Detection of clone scammers in Android markets using IoT‐based edge computing
Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 33; no. 6 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.06.2022
|
Online Access | Get full text |
ISSN | 2161-3915 2161-3915 |
DOI | 10.1002/ett.3791 |
Cover
Abstract | Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of these Android applications. In this paper, we proposed an Android clone detection system for Internet of things (IoT) (Droid‐IoT) devices. First, the proposed system receives an original Android application package (APK) file along with possible candidate cloned APKs over the cloud network. The system uses an apkExtractor tool to extract Dalvik Executable (DEX) files for each subject program. The Jdex decompiler is used to extract Java source files from DEXs. Then, the bag‐of‐word model is used to extract tokenized features from source files. Further, the weighting filters are used to zoom the importance of each token. Moreover, Synthetic Minority Oversampling is applied to retrieve balanced features for better training of data. Finally, TensorFlow with Keras deep learning model is designed to predict clones in Android applications. The experimental results have shown that Droid‐IoT can successfully detect cloned apps with an accuracy of up to 96%. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names.
App cloning is a process of creating similar apps availablein any app store by different developer name and therefore, a centralized, automated scrutiny system is required to prevent publishing pirated or cloned version of android applications. This paper presented an android clone scammers detection Android clone detection system for Internet of things (IoT)(Droid‐IoT) devices. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names will send through email. |
---|---|
AbstractList | Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of these Android applications. In this paper, we proposed an Android clone detection system for Internet of things (IoT) (Droid‐IoT) devices. First, the proposed system receives an original Android application package (APK) file along with possible candidate cloned APKs over the cloud network. The system uses an apkExtractor tool to extract Dalvik Executable (DEX) files for each subject program. The Jdex decompiler is used to extract Java source files from DEXs. Then, the bag‐of‐word model is used to extract tokenized features from source files. Further, the weighting filters are used to zoom the importance of each token. Moreover, Synthetic Minority Oversampling is applied to retrieve balanced features for better training of data. Finally, TensorFlow with Keras deep learning model is designed to predict clones in Android applications. The experimental results have shown that Droid‐IoT can successfully detect cloned apps with an accuracy of up to 96%. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names.
App cloning is a process of creating similar apps availablein any app store by different developer name and therefore, a centralized, automated scrutiny system is required to prevent publishing pirated or cloned version of android applications. This paper presented an android clone scammers detection Android clone detection system for Internet of things (IoT)(Droid‐IoT) devices. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names will send through email. Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets. Therefore, a centralized, automated scrutiny system among multiple app stores is inevitable to prevent publishing pirated or cloned version of these Android applications. In this paper, we proposed an Android clone detection system for Internet of things (IoT) (Droid‐IoT) devices. First, the proposed system receives an original Android application package (APK) file along with possible candidate cloned APKs over the cloud network. The system uses an apkExtractor tool to extract Dalvik Executable (DEX) files for each subject program. The Jdex decompiler is used to extract Java source files from DEXs. Then, the bag‐of‐word model is used to extract tokenized features from source files. Further, the weighting filters are used to zoom the importance of each token. Moreover, Synthetic Minority Oversampling is applied to retrieve balanced features for better training of data. Finally, TensorFlow with Keras deep learning model is designed to predict clones in Android applications. The experimental results have shown that Droid‐IoT can successfully detect cloned apps with an accuracy of up to 96%. The primary purpose of this system is to prevent the publishing of pirated apps among different app stores under different pirated names. |
Author | Khalid, Shehazad Jabbar, Sohail Abuarqoub, Abdelrahman Al‐Turjman, Fadi Ullah, Farhan Naeem, Hamad Naeem, Muhammad Rashid |
Author_xml | – sequence: 1 givenname: Farhan surname: Ullah fullname: Ullah, Farhan organization: COMSATS University Islamabad, Sahiwal Campus – sequence: 2 givenname: Hamad surname: Naeem fullname: Naeem, Hamad organization: Sichuan University – sequence: 3 givenname: Muhammad Rashid surname: Naeem fullname: Naeem, Muhammad Rashid organization: Sichuan University – sequence: 4 givenname: Sohail orcidid: 0000-0002-2127-1235 surname: Jabbar fullname: Jabbar, Sohail email: sjabbar.research@gmail.com organization: Manchester Metropolitan University – sequence: 5 givenname: Shehazad surname: Khalid fullname: Khalid, Shehazad organization: Bahria University – sequence: 6 givenname: Fadi surname: Al‐Turjman fullname: Al‐Turjman, Fadi organization: Near East University – sequence: 7 givenname: Abdelrahman surname: Abuarqoub fullname: Abuarqoub, Abdelrahman organization: Middle East University |
BookMark | eNp1kM9KAzEQxoNUsNaCj5Cjl13zp9k_x1KrFgq9rOclm0xKdHdTkhTpzUfwGX0St9aDiM5lBub7PmZ-l2jUux4QuqYkpYSwW4gx5XlJz9CY0YwmvKRi9GO-QNMQnslQuWBiVozR5g4iqGhdj53Bqh3ycFCy68AHbHs877V3VuNO-heIAe-D7bd45aqPt_dGBtAY9Bawct1uH4fVFTo3sg0w_e4T9HS_rBaPyXrzsFrM14limaDJrFCqyHjelDknujFaNAUXVBEopRaGGVCElIpmkpWFNEZJ09CCQsnA5A0nfIJuTrnKuxA8mHrn7XDkoaakPrKoBxb1kcUgTX9JlY3y-HL00rZ_GZKT4dW2cPg3uF5W1Zf-ExCJc50 |
CitedBy_id | crossref_primary_10_1007_s11276_020_02469_y |
Cites_doi | 10.1145/2619091 10.1109/ICSE.2017.38 10.1109/MC.2016.145 10.1109/WITS.2017.7934655 10.1109/MNET.2018.1700202 10.1037/met0000079 10.1145/1150402.1150522 10.1145/2133601.2133640 10.1007/s10115-011-0465-6 10.1145/1999995.2000018 10.1016/j.eswa.2010.08.066 10.1109/ICPC.2015.25 10.1109/MSN.2012.43 10.1016/j.jnca.2017.02.009 10.1145/872757.872770 10.1109/COMPSAC.2012.14 10.5220/0006668705170524 10.1213/ANE.0000000000002864 10.1145/2771783.2771795 10.1016/j.future.2013.01.010 10.1145/2568225.2568286 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/ett.3791 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ett_3791 ETT3791 |
Genre | article |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2651-48cc8637b9730dbfd5b8351c0e9ad5f2fec009c16a298affcafb181e92ef7b303 |
ISSN | 2161-3915 |
IngestDate | Tue Jul 01 03:49:22 EDT 2025 Thu Apr 24 23:09:57 EDT 2025 Wed Jan 22 16:23:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2651-48cc8637b9730dbfd5b8351c0e9ad5f2fec009c16a298affcafb181e92ef7b303 |
ORCID | 0000-0002-2127-1235 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1002_ett_3791 crossref_citationtrail_10_1002_ett_3791 wiley_primary_10_1002_ett_3791_ETT3791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationYear | 2022 |
References | 2017; 84 2013; 29 2012 2011 2013; 68 2018; 126 2016; 21 2018 2017 2006 2016 2015 2003 2014 2013 2011; 38 2016; 49 2018; 32 2012; 33 2014; 32 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 Ghafir I (e_1_2_6_12_1) 2018 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 Joshi M (e_1_2_6_11_1) 2013; 68 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – year: 2011 – volume: 32 issue: 2 year: 2014 article-title: TaintDroid: an information‐flow tracking system for realtime privacy monitoring on smartphones publication-title: ACM Trans Comput Syst – volume: 21 start-page: 273 issue: 3 year: 2016 article-title: Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data publication-title: Psychological Methods – start-page: 1 year: 2018 end-page: 17 article-title: Security threats to critical infrastructure: the human factor publication-title: J Supercomput – year: 2006 – year: 2003 – volume: 126 start-page: 1763 issue: 5 year: 2018 end-page: 1768 article-title: Correlation coefficients: appropriate use and interpretation publication-title: Anesth Analg – volume: 29 start-page: 1645 issue: 7 year: 2013 end-page: 1660 article-title: Internet of Things (IoT): a vision, architectural elements, and future directions publication-title: Future Gener Comput Syst – volume: 38 start-page: 2758 issue: 3 year: 2011 end-page: 2765 article-title: A comparative study of TF* IDF, LSI and multi‐words for text classification publication-title: Expert Syst Appl – volume: 33 start-page: 245 issue: 2 year: 2012 end-page: 265 article-title: SMOTE‐RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data‐sets using SMOTE and rough sets theory publication-title: Knowl Inf Syst – year: 2017 – volume: 68 start-page: 17 issue: 15 year: 2013 end-page: 20 article-title: Plagiarism detection over the web publication-title: Int J Comput Appl – year: 2016 – volume: 32 start-page: 96 issue: 1 year: 2018 end-page: 101 article-title: Learning IoT in edge: deep learning for the Internet of Things with edge computing publication-title: IEEE Network – year: 2018 – year: 2014 – year: 2015 – volume: 49 start-page: 78 issue: 5 year: 2016 end-page: 81 article-title: The promise of edge computing publication-title: Computer – volume: 84 start-page: 25 year: 2017 end-page: 37 article-title: A survey of intrusion detection in Internet of Things publication-title: J Netw Comput Appl – year: 2012 – year: 2013 – ident: e_1_2_6_16_1 doi: 10.1145/2619091 – start-page: 1 year: 2018 ident: e_1_2_6_12_1 article-title: Security threats to critical infrastructure: the human factor publication-title: J Supercomput – ident: e_1_2_6_20_1 doi: 10.1109/ICSE.2017.38 – ident: e_1_2_6_2_1 doi: 10.1109/MC.2016.145 – ident: e_1_2_6_6_1 doi: 10.1109/WITS.2017.7934655 – ident: e_1_2_6_3_1 doi: 10.1109/MNET.2018.1700202 – ident: e_1_2_6_28_1 doi: 10.1037/met0000079 – ident: e_1_2_6_13_1 doi: 10.1145/1150402.1150522 – ident: e_1_2_6_7_1 doi: 10.1145/2133601.2133640 – ident: e_1_2_6_30_1 doi: 10.1007/s10115-011-0465-6 – ident: e_1_2_6_14_1 doi: 10.1145/1999995.2000018 – ident: e_1_2_6_23_1 doi: 10.1016/j.eswa.2010.08.066 – ident: e_1_2_6_21_1 doi: 10.1109/ICPC.2015.25 – ident: e_1_2_6_25_1 – ident: e_1_2_6_8_1 doi: 10.1109/MSN.2012.43 – volume: 68 start-page: 17 issue: 15 year: 2013 ident: e_1_2_6_11_1 article-title: Plagiarism detection over the web publication-title: Int J Comput Appl – ident: e_1_2_6_19_1 – ident: e_1_2_6_5_1 doi: 10.1016/j.jnca.2017.02.009 – ident: e_1_2_6_10_1 doi: 10.1145/872757.872770 – ident: e_1_2_6_26_1 doi: 10.1109/COMPSAC.2012.14 – ident: e_1_2_6_27_1 – ident: e_1_2_6_24_1 – ident: e_1_2_6_17_1 doi: 10.5220/0006668705170524 – ident: e_1_2_6_9_1 – ident: e_1_2_6_29_1 doi: 10.1213/ANE.0000000000002864 – ident: e_1_2_6_15_1 – ident: e_1_2_6_18_1 doi: 10.1145/2771783.2771795 – ident: e_1_2_6_4_1 doi: 10.1016/j.future.2013.01.010 – ident: e_1_2_6_22_1 doi: 10.1145/2568225.2568286 |
SSID | ssj0000752548 |
Score | 2.2625918 |
Snippet | Pirated application developers find an alternate way to publish pirated versions of the same Android mobile applications (apps) on different Android markets.... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Detection of clone scammers in Android markets using IoT‐based edge computing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3791 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c5NIeSpu2NH2xgdIehFxrrdceQ5NgQp1CI0NuYp84IbFLLF166k_IJX-wv6SzD20U4kDaizCrQcg7HzsPzXyD0EelSi5SQWPCtY5T8FljqiiNJZcp0WBwHcXG9CifzNLDk-xkMLjuVS21DR-KX2v7Sv5Hq7AGejVdsv-g2fBQWIDfoF-4gobh-iAd76lGic7lE-dLcBhXwqWibR7DkBGcyujCdjavotaVByyrUOFgbJiMTErN1pa3TWfIznqWzLU-2M8KppvYTjVqzPicfm_JKmq6JH2vLHEGILN5mwN2Ob_B4RFTyuJwwi6YvLM6befwJ5iMfphJT-H-IePclYMfL-ddaYhPWECsGwqr3LlGEpPyoq6Lc6jWrPmD2TFkeADmPRMdDNid89_xyaqmGY4LNwXsNsV2kMnuk7Kmfb-qzJ1HaJMUhfn6v7m7N_12HJJ34GdBYG2nHXYv3hEbj8iX7sG3XJ1-6GN9l-oZeuqDDrzrEPQcDdRiCz3pUVG-QN8DlvBSY4sl3GEJny6wxxL2WMIWSxiw9Of3lUURNijCAUUv0exgv_o6if2wjViQPEvitBSizMcFp3DmS65lxsE5T8RIUSYzTbQS4I6LJGeElkxrwTQH71BRonTBwRF6hTYW8G6vEdYJyyEKz3KZG7ZHyseJ1mQkiM7TRIlyG33u9qUWnoneDEQ5rx2HNqlhB2uzg9toJ0j-dOwra2Q-2a29V6D22nzzUMG36PENbt-hjeayVe_B9Wz4Bw-Ev4h-h3U |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+clone+scammers+in+Android+markets+using+IoT%E2%80%90based+edge+computing&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Ullah%2C+Farhan&rft.au=Naeem%2C+Hamad&rft.au=Naeem%2C+Muhammad+Rashid&rft.au=Jabbar%2C+Sohail&rft.date=2022-06-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3791&rft.externalDBID=10.1002%252Fett.3791&rft.externalDocID=ETT3791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |