A systematic review on resource provisioning in fog computing
Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 34; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2023
|
Online Access | Get full text |
ISSN | 2161-3915 2161-3915 |
DOI | 10.1002/ett.4731 |
Cover
Loading…
Abstract | Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, specifically computation and storage. In cloud computing, computing resources are shared across another communication network using virtualization. However, the cloud computing mechanism cannot meet the needs of a large number of Internet of Things (IoT) services. To consider this, fog computing was introduced as a modified mechanism of the cloud paradigm by providing cloud services for the end devices. Fog computing is a decentralized computing model placed between devices, edges, data centers or the cloud. In this way, it helps to meet the demands initiated by IoT services, such as reduced latency, wide mobility coverage, and so on. Several solutions regarding resource allocation in fog computing are available in the research field, but such solutions have not achieved satisfactory results. Therefore, finding a solution by analyzing recent problems is open research. Therefore, this paper reviews different methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and introduces the limitations, advantages and future directions related to different resource provisioning techniques.
The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, mainly computation and storage. In cloud computing, the computing resources are shared over a different communication network with the help of virtualization. However, the cloud computing mechanism cannot fulfill the requirements of several IoT services. To consider this, Fog computing has been introduced as a modified mechanism to the cloud paradigm by providing cloud services to the end devices. Fog computing is a decentralized computing model placed in the middle of devices, edges, data centers, or the cloud. Thus, it assists in obtaining the requirements initiated by IoT services like reduced latency, large mobility coverage, and so on. There are not many sufficient solutions in the research field regarding the provisioning of resources in fog computing. Thus, this paper reviews various methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and presents the limitations, advantages, and future directions to various resource provisioning techniques in fog computing. |
---|---|
AbstractList | Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, specifically computation and storage. In cloud computing, computing resources are shared across another communication network using virtualization. However, the cloud computing mechanism cannot meet the needs of a large number of Internet of Things (IoT) services. To consider this, fog computing was introduced as a modified mechanism of the cloud paradigm by providing cloud services for the end devices. Fog computing is a decentralized computing model placed between devices, edges, data centers or the cloud. In this way, it helps to meet the demands initiated by IoT services, such as reduced latency, wide mobility coverage, and so on. Several solutions regarding resource allocation in fog computing are available in the research field, but such solutions have not achieved satisfactory results. Therefore, finding a solution by analyzing recent problems is open research. Therefore, this paper reviews different methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and introduces the limitations, advantages and future directions related to different resource provisioning techniques. Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS). The main issues of resource provisioning are meeting user demands like bandwidth, response time, throughput, availability, and so on. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, specifically computation and storage. In cloud computing, computing resources are shared across another communication network using virtualization. However, the cloud computing mechanism cannot meet the needs of a large number of Internet of Things (IoT) services. To consider this, fog computing was introduced as a modified mechanism of the cloud paradigm by providing cloud services for the end devices. Fog computing is a decentralized computing model placed between devices, edges, data centers or the cloud. In this way, it helps to meet the demands initiated by IoT services, such as reduced latency, wide mobility coverage, and so on. Several solutions regarding resource allocation in fog computing are available in the research field, but such solutions have not achieved satisfactory results. Therefore, finding a solution by analyzing recent problems is open research. Therefore, this paper reviews different methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and introduces the limitations, advantages and future directions related to different resource provisioning techniques. The cloud computing framework uses virtualization technology to provide on‐demand access to computer system resources, mainly computation and storage. In cloud computing, the computing resources are shared over a different communication network with the help of virtualization. However, the cloud computing mechanism cannot fulfill the requirements of several IoT services. To consider this, Fog computing has been introduced as a modified mechanism to the cloud paradigm by providing cloud services to the end devices. Fog computing is a decentralized computing model placed in the middle of devices, edges, data centers, or the cloud. Thus, it assists in obtaining the requirements initiated by IoT services like reduced latency, large mobility coverage, and so on. There are not many sufficient solutions in the research field regarding the provisioning of resources in fog computing. Thus, this paper reviews various methods established for resource provisioning in fog computing using different parameters from 2015 to 2021 and presents the limitations, advantages, and future directions to various resource provisioning techniques in fog computing. |
Author | Sharma, Anju Singh, Arjan Kaur, Kirandeep |
Author_xml | – sequence: 1 givenname: Kirandeep surname: Kaur fullname: Kaur, Kirandeep email: kirandeep_rs17@pbi.ac.in organization: Punjabi University – sequence: 2 givenname: Arjan surname: Singh fullname: Singh, Arjan organization: Punjabi University – sequence: 3 givenname: Anju surname: Sharma fullname: Sharma, Anju organization: Punjab State Aeronautical College |
BookMark | eNp1j09LAzEQxYNUsNaCHyFHL7vmT5PNHjyUUqtQ8FLPy246KZHdZEnSln57t9aDiM5lHsPvDe_dopHzDhC6pySnhLBHSCmfFZxeoTGjkma8pGL0Q9-gaYwfZJhCMDFTY_Q0x_EUE3R1shoHOFg4Yu8GFf0-aMB98AcbrXfW7bB12Pgd1r7r92k43KFrU7cRpt97gt6fl5vFS7Z-W70u5utMMylopngjaVNDQZXcaqJBaSkUrbdGqrJspOHMaCIbKbXm23LGuGAEBG-MBEWN4BOUX_7q4GMMYCpt05DYuxRq21aUVOf-1dC_OvcfDA-_DH2wXR1Of6HZBT3aFk7_ctVys_niPwFkK2vv |
CitedBy_id | crossref_primary_10_1016_j_iot_2023_100918 crossref_primary_10_1002_cpe_8145 crossref_primary_10_1002_ett_70020 crossref_primary_10_1109_ACCESS_2024_3447097 crossref_primary_10_1002_cpe_70024 crossref_primary_10_1109_JIOT_2023_3312916 |
Cites_doi | 10.1109/ACCESS.2018.2815629 10.1016/j.jnca.2020.102972 10.38094/jastt20190 10.1007/s00521-019-04507-z 10.1109/ICFC49376.2020.00012 10.1145/3132479.3132490 10.3390/electronics11040608 10.1109/GLOCOM.2018.8647378 10.1007/s13369-018-3169-3 10.1016/j.jpdc.2017.09.009 10.1007/s10723-019-09491-1 10.1016/j.jnca.2020.102915 10.1109/PERCOMW.2015.7134002 10.1109/COMPSAC.2018.10336 10.1007/s11227-018-2274-0 10.3390/e20010004 10.1109/JIOT.2015.2471260 10.2991/ijndc.k.210111.001 10.1007/978-981-15-2414-1_57 10.1007/978-981-10-5861-5_5 10.23919/JCC.2021.02.019 10.1109/KBEI.2019.8734918 10.1007/s10586-018-2848-x 10.1109/IWCMC.2018.8450410 10.1109/PADSW.2018.8644626 10.1016/j.jnca.2017.01.012 10.1016/B978-0-12-805395-9.00004-6 10.1186/s13677-020-00181-y 10.1109/ACCESS.2020.2999734 10.1016/j.jpdc.2021.02.003 10.1007/s11227-021-03702-x 10.1016/j.jpdc.2020.08.002 10.1016/j.comcom.2020.07.028 10.1515/comp-2020-0162 10.1109/EuCNC.2017.7980667 10.3390/su10113832 10.1016/j.future.2020.12.011 10.1007/s00607-021-00930-0 10.1109/SMARTCOMP.2018.00079 10.5815/ijieeb.2016.01.06 10.4018/IJKSS.2020100102 10.1016/j.future.2018.04.042 10.1007/s11227-021-03824-2 10.1007/978-3-030-46197-3_3 10.3390/computers9030076 10.1016/j.sysarc.2021.102362 10.1016/j.iot.2021.100382 10.1109/IJCNN48605.2020.9206947 10.1109/ICTON51198.2020.9203425 10.1145/3345768.3355906 10.3390/s19102238 10.1109/PDP.2017.27 10.1016/j.future.2017.07.031 10.1016/j.swevo.2021.100841 10.1109/Confluence51648.2021.9377050 10.1007/s12083-020-00952-z 10.1109/MASS.2017.33 10.1109/TNSM.2018.2888481 10.1109/TII.2018.2846549 10.1145/3368235.3368846 10.1155/2018/5109394 10.1145/3186592 10.1109/ACCESS.2020.3029583 10.1016/j.jnca.2021.103008 10.1109/MWC.001.1900311 10.1016/j.simpat.2019.101982 10.1109/ACCESS.2017.2712138 10.1109/TVT.2020.3001301 10.23919/FRUCT.2017.8250193 10.1109/TSC.2019.2895037 10.1007/978-981-13-1501-5_2 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.126 10.1109/ICDCS.2017.83 10.1109/TII.2018.2843802 10.1007/s12083-018-0663-z 10.3390/s21030779 10.1080/0952813X.2020.1818294 10.3390/s18103444 10.1016/j.yofte.2017.07.001 10.1109/MCOM.2017.1600896 10.1016/j.procs.2018.07.173 10.1109/CEC.2019.8790305 10.1109/WoWMoM.2018.8449792 10.1109/MCC.2017.27 10.1155/2019/1798391 10.1016/j.osn.2017.12.007 10.1109/ICSENS.2016.7808814 10.1145/3423332 10.1007/978-3-319-75928-9_60 10.1109/ICMCIS.2019.8842693 10.1109/RTEST.2018.8397079 10.1109/WCNC.2018.8377095 10.1016/j.future.2019.10.018 10.4018/IJFC.2020010102 10.3390/bdcc2020010 10.1109/MCOM.2017.1600435CM 10.1109/NETSOFT.2019.8806671 10.1007/s10586-020-03107-0 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.4731 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_4731 ETT4731 |
Genre | researchArticle |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2651-83b61bae7186dc0ce8c6581adf6899b6f32fc06b66cc3d9423520e53bf6e81f53 |
ISSN | 2161-3915 |
IngestDate | Thu Apr 24 23:02:26 EDT 2025 Tue Jul 01 03:49:29 EDT 2025 Wed Jan 22 16:21:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2651-83b61bae7186dc0ce8c6581adf6899b6f32fc06b66cc3d9423520e53bf6e81f53 |
PageCount | 36 |
ParticipantIDs | crossref_citationtrail_10_1002_ett_4731 crossref_primary_10_1002_ett_4731 wiley_primary_10_1002_ett_4731_ETT4731 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2017; 5 2021; 24 2019; 2019 2021; 21 2017; 82 2017; 4 2019; 12 2020; 161 2019; 14 2019; 19 2020; 11 2020; 98 2018; 87 2018; 43 2020; 18 2020; 8 2022; 122 2018; 6 2018; 2 2020; 3 2021; 77 2021; 33 2017; 37 2019; 22 2018; 1 2021; 117 2018; 134 2020; 9 2018; 74 2021; 152 2021; 9 2017; 20 2021; 2 2015; 3 2019; 33 2021; 103 2020; 104 2020; 105 2020; 146 2020; 32 2021; 180 2021; 14 2018; 19 2018; 18 2021; 15 2018; 2018 2021; 11 2021; 178 2021 2020 2017; 55 2021; 18 2018; 112 2017; 13 2020; 27 2019 2018 2020; 69 2020; 25 2016 2021; 175 2022; 11 2020; 21 2018; 10 2021; 62 2018; 16 2016; 8 2018; 14 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 Verma M (e_1_2_9_63_1) 2016; 8 Ascigil O (e_1_2_9_36_1) 2021 Govoni M (e_1_2_9_98_1) 2016 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 Skarlat O (e_1_2_9_51_1) 2018; 1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Wadhwa H (e_1_2_9_73_1) 2020; 21 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Fard HM (e_1_2_9_28_1) 2019 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 Madan N (e_1_2_9_108_1) 2020; 25 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 Nazir S (e_1_2_9_82_1) 2018 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_25_1 Saeed W (e_1_2_9_72_1) 2021; 15 Wang N (e_1_2_9_44_1) 2017; 13 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 62 year: 2021 article-title: Task scheduling in cloud computing based on meta‐heuristics: review, taxonomy, open challenges, and future trends publication-title: Swarm Evol Comput – volume: 8 start-page: 105311 year: 2020 end-page: 105319 article-title: Resource provisioning for cyber–physical–social system in cloud‐fog‐edge computing using optimal flower pollination algorithm publication-title: IEEE Access – volume: 22 start-page: 241 issue: 1 year: 2019 end-page: 270 article-title: A fog based load forecasting strategy for smart grids using big electrical data publication-title: Clust Comput – volume: 4 start-page: 26 issue: 2 year: 2017 end-page: 35 article-title: Mobility‐aware application scheduling in fog computing publication-title: IEEE Cloud Comput – volume: 146 start-page: 96 year: 2020 end-page: 106 article-title: Towards cost‐efficient resource provisioning with multiple mobile users in fog computing publication-title: J Parallel Distrib Comput – volume: 175 year: 2021 article-title: Towards end‐to‐end resource provisioning in fog computing over low power wide area networks publication-title: J Netw Comput Appl – volume: 14 start-page: 1781 issue: 6 year: 2019 end-page: 1795 article-title: Fogspot: spot pricing for application provisioning in edge/fog computing publication-title: IEEE Trans Serv Comput – volume: 55 start-page: 52 issue: 8 year: 2017 end-page: 57 article-title: A hierarchical game framework for resource management in fog computing publication-title: IEEE Commun Mag – volume: 104 start-page: 131 year: 2020 end-page: 141 article-title: Deadline‐based dynamic resource allocation and provisioning algorithms in fog‐cloud environment publication-title: Futur Gener Comput Syst – start-page: 61 year: 2016 end-page: 75 – volume: 32 start-page: 9745 issue: 13 year: 2020 end-page: 9760 article-title: Machine learning‐based auto‐scaling for containerized applications publication-title: Neural Comput & Applic – volume: 87 start-page: 1 year: 2018 end-page: 5 article-title: Towards a proper service placement in combined Fog‐to‐Cloud (F2C) architectures publication-title: Futur Gener Comput Syst – volume: 19 start-page: 2238 issue: 10 year: 2019 article-title: Resource provisioning in fog computing: from theory to practice publication-title: Sensors – start-page: 55 year: 2021 end-page: 78 – volume: 122 year: 2022 article-title: Resource provisioning in edge/fog computing: a comprehensive and systematic review publication-title: J Syst Archit – year: 2021 article-title: Resource provisioning and allocation in function‐as‐a‐service edge‐clouds publication-title: IEEE Trans Serv Comput – volume: 37 start-page: 61 year: 2017 end-page: 68 article-title: Cross stratum resources protection in fog‐computing‐based radio over fiber networks for 5G services publication-title: Opt Fiber Technol – volume: 24 start-page: 319 issue: 1 year: 2021 end-page: 342 article-title: Resource provisioning using workload clustering in cloud computing environment: a hybrid approach publication-title: Clust Comput – year: 2018 – volume: 14 start-page: 4656 issue: 10 year: 2018 end-page: 4664 article-title: Adaptive fog configuration for the industrial internet of things publication-title: IEEE Trans Ind Inform – volume: 14 start-page: 439 issue: 1 year: 2021 end-page: 452 article-title: Efficient caching method in fog computing for internet of everything publication-title: Peer‐to‐Peer Netw Appl – start-page: 59 year: 2019 end-page: 76 – volume: 2 start-page: 1 issue: 1 year: 2021 end-page: 31 article-title: Multi‐criteria–based dynamic user behaviour–aware resource allocation in fog computing publication-title: ACM Trans Internet Things – volume: 15 start-page: 35 issue: 1 year: 2021 end-page: 57 article-title: A fault tolerant data management scheme for healthcare Internet of Things in fog computing publication-title: KSII Trans Internet Inf Syst – volume: 16 start-page: 167 issue: 1 year: 2018 end-page: 175 article-title: QoS‐aware fog resource provisioning and mobile device power control in IoT networks publication-title: IEEE Trans Netw Serv Manag – volume: 2 start-page: 10 issue: 2 year: 2018 article-title: Fog computing and the internet of things: a review publication-title: Big Data Cogn Comput – start-page: 675 year: 2018 end-page: 686 – volume: 112 start-page: 53 year: 2018 end-page: 66 article-title: A dynamic tradeoff data processing framework for delay‐sensitive applications in cloud of things systems publication-title: J Parallel Distrib Comput – volume: 13 start-page: 1086 issue: 6 year: 2017 end-page: 1099 article-title: ENORM: A framework for edge node resource management publication-title: IEEE Trans Serv Comput – volume: 11 start-page: 17 issue: 4 year: 2020 end-page: 30 article-title: QoE‐based multi‐criteria decision making for resource provisioning in fog computing using AHP technique publication-title: Int J Knowl Syst Sci – start-page: 13 year: 2019 end-page: 21 – volume: 25 year: 2020 article-title: On‐demand resource provisioning for vehicular networks using flying fog publication-title: Veh Commun – volume: 6 start-page: 20262 year: 2018 end-page: 20278 article-title: User‐participatory fog computing architecture and its management schemes for improving feasibility publication-title: IEEE Access – volume: 10 start-page: 3832 issue: 11 year: 2018 article-title: Deployment of IoT edge and fog computing technologies to develop smart building services publication-title: Sustainability – volume: 178 year: 2021 article-title: Adopting elitism‐based genetic algorithm for minimizing multi‐objective problems of IoT service placement in fog computing environment publication-title: J Netw Comput Appl – volume: 2018 start-page: 1 year: 2018 end-page: 13 article-title: Advanced QoS provisioning and mobile fog computing for 5G publication-title: Wirel Commun Mob Comput – volume: 21 start-page: 779 issue: 3 year: 2021 article-title: Recent advances in collaborative scheduling of computing tasks in an edge computing paradigm publication-title: Sensors – volume: 14 start-page: 4590 issue: 10 year: 2018 end-page: 4602 article-title: Industrial IoT data scheduling based on hierarchical fog computing: A key for enabling smart factory publication-title: IEEE Trans Ind Inform – volume: 11 start-page: 608 issue: 4 year: 2022 article-title: Green demand aware fog computing: a prediction‐based dynamic resource provisioning approach publication-title: Electronics – volume: 9 start-page: 59 issue: 1 year: 2021 end-page: 74 article-title: Scheduling algorithms in fog computing: A survey publication-title: Int J Networked Distrib Comput – volume: 19 start-page: 1 issue: 1 year: 2018 end-page: 21 article-title: Latency‐aware application module management for fog computing environments publication-title: ACM Trans Internet Technol – volume: 74 start-page: 2470 issue: 6 year: 2018 end-page: 2507 article-title: Design and energy‐efficient resource management of virtualized networked fog architectures for the real‐time support of IoT applications publication-title: J Supercomput – volume: 5 start-page: 14548 year: 2017 end-page: 14559 article-title: Adaptive resource balancing for serviceability maximization in fog radio access networks publication-title: IEEE Access – volume: 3 start-page: 22 issue: 1 year: 2020 end-page: 40 article-title: A review of quality of service in fog computing for the internet of things publication-title: Int J Fog Comput – volume: 105 start-page: 864 year: 2020 end-page: 872 article-title: Data collection from WSNs to the cloud based on mobile fog elements publication-title: Futur Gener Comput Syst – volume: 18 start-page: 3444 issue: 10 year: 2018 article-title: qCon: QoS‐aware network resource management for fog computing publication-title: Sensors – volume: 161 start-page: 109 year: 2020 end-page: 131 article-title: Resource provisioning for IoT services in the fog computing environment: an autonomic approach publication-title: Comput Commun – volume: 180 year: 2021 article-title: Context‐aware scheduling in fog computing: a survey, taxonomy, challenges and future directions publication-title: J Netw Comput Appl – volume: 69 start-page: 9244 issue: 8 year: 2020 end-page: 9248 article-title: Capacity‐aware edge caching in fog computing networks publication-title: IEEE Trans Veh Technol – volume: 117 start-page: 439 year: 2021 end-page: 452 article-title: Akka framework based on the actor model for executing distributed fog computing applications publication-title: Futur Gener Comput Syst – volume: 33 start-page: 1033 issue: 6 year: 2021 end-page: 1056 article-title: A learning‐based resource provisioning approach in the fog computing environment publication-title: J Exp Theor Artif Intell – volume: 8 start-page: 183879 year: 2020 end-page: 183890 article-title: ElasticFog: elastic resource provisioning in container‐based fog computing publication-title: IEEE Access – volume: 11 start-page: 262 issue: 1 year: 2021 end-page: 274 article-title: QoS based optimal resource allocation and workload balancing for fog enabled IoT publication-title: Open Comput Sci – volume: 103 start-page: 2033 issue: 9 year: 2021 end-page: 2059 article-title: Energy‐makespan optimization of workflow scheduling in fog–cloud computing publication-title: Computing – volume: 33 start-page: 114 year: 2019 end-page: 121 article-title: SNA based resource optimization in optical network using fog and cloud computing publication-title: Opt Switch Netw – volume: 2 start-page: 29 issue: 1 year: 2021 end-page: 40 article-title: IoT provisioning QoS based on cloud and fog computing publication-title: J Appl Sci Technol Trends – volume: 134 start-page: 289 year: 2018 end-page: 296 article-title: Fog computing: data streaming services for mobile end‐users publication-title: Procedia Comput Sci – volume: 8 start-page: 48 issue: 1 year: 2016 end-page: 61 article-title: An efficient architecture and algorithm for resource provisioning in fog computing publication-title: Int J Inf Eng Electron Bus – volume: 12 start-page: 269 issue: 1 year: 2019 end-page: 279 article-title: MiFo: A novel edge network integration framework for fog computing publication-title: Peer‐to‐Peer Netw Appl – volume: 55 start-page: 70 issue: 2 year: 2017 end-page: 78 article-title: Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture publication-title: IEEE Commun Mag – volume: 43 start-page: 7487 issue: 12 year: 2018 end-page: 7498 article-title: SSLB: self‐similarity‐based load balancing for large‐scale fog computing publication-title: Arab J Sci Eng – volume: 9 start-page: 76 issue: 3 year: 2020 article-title: Fog computing for realizing smart neighborhoods in smart grids publication-title: Computers – start-page: 567 year: 2020 end-page: 578 – volume: 77 start-page: 13806 issue: 12 year: 2021 end-page: 13827 article-title: Resource discovery in the Internet of Things integrated with fog computing using Markov learning model publication-title: J Supercomput – volume: 98 year: 2020 article-title: A scheduling algorithm for a fog computing system with bag‐of‐tasks jobs: simulation and performance evaluation publication-title: Simul Model Pract Theory – volume: 18 start-page: 1 issue: 1 year: 2020 end-page: 42 article-title: Resource management approaches in fog computing: a comprehensive review publication-title: J Grid Comput – volume: 27 start-page: 14 issue: 2 year: 2020 end-page: 21 article-title: AI‐enabled reliable channel modeling architecture for fog computing vehicular networks publication-title: IEEE Wirel Commun – start-page: 34 year: 2018 end-page: 46 – volume: 14 year: 2021 article-title: A trust management system for fog computing services publication-title: Internet Things – volume: 77 start-page: 10562 issue: 9 year: 2021 end-page: 10589 article-title: FONS: a fog orchestrator node selection model to improve application placement in fog computing publication-title: J Supercomput – volume: 21 start-page: S1 issue: 3 year: 2020 article-title: Energy based resource provisioning for Iot application in fog computing publication-title: J Nat Remedies – start-page: 305 year: 2016 end-page: 314 – volume: 18 start-page: 271 issue: 2 year: 2021 end-page: 289 article-title: Proactive load balancing mechanism for fog computing supported by parked vehicles in IoV‐SDN publication-title: China Commun – volume: 2019 start-page: 1 year: 2019 end-page: 15 article-title: Dynamic resource provisioning on fog landscapes publication-title: Secur Commun Netw – volume: 20 start-page: 4 issue: 1 year: 2017 article-title: Fog computing: enabling the management and orchestration of smart city applications in 5G networks publication-title: Entropy – volume: 9 start-page: 1 issue: 1 year: 2020 end-page: 6 article-title: Dynamic resource provisioning for cyber‐physical systems in cloud‐fog‐edge computing publication-title: J Cloud Comput – volume: 8 start-page: 1 issue: 4 year: 2016 end-page: 10 article-title: Real time efficient scheduling algorithm for load balancing in fog computing environment publication-title: Int J Inf Technol Comput Sci – volume: 152 start-page: 98 year: 2021 end-page: 107 article-title: A novel cooperative resource provisioning strategy for multi‐cloud load balancing publication-title: J Parallel Distrib Comput – volume: 3 start-page: 161 issue: 2 year: 2015 end-page: 169 article-title: Energy management‐as‐a‐service over fog computing platform publication-title: IEEE Internet Things J – volume: 1 start-page: 5 year: 2018 end-page: 8 article-title: Fogframe: Iot service deployment and execution in the fog publication-title: KuVS‐Fachgespräch Fog Comput – volume: 82 start-page: 152 year: 2017 end-page: 165 article-title: MIST: fog‐based data analytics scheme with cost‐efficient resource provisioning for IoT crowdsensing applications publication-title: J Netw Comput Appl – ident: e_1_2_9_69_1 doi: 10.1109/ACCESS.2018.2815629 – ident: e_1_2_9_91_1 doi: 10.1016/j.jnca.2020.102972 – ident: e_1_2_9_15_1 doi: 10.38094/jastt20190 – ident: e_1_2_9_107_1 – year: 2021 ident: e_1_2_9_36_1 article-title: Resource provisioning and allocation in function‐as‐a‐service edge‐clouds publication-title: IEEE Trans Serv Comput – ident: e_1_2_9_41_1 doi: 10.1007/s00521-019-04507-z – ident: e_1_2_9_84_1 doi: 10.1109/ICFC49376.2020.00012 – ident: e_1_2_9_100_1 doi: 10.1145/3132479.3132490 – ident: e_1_2_9_27_1 doi: 10.3390/electronics11040608 – ident: e_1_2_9_29_1 doi: 10.1109/GLOCOM.2018.8647378 – ident: e_1_2_9_96_1 doi: 10.1007/s13369-018-3169-3 – ident: e_1_2_9_97_1 doi: 10.1016/j.jpdc.2017.09.009 – ident: e_1_2_9_31_1 doi: 10.1007/s10723-019-09491-1 – ident: e_1_2_9_46_1 doi: 10.1016/j.jnca.2020.102915 – ident: e_1_2_9_54_1 doi: 10.1109/PERCOMW.2015.7134002 – volume: 21 start-page: S1 issue: 3 year: 2020 ident: e_1_2_9_73_1 article-title: Energy based resource provisioning for Iot application in fog computing publication-title: J Nat Remedies – ident: e_1_2_9_83_1 doi: 10.1109/COMPSAC.2018.10336 – ident: e_1_2_9_111_1 doi: 10.1007/s11227-018-2274-0 – ident: e_1_2_9_7_1 doi: 10.3390/e20010004 – ident: e_1_2_9_76_1 doi: 10.1109/JIOT.2015.2471260 – ident: e_1_2_9_34_1 doi: 10.2991/ijndc.k.210111.001 – ident: e_1_2_9_58_1 doi: 10.1007/978-981-15-2414-1_57 – ident: e_1_2_9_39_1 doi: 10.1007/978-981-10-5861-5_5 – ident: e_1_2_9_105_1 doi: 10.23919/JCC.2021.02.019 – ident: e_1_2_9_86_1 doi: 10.1109/KBEI.2019.8734918 – ident: e_1_2_9_4_1 doi: 10.1007/s10586-018-2848-x – ident: e_1_2_9_81_1 doi: 10.1109/IWCMC.2018.8450410 – start-page: 305 volume-title: International Conference on Smart Objects and Technologies for Social Good year: 2016 ident: e_1_2_9_98_1 – ident: e_1_2_9_25_1 doi: 10.1109/PADSW.2018.8644626 – ident: e_1_2_9_53_1 doi: 10.1016/j.jnca.2017.01.012 – volume: 8 start-page: 1 issue: 4 year: 2016 ident: e_1_2_9_63_1 article-title: Real time efficient scheduling algorithm for load balancing in fog computing environment publication-title: Int J Inf Technol Comput Sci – ident: e_1_2_9_5_1 doi: 10.1016/B978-0-12-805395-9.00004-6 – ident: e_1_2_9_23_1 doi: 10.1186/s13677-020-00181-y – ident: e_1_2_9_106_1 doi: 10.1109/ACCESS.2020.2999734 – ident: e_1_2_9_24_1 doi: 10.1016/j.jpdc.2021.02.003 – ident: e_1_2_9_55_1 doi: 10.1007/s11227-021-03702-x – ident: e_1_2_9_112_1 – ident: e_1_2_9_56_1 doi: 10.1016/j.jpdc.2020.08.002 – ident: e_1_2_9_37_1 doi: 10.1016/j.comcom.2020.07.028 – ident: e_1_2_9_43_1 doi: 10.1515/comp-2020-0162 – ident: e_1_2_9_22_1 doi: 10.1109/EuCNC.2017.7980667 – ident: e_1_2_9_45_1 doi: 10.3390/su10113832 – volume: 13 start-page: 1086 issue: 6 year: 2017 ident: e_1_2_9_44_1 article-title: ENORM: A framework for edge node resource management publication-title: IEEE Trans Serv Comput – ident: e_1_2_9_64_1 doi: 10.1016/j.future.2020.12.011 – ident: e_1_2_9_92_1 doi: 10.1007/s00607-021-00930-0 – ident: e_1_2_9_95_1 doi: 10.1109/SMARTCOMP.2018.00079 – ident: e_1_2_9_90_1 doi: 10.5815/ijieeb.2016.01.06 – ident: e_1_2_9_65_1 doi: 10.4018/IJKSS.2020100102 – ident: e_1_2_9_59_1 doi: 10.1016/j.future.2018.04.042 – ident: e_1_2_9_104_1 doi: 10.1007/s11227-021-03824-2 – ident: e_1_2_9_6_1 doi: 10.1007/978-3-030-46197-3_3 – ident: e_1_2_9_40_1 doi: 10.3390/computers9030076 – ident: e_1_2_9_115_1 doi: 10.1016/j.sysarc.2021.102362 – ident: e_1_2_9_35_1 doi: 10.1016/j.iot.2021.100382 – volume: 1 start-page: 5 year: 2018 ident: e_1_2_9_51_1 article-title: Fogframe: Iot service deployment and execution in the fog publication-title: KuVS‐Fachgespräch Fog Comput – ident: e_1_2_9_12_1 – start-page: 59 volume-title: International Symposium on Algorithmic Aspects of Cloud Computing year: 2019 ident: e_1_2_9_28_1 – ident: e_1_2_9_57_1 doi: 10.1109/IJCNN48605.2020.9206947 – ident: e_1_2_9_11_1 doi: 10.1109/ICTON51198.2020.9203425 – ident: e_1_2_9_49_1 doi: 10.1145/3345768.3355906 – ident: e_1_2_9_113_1 doi: 10.3390/s19102238 – ident: e_1_2_9_89_1 doi: 10.1109/PDP.2017.27 – ident: e_1_2_9_109_1 doi: 10.1016/j.future.2017.07.031 – ident: e_1_2_9_10_1 doi: 10.1016/j.swevo.2021.100841 – ident: e_1_2_9_8_1 doi: 10.1109/Confluence51648.2021.9377050 – ident: e_1_2_9_47_1 doi: 10.1007/s12083-020-00952-z – ident: e_1_2_9_75_1 doi: 10.1109/MASS.2017.33 – ident: e_1_2_9_87_1 – ident: e_1_2_9_19_1 doi: 10.1109/TNSM.2018.2888481 – ident: e_1_2_9_50_1 doi: 10.1109/TII.2018.2846549 – ident: e_1_2_9_14_1 doi: 10.1145/3368235.3368846 – ident: e_1_2_9_68_1 doi: 10.1155/2018/5109394 – ident: e_1_2_9_70_1 doi: 10.1145/3186592 – ident: e_1_2_9_110_1 doi: 10.1109/ACCESS.2020.3029583 – ident: e_1_2_9_13_1 doi: 10.1016/j.jnca.2021.103008 – ident: e_1_2_9_16_1 doi: 10.1109/MWC.001.1900311 – ident: e_1_2_9_20_1 doi: 10.1016/j.simpat.2019.101982 – ident: e_1_2_9_2_1 – ident: e_1_2_9_101_1 doi: 10.1109/ACCESS.2017.2712138 – ident: e_1_2_9_17_1 doi: 10.1109/TVT.2020.3001301 – ident: e_1_2_9_61_1 doi: 10.23919/FRUCT.2017.8250193 – ident: e_1_2_9_85_1 doi: 10.1109/TSC.2019.2895037 – ident: e_1_2_9_67_1 doi: 10.1007/978-981-13-1501-5_2 – ident: e_1_2_9_103_1 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.126 – ident: e_1_2_9_62_1 doi: 10.1109/ICDCS.2017.83 – volume: 25 year: 2020 ident: e_1_2_9_108_1 article-title: On‐demand resource provisioning for vehicular networks using flying fog publication-title: Veh Commun – ident: e_1_2_9_88_1 doi: 10.1109/TII.2018.2843802 – ident: e_1_2_9_93_1 doi: 10.1007/s12083-018-0663-z – ident: e_1_2_9_9_1 doi: 10.3390/s21030779 – ident: e_1_2_9_114_1 doi: 10.1080/0952813X.2020.1818294 – ident: e_1_2_9_33_1 doi: 10.3390/s18103444 – ident: e_1_2_9_102_1 doi: 10.1016/j.yofte.2017.07.001 – volume: 15 start-page: 35 issue: 1 year: 2021 ident: e_1_2_9_72_1 article-title: A fault tolerant data management scheme for healthcare Internet of Things in fog computing publication-title: KSII Trans Internet Inf Syst – ident: e_1_2_9_32_1 doi: 10.1109/MCOM.2017.1600896 – ident: e_1_2_9_52_1 doi: 10.1016/j.procs.2018.07.173 – ident: e_1_2_9_79_1 doi: 10.1109/CEC.2019.8790305 – ident: e_1_2_9_42_1 doi: 10.1109/WoWMoM.2018.8449792 – start-page: 34 volume-title: International Conference on Intelligent Networking and Collaborative Systems year: 2018 ident: e_1_2_9_82_1 – ident: e_1_2_9_38_1 doi: 10.1109/MCC.2017.27 – ident: e_1_2_9_78_1 doi: 10.1155/2019/1798391 – ident: e_1_2_9_66_1 doi: 10.1016/j.osn.2017.12.007 – ident: e_1_2_9_71_1 doi: 10.1109/ICSENS.2016.7808814 – ident: e_1_2_9_77_1 doi: 10.1145/3423332 – ident: e_1_2_9_94_1 doi: 10.1007/978-3-319-75928-9_60 – ident: e_1_2_9_99_1 doi: 10.1109/ICMCIS.2019.8842693 – ident: e_1_2_9_80_1 doi: 10.1109/RTEST.2018.8397079 – ident: e_1_2_9_60_1 doi: 10.1109/WCNC.2018.8377095 – ident: e_1_2_9_74_1 doi: 10.1016/j.future.2019.10.018 – ident: e_1_2_9_26_1 – ident: e_1_2_9_18_1 doi: 10.4018/IJFC.2020010102 – ident: e_1_2_9_3_1 doi: 10.3390/bdcc2020010 – ident: e_1_2_9_30_1 doi: 10.1109/MCOM.2017.1600435CM – ident: e_1_2_9_48_1 doi: 10.1109/NETSOFT.2019.8806671 – ident: e_1_2_9_21_1 doi: 10.1007/s10586-020-03107-0 |
SSID | ssj0000752548 |
Score | 2.3303792 |
Snippet | Resource provisioning is allocating resources to clients over the Internet and plays a prominent role in cloud computing infrastructure‐as‐a‐service (IaaS).... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | A systematic review on resource provisioning in fog computing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4731 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_RBvOKdCKIPo7NN1qx78KHoRLy9bAPfSpOmsCF1zA7BX-_JpRd1gvrSlpCkJV_JOefLuSB04sa-m_LEd_xACEcdrTkBoYkj27zTAQnLAn0U8_DIbobt2yf_qSrGqaNLct4S73PjSv6DKrQBripK9g_IlpNCAzwDvnAFhOH6K4zDb4mY3xT5P7WUfFPzBa-WcR0pl0IdYDuZ5YXAGtcklglx0McHKmpYVy_KVZmcegzJazMvyPia--FdPDO-GaOpIqXlpCRuYBJN3ITTcfUf9nW-bONPOZ7ViQdCa_4qen8inqKuuiYasyXntNkN1rKVo4o9-LZvmzywMs9b7Y6VCp9SY38RWaUjoUm6TCIYGamRi2iJgL1AGmgpvHq475d0G2hGYArr-oTFJxapiF1yXrz4k3JSN1a0tjFYQ6vWTMChwXwdLchsA63UkkduoosQV-hjgz5-yXCBPq6jj0cZBvRxif4WGl73Bpc3ji2G4QjCfM8JKGcejyXoEiwRrpCBAOXRi5OUgcnMWUpJKlzGGROCJl3Qkn3iSp_ylMnAS326jRrZSyZ3EE7A5qQJkRL0s3ZXel2RykSClUVFGsOAXXRWrEIkbKZ4VbDkOfq63LvouOw5MdlR5vQ51Qv5Y4eoNxio-94vJttHy9WveIAa-XQmD0ErzPmRRfwDBDBnGA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+on+resource+provisioning+in+fog+computing&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Kaur%2C+Kirandeep&rft.au=Singh%2C+Arjan&rft.au=Sharma%2C+Anju&rft.date=2023-04-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fett.4731&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |