Snippet Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS)....
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title A systematic review on resource provisioning in fog computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4731
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_RBvOKdCKIPo7NN1qx78KHoRLy9bAPfSpOmsCF1zA7BX-_JpRd1gvrSlpCkJV_JOefLuSB04sa-m_LEd_xACEcdrTkBoYkj27zTAQnLAn0U8_DIbobt2yf_qSrGqaNLct4S73PjSv6DKrQBripK9g_IlpNCAzwDvnAFhOH6K4zDb4mY3xT5P7WUfFPzBa-WcR0pl0IdYDuZ5YXAGtcklglx0McHKmpYVy_KVZmcegzJazMvyPia--FdPDO-GaOpIqXlpCRuYBJN3ITTcfUf9nW-bONPOZ7ViQdCa_4qen8inqKuuiYasyXntNkN1rKVo4o9-LZvmzywMs9b7Y6VCp9SY38RWaUjoUm6TCIYGamRi2iJgL1AGmgpvHq475d0G2hGYArr-oTFJxapiF1yXrz4k3JSN1a0tjFYQ6vWTMChwXwdLchsA63UkkduoosQV-hjgz5-yXCBPq6jj0cZBvRxif4WGl73Bpc3ji2G4QjCfM8JKGcejyXoEiwRrpCBAOXRi5OUgcnMWUpJKlzGGROCJl3Qkn3iSp_ylMnAS326jRrZSyZ3EE7A5qQJkRL0s3ZXel2RykSClUVFGsOAXXRWrEIkbKZ4VbDkOfq63LvouOw5MdlR5vQ51Qv5Y4eoNxio-94vJttHy9WveIAa-XQmD0ErzPmRRfwDBDBnGA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+on+resource+provisioning+in+fog+computing&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Kaur%2C+Kirandeep&rft.au=Singh%2C+Arjan&rft.au=Sharma%2C+Anju&rft.date=2023-04-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fett.4731&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon