Detection of clone scammers in Android markets using IoT‐based edge computing

Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 33; no. 6
Main Authors Ullah, Farhan, Naeem, Hamad, Naeem, Muhammad Rashid, Jabbar, Sohail, Khalid, Shehazad, Al‐Turjman, Fadi, Abuarqoub, Abdelrahman
Format Journal Article
LanguageEnglish
Published 01.06.2022
Online AccessGet full text
ISSN2161-3915
2161-3915
DOI10.1002/ett.3791

Cover

Abstract Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of these Android applications. In this paper, we proposed an Android clone detection system for Internet of things (IoT) (Droid‐IoT) devices. First, the proposed system receives an original Android application package (APK) file along with possible candidate cloned APKs over the cloud network. The system uses an apkExtractor tool to extract Dalvik Executable (DEX) files for each subject program. The Jdex decompiler is used to extract Java source files from DEXs. Then, the bag‐of‐word model is used to extract tokenized features from source files. Further, the weighting filters are used to zoom the importance of each token. Moreover, Synthetic Minority Oversampling is applied to retrieve balanced features for better training of data. Finally, TensorFlow with Keras deep learning model is designed to predict clones in Android applications. The experimental results have shown that Droid‐IoT can successfully detect cloned apps with an accuracy of up to 96%. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names. App cloning is a process of creating similar apps availablein any app store by different developer name and therefore, a centralized, automated scrutiny system is required to prevent publishing pirated or cloned version of android applications. This paper presented an android clone scammers detection Android clone detection system for Internet of things (IoT)(Droid‐IoT) devices. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names will send through email.
AbstractList Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of these Android applications. In this paper, we proposed an Android clone detection system for Internet of things (IoT) (Droid‐IoT) devices. First, the proposed system receives an original Android application package (APK) file along with possible candidate cloned APKs over the cloud network. The system uses an apkExtractor tool to extract Dalvik Executable (DEX) files for each subject program. The Jdex decompiler is used to extract Java source files from DEXs. Then, the bag‐of‐word model is used to extract tokenized features from source files. Further, the weighting filters are used to zoom the importance of each token. Moreover, Synthetic Minority Oversampling is applied to retrieve balanced features for better training of data. Finally, TensorFlow with Keras deep learning model is designed to predict clones in Android applications. The experimental results have shown that Droid‐IoT can successfully detect cloned apps with an accuracy of up to 96%. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names. App cloning is a process of creating similar apps availablein any app store by different developer name and therefore, a centralized, automated scrutiny system is required to prevent publishing pirated or cloned version of android applications. This paper presented an android clone scammers detection Android clone detection system for Internet of things (IoT)(Droid‐IoT) devices. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names will send through email.
Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of these Android applications. In this paper, we proposed an Android clone detection system for Internet of things (IoT) (Droid‐IoT) devices. First, the proposed system receives an original Android application package (APK) file along with possible candidate cloned APKs over the cloud network. The system uses an apkExtractor tool to extract Dalvik Executable (DEX) files for each subject program. The Jdex decompiler is used to extract Java source files from DEXs. Then, the bag‐of‐word model is used to extract tokenized features from source files. Further, the weighting filters are used to zoom the importance of each token. Moreover, Synthetic Minority Oversampling is applied to retrieve balanced features for better training of data. Finally, TensorFlow with Keras deep learning model is designed to predict clones in Android applications. The experimental results have shown that Droid‐IoT can successfully detect cloned apps with an accuracy of up to 96%. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names.
Author Khalid, Shehazad
Jabbar, Sohail
Abuarqoub, Abdelrahman
Al‐Turjman, Fadi
Ullah, Farhan
Naeem, Hamad
Naeem, Muhammad Rashid
Author_xml – sequence: 1
  givenname: Farhan
  surname: Ullah
  fullname: Ullah, Farhan
  organization: COMSATS University Islamabad, Sahiwal Campus
– sequence: 2
  givenname: Hamad
  surname: Naeem
  fullname: Naeem, Hamad
  organization: Sichuan University
– sequence: 3
  givenname: Muhammad Rashid
  surname: Naeem
  fullname: Naeem, Muhammad Rashid
  organization: Sichuan University
– sequence: 4
  givenname: Sohail
  orcidid: 0000-0002-2127-1235
  surname: Jabbar
  fullname: Jabbar, Sohail
  email: sjabbar.research@gmail.com
  organization: Manchester Metropolitan University
– sequence: 5
  givenname: Shehazad
  surname: Khalid
  fullname: Khalid, Shehazad
  organization: Bahria University
– sequence: 6
  givenname: Fadi
  surname: Al‐Turjman
  fullname: Al‐Turjman, Fadi
  organization: Near East University
– sequence: 7
  givenname: Abdelrahman
  surname: Abuarqoub
  fullname: Abuarqoub, Abdelrahman
  organization: Middle East University
BookMark eNp1kM9KAzEQxoNUsNaCj5Cjl13zp9k_x1KrFgq9rOclm0xKdHdTkhTpzUfwGX0St9aDiM5lBub7PmZ-l2jUux4QuqYkpYSwW4gx5XlJz9CY0YwmvKRi9GO-QNMQnslQuWBiVozR5g4iqGhdj53Bqh3ycFCy68AHbHs877V3VuNO-heIAe-D7bd45aqPt_dGBtAY9Bawct1uH4fVFTo3sg0w_e4T9HS_rBaPyXrzsFrM14limaDJrFCqyHjelDknujFaNAUXVBEopRaGGVCElIpmkpWFNEZJ09CCQsnA5A0nfIJuTrnKuxA8mHrn7XDkoaakPrKoBxb1kcUgTX9JlY3y-HL00rZ_GZKT4dW2cPg3uF5W1Zf-ExCJc50
CitedBy_id crossref_primary_10_1007_s11276_020_02469_y
Cites_doi 10.1145/2619091
10.1109/ICSE.2017.38
10.1109/MC.2016.145
10.1109/WITS.2017.7934655
10.1109/MNET.2018.1700202
10.1037/met0000079
10.1145/1150402.1150522
10.1145/2133601.2133640
10.1007/s10115-011-0465-6
10.1145/1999995.2000018
10.1016/j.eswa.2010.08.066
10.1109/ICPC.2015.25
10.1109/MSN.2012.43
10.1016/j.jnca.2017.02.009
10.1145/872757.872770
10.1109/COMPSAC.2012.14
10.5220/0006668705170524
10.1213/ANE.0000000000002864
10.1145/2771783.2771795
10.1016/j.future.2013.01.010
10.1145/2568225.2568286
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.3791
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_3791
ETT3791
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2651-48cc8637b9730dbfd5b8351c0e9ad5f2fec009c16a298affcafb181e92ef7b303
ISSN 2161-3915
IngestDate Tue Jul 01 03:49:22 EDT 2025
Thu Apr 24 23:09:57 EDT 2025
Wed Jan 22 16:23:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2651-48cc8637b9730dbfd5b8351c0e9ad5f2fec009c16a298affcafb181e92ef7b303
ORCID 0000-0002-2127-1235
PageCount 12
ParticipantIDs crossref_primary_10_1002_ett_3791
crossref_citationtrail_10_1002_ett_3791
wiley_primary_10_1002_ett_3791_ETT3791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2022
References 2017; 84
2013; 29
2012
2011
2013; 68
2018; 126
2016; 21
2018
2017
2006
2016
2015
2003
2014
2013
2011; 38
2016; 49
2018; 32
2012; 33
2014; 32
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
Ghafir I (e_1_2_6_12_1) 2018
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Joshi M (e_1_2_6_11_1) 2013; 68
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – year: 2011
– volume: 32
  issue: 2
  year: 2014
  article-title: TaintDroid: an information‐flow tracking system for realtime privacy monitoring on smartphones
  publication-title: ACM Trans Comput Syst
– volume: 21
  start-page: 273
  issue: 3
  year: 2016
  article-title: Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data
  publication-title: Psychological Methods
– start-page: 1
  year: 2018
  end-page: 17
  article-title: Security threats to critical infrastructure: the human factor
  publication-title: J Supercomput
– year: 2006
– year: 2003
– volume: 126
  start-page: 1763
  issue: 5
  year: 2018
  end-page: 1768
  article-title: Correlation coefficients: appropriate use and interpretation
  publication-title: Anesth Analg
– volume: 29
  start-page: 1645
  issue: 7
  year: 2013
  end-page: 1660
  article-title: Internet of Things (IoT): a vision, architectural elements, and future directions
  publication-title: Future Gener Comput Syst
– volume: 38
  start-page: 2758
  issue: 3
  year: 2011
  end-page: 2765
  article-title: A comparative study of TF* IDF, LSI and multi‐words for text classification
  publication-title: Expert Syst Appl
– volume: 33
  start-page: 245
  issue: 2
  year: 2012
  end-page: 265
  article-title: SMOTE‐RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data‐sets using SMOTE and rough sets theory
  publication-title: Knowl Inf Syst
– year: 2017
– volume: 68
  start-page: 17
  issue: 15
  year: 2013
  end-page: 20
  article-title: Plagiarism detection over the web
  publication-title: Int J Comput Appl
– year: 2016
– volume: 32
  start-page: 96
  issue: 1
  year: 2018
  end-page: 101
  article-title: Learning IoT in edge: deep learning for the Internet of Things with edge computing
  publication-title: IEEE Network
– year: 2018
– year: 2014
– year: 2015
– volume: 49
  start-page: 78
  issue: 5
  year: 2016
  end-page: 81
  article-title: The promise of edge computing
  publication-title: Computer
– volume: 84
  start-page: 25
  year: 2017
  end-page: 37
  article-title: A survey of intrusion detection in Internet of Things
  publication-title: J Netw Comput Appl
– year: 2012
– year: 2013
– ident: e_1_2_6_16_1
  doi: 10.1145/2619091
– start-page: 1
  year: 2018
  ident: e_1_2_6_12_1
  article-title: Security threats to critical infrastructure: the human factor
  publication-title: J Supercomput
– ident: e_1_2_6_20_1
  doi: 10.1109/ICSE.2017.38
– ident: e_1_2_6_2_1
  doi: 10.1109/MC.2016.145
– ident: e_1_2_6_6_1
  doi: 10.1109/WITS.2017.7934655
– ident: e_1_2_6_3_1
  doi: 10.1109/MNET.2018.1700202
– ident: e_1_2_6_28_1
  doi: 10.1037/met0000079
– ident: e_1_2_6_13_1
  doi: 10.1145/1150402.1150522
– ident: e_1_2_6_7_1
  doi: 10.1145/2133601.2133640
– ident: e_1_2_6_30_1
  doi: 10.1007/s10115-011-0465-6
– ident: e_1_2_6_14_1
  doi: 10.1145/1999995.2000018
– ident: e_1_2_6_23_1
  doi: 10.1016/j.eswa.2010.08.066
– ident: e_1_2_6_21_1
  doi: 10.1109/ICPC.2015.25
– ident: e_1_2_6_25_1
– ident: e_1_2_6_8_1
  doi: 10.1109/MSN.2012.43
– volume: 68
  start-page: 17
  issue: 15
  year: 2013
  ident: e_1_2_6_11_1
  article-title: Plagiarism detection over the web
  publication-title: Int J Comput Appl
– ident: e_1_2_6_19_1
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jnca.2017.02.009
– ident: e_1_2_6_10_1
  doi: 10.1145/872757.872770
– ident: e_1_2_6_26_1
  doi: 10.1109/COMPSAC.2012.14
– ident: e_1_2_6_27_1
– ident: e_1_2_6_24_1
– ident: e_1_2_6_17_1
  doi: 10.5220/0006668705170524
– ident: e_1_2_6_9_1
– ident: e_1_2_6_29_1
  doi: 10.1213/ANE.0000000000002864
– ident: e_1_2_6_15_1
– ident: e_1_2_6_18_1
  doi: 10.1145/2771783.2771795
– ident: e_1_2_6_4_1
  doi: 10.1016/j.future.2013.01.010
– ident: e_1_2_6_22_1
  doi: 10.1145/2568225.2568286
SSID ssj0000752548
Score 2.2625918
Snippet Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets....
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Detection of clone scammers in Android markets using IoT‐based edge computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3791
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c5NIeSpu2NH2xgdIehFxrrdceQ5NgQp1CI0NuYp84IbFLLF166k_IJX-wv6SzD20U4kDaizCrQcg7HzsPzXyD0EelSi5SQWPCtY5T8FljqiiNJZcp0WBwHcXG9CifzNLDk-xkMLjuVS21DR-KX2v7Sv5Hq7AGejVdsv-g2fBQWIDfoF-4gobh-iAd76lGic7lE-dLcBhXwqWibR7DkBGcyujCdjavotaVByyrUOFgbJiMTErN1pa3TWfIznqWzLU-2M8KppvYTjVqzPicfm_JKmq6JH2vLHEGILN5mwN2Ob_B4RFTyuJwwi6YvLM6befwJ5iMfphJT-H-IePclYMfL-ddaYhPWECsGwqr3LlGEpPyoq6Lc6jWrPmD2TFkeADmPRMdDNid89_xyaqmGY4LNwXsNsV2kMnuk7Kmfb-qzJ1HaJMUhfn6v7m7N_12HJJ34GdBYG2nHXYv3hEbj8iX7sG3XJ1-6GN9l-oZeuqDDrzrEPQcDdRiCz3pUVG-QN8DlvBSY4sl3GEJny6wxxL2WMIWSxiw9Of3lUURNijCAUUv0exgv_o6if2wjViQPEvitBSizMcFp3DmS65lxsE5T8RIUSYzTbQS4I6LJGeElkxrwTQH71BRonTBwRF6hTYW8G6vEdYJyyEKz3KZG7ZHyseJ1mQkiM7TRIlyG33u9qUWnoneDEQ5rx2HNqlhB2uzg9toJ0j-dOwra2Q-2a29V6D22nzzUMG36PENbt-hjeayVe_B9Wz4Bw-Ev4h-h3U
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+clone+scammers+in+Android+markets+using+IoT%E2%80%90based+edge+computing&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Ullah%2C+Farhan&rft.au=Naeem%2C+Hamad&rft.au=Naeem%2C+Muhammad+Rashid&rft.au=Jabbar%2C+Sohail&rft.date=2022-06-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3791&rft.externalDBID=10.1002%252Fett.3791&rft.externalDocID=ETT3791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon