Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals

Bismuth-doped luminescent materials have gained significant attention in recent years owing to their huge potential for applications in telecommunications, biomedicine, and displays. However, controlled synthesis of these materials, in particular for those luminescing in the near-infrared (NIR) regi...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 4; no. 40; pp. 9489 - 9498
Main Authors Liu, Bo-Mei, Yong, Zi-Jun, Zhou, Yang, Zhou, Dan-Dan, Zheng, Li-Rong, Li, Li-Na, Yu, Hui-Mei, Sun, Hong-Tao
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bismuth-doped luminescent materials have gained significant attention in recent years owing to their huge potential for applications in telecommunications, biomedicine, and displays. However, controlled synthesis of these materials, in particular for those luminescing in the near-infrared (NIR) region, remains a challenging subject of continuous research efforts. Herein, we show that low-temperature topotactic reduction using Al metal powder as an oxygen getter can be adopted as a powerful technique for the conversion of bismuth-doped red-emitting systems into their NIR-emitting cousins. Thorough experimental characterization indicates that the framework oxygen of the hosts can be topotactically extracted, thus producing unique metal–oxygen–metal crystalline networks in reduced phases while preserving the crystalline structure of the precursor. For the first time, based on detailed analyses of X-ray absorption data, we identified that a minority of Bi atoms occupy Ba 2+ sites, and most of the Bi atoms occupy the P 5+ and/or B 3+ sites in the as-synthesized Bi-doped BaBPO 5 . Subsequent topotactic treatment preferentially changes the local environment of Bi at the P 5+ /B 3+ sites, which results in the occurrence of NIR emission owing to the birth of NIR-luminescent, defective Bi–O polyhedra in which Bi bears lower oxidation states with respect to that in the precursor. The site-specific topotactic reduction reaction reported here helps us create peculiar NIR-luminescent Bi–O units, and simultaneously does not seriously affect the red photoluminescence of Bi 2+ situated at the Ba 2+ sites. Given that the long-lived, ultrawide NIR emission covers the second biological window, the phosphors developed here hold great promise for in vivo luminescence and lifetime bioimaging. We anticipate that this low-temperature topotactic reduction strategy can be applied to the development of more novel Bi-doped luminescent materials in various forms that can find a broad range of functional applications.
AbstractList Bismuth-doped luminescent materials have gained significant attention in recent years owing to their huge potential for applications in telecommunications, biomedicine, and displays. However, controlled synthesis of these materials, in particular for those luminescing in the near-infrared (NIR) region, remains a challenging subject of continuous research efforts. Herein, we show that low-temperature topotactic reduction using Al metal powder as an oxygen getter can be adopted as a powerful technique for the conversion of bismuth-doped red-emitting systems into their NIR-emitting cousins. Thorough experimental characterization indicates that the framework oxygen of the hosts can be topotactically extracted, thus producing unique metal–oxygen–metal crystalline networks in reduced phases while preserving the crystalline structure of the precursor. For the first time, based on detailed analyses of X-ray absorption data, we identified that a minority of Bi atoms occupy Ba 2+ sites, and most of the Bi atoms occupy the P 5+ and/or B 3+ sites in the as-synthesized Bi-doped BaBPO 5 . Subsequent topotactic treatment preferentially changes the local environment of Bi at the P 5+ /B 3+ sites, which results in the occurrence of NIR emission owing to the birth of NIR-luminescent, defective Bi–O polyhedra in which Bi bears lower oxidation states with respect to that in the precursor. The site-specific topotactic reduction reaction reported here helps us create peculiar NIR-luminescent Bi–O units, and simultaneously does not seriously affect the red photoluminescence of Bi 2+ situated at the Ba 2+ sites. Given that the long-lived, ultrawide NIR emission covers the second biological window, the phosphors developed here hold great promise for in vivo luminescence and lifetime bioimaging. We anticipate that this low-temperature topotactic reduction strategy can be applied to the development of more novel Bi-doped luminescent materials in various forms that can find a broad range of functional applications.
Bismuth-doped luminescent materials have gained significant attention in recent years owing to their huge potential for applications in telecommunications, biomedicine, and displays. However, controlled synthesis of these materials, in particular for those luminescing in the near-infrared (NIR) region, remains a challenging subject of continuous research efforts. Herein, we show that low-temperature topotactic reduction using Al metal powder as an oxygen getter can be adopted as a powerful technique for the conversion of bismuth-doped red-emitting systems into their NIR-emitting cousins. Thorough experimental characterization indicates that the framework oxygen of the hosts can be topotactically extracted, thus producing unique metal-oxygen-metal crystalline networks in reduced phases while preserving the crystalline structure of the precursor. For the first time, based on detailed analyses of X-ray absorption data, we identified that a minority of Bi atoms occupy Ba2+ sites, and most of the Bi atoms occupy the P5+ and/or B3+ sites in the as-synthesized Bi-doped BaBPO5. Subsequent topotactic treatment preferentially changes the local environment of Bi at the P5+/B3+ sites, which results in the occurrence of NIR emission owing to the birth of NIR-luminescent, defective Bi-O polyhedra in which Bi bears lower oxidation states with respect to that in the precursor. The site-specific topotactic reduction reaction reported here helps us create peculiar NIR-luminescent Bi-O units, and simultaneously does not seriously affect the red photoluminescence of Bi2+ situated at the Ba2+ sites. Given that the long-lived, ultrawide NIR emission covers the second biological window, the phosphors developed here hold great promise for in vivo luminescence and lifetime bioimaging. We anticipate that this low-temperature topotactic reduction strategy can be applied to the development of more novel Bi-doped luminescent materials in various forms that can find a broad range of functional applications.
Author Yu, Hui-Mei
Zhou, Dan-Dan
Zhou, Yang
Yong, Zi-Jun
Zheng, Li-Rong
Sun, Hong-Tao
Liu, Bo-Mei
Li, Li-Na
Author_xml – sequence: 1
  givenname: Bo-Mei
  surname: Liu
  fullname: Liu, Bo-Mei
  organization: College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123
– sequence: 2
  givenname: Zi-Jun
  surname: Yong
  fullname: Yong, Zi-Jun
  organization: College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123
– sequence: 3
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123
– sequence: 4
  givenname: Dan-Dan
  surname: Zhou
  fullname: Zhou, Dan-Dan
  organization: College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123
– sequence: 5
  givenname: Li-Rong
  surname: Zheng
  fullname: Zheng, Li-Rong
  organization: Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 6
  givenname: Li-Na
  surname: Li
  fullname: Li, Li-Na
  organization: Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
– sequence: 7
  givenname: Hui-Mei
  surname: Yu
  fullname: Yu, Hui-Mei
  organization: Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 8
  givenname: Hong-Tao
  surname: Sun
  fullname: Sun, Hong-Tao
  organization: College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123
BookMark eNptkE9LAzEQxYNUsNZe_AQ5irCabDa72aMsaoWCl3pesunERnaTmmSF-ulNrX9AHBhm4P3mwbxTNLHOAkLnlFxRwurrplw1hPG8WByhaU44ySrOisnPnpcnaB7CC0klaCnKeoreGw8yGmex09iC9Jmx2ksPa9yPg7EQFNiItxsXUvuAwcquT2q3w9FtXZQqGoUTP6pvm86EYYybbC-9yZjgJGcwmBiNfcbK70KUfThDxzoNmH_NGXq6u101i2z5eP_Q3CwzlZdFzDSrNFOdKJWQei2kqjpgnHaiBgaFplLW666mZcG05BWHmmqtOJO0ypXO0zZDFwffrXevI4TYDiZ91ffSghtDS0XBBckrmif08oAq70LwoNutN4P0u5aSdp9x-5txgskfWJn4mWX00vT_nXwAyIuD_g
CitedBy_id crossref_primary_10_1021_acs_jpcc_0c09128
crossref_primary_10_1002_adom_201700448
crossref_primary_10_1039_D3DT03244B
crossref_primary_10_1016_j_heliyon_2023_e23200
crossref_primary_10_1016_j_ceramint_2023_02_175
crossref_primary_10_1016_j_isci_2020_101578
crossref_primary_10_1039_D0QI01069C
crossref_primary_10_1002_ange_201813340
crossref_primary_10_1021_acs_chemmater_0c02814
crossref_primary_10_1039_D1CP01632F
crossref_primary_10_1364_OME_390069
crossref_primary_10_1021_acs_chemrev_1c00952
crossref_primary_10_1002_adom_202201827
crossref_primary_10_1016_j_cej_2020_127133
crossref_primary_10_1039_D3TC00762F
crossref_primary_10_1021_jacs_8b04763
crossref_primary_10_1016_j_xcrp_2022_101078
crossref_primary_10_1039_D3TC00457K
crossref_primary_10_1002_adom_202201466
crossref_primary_10_1016_j_jallcom_2021_158907
crossref_primary_10_1021_acs_chemmater_2c02138
crossref_primary_10_1021_acs_chemmater_1c01325
crossref_primary_10_3390_cryst10060522
crossref_primary_10_1016_j_ijleo_2017_08_033
crossref_primary_10_1002_anie_201813340
crossref_primary_10_1103_PhysRevB_107_085144
crossref_primary_10_1016_j_cej_2020_127640
crossref_primary_10_1063_5_0039952
Cites_doi 10.1002/adma.200900573
10.1038/nmat3302
10.1002/anie.201601191
10.1016/j.jssc.2007.08.012
10.1002/anie.201101432
10.1021/ic502486e
10.1107/S0909049500016964
10.1039/jm9940401349
10.1021/acs.chemmater.5b02374
10.1364/OE.17.021169
10.1364/OL.35.002215
10.1364/OL.36.000100
10.1016/j.jlumin.2015.10.036
10.1063/1.1575492
10.1016/0022-3697(94)90075-2
10.1021/ja991573i
10.1021/ja910103d
10.1038/nature06382
10.1007/s00340-012-5145-z
10.1021/ja207616c
10.1016/j.jssc.2010.06.017
10.1016/j.jlumin.2015.07.020
10.1021/ja309798e
10.1039/C6RA14389J
10.1021/cm9906811
10.1039/c3tc32177k
10.1039/c3tc30933a
10.1126/science.1068321
10.1016/j.pmatsci.2014.02.002
10.1002/anie.201403536
10.1039/c2dt31167d
10.1039/c1jm10164a
10.1016/S0022-2313(96)00166-4
10.1021/acs.jpclett.6b01147
10.1039/C5TC04333F
10.1016/S0022-2313(98)00010-6
10.1038/nchem.2370
10.1002/anie.200801146
10.1364/OL.33.002182
10.1002/smll.201001011
10.1039/C4TC02606C
10.1039/c2jm34101h
10.1016/j.jallcom.2015.11.176
10.1021/jp503453y
10.1006/jssc.1997.7588
10.1021/jp502996t
10.1016/j.jlumin.2014.01.049
10.1364/OME.2.000757
10.1143/JJAP.40.L279
10.1002/ange.201206203
10.1038/lsa.2012.12
10.1002/jrs.1253
10.1021/ja042683e
10.1021/jp401861c
10.1364/OE.21.015728
10.1246/cl.130581
10.1063/1.1667905
10.1021/ic101613b
10.1107/S0567739476001551
10.1021/ic400444u
10.1039/c2jm30251a
10.1016/j.jpcs.2008.07.003
10.1103/PhysRevB.22.1163
10.1002/anie.201504224
10.1021/ja211426b
10.1002/adma.201300531
10.1088/0268-1242/29/6/064010
ContentType Journal Article
DBID AAYXX
CITATION
7QF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/C6TC03524H
DatabaseName CrossRef
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 9498
ExternalDocumentID 10_1039_C6TC03524H
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7QF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c264t-f37f3cb86c8afd8ac7be351b89e3e4f1aa9db91643fa575e91ffc53a172cf2c53
ISSN 2050-7526
IngestDate Fri Jul 11 05:22:29 EDT 2025
Tue Jul 01 02:08:36 EDT 2025
Thu Apr 24 23:06:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c264t-f37f3cb86c8afd8ac7be351b89e3e4f1aa9db91643fa575e91ffc53a172cf2c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1845802712
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1845802712
crossref_primary_10_1039_C6TC03524H
crossref_citationtrail_10_1039_C6TC03524H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2016
References Zhang (C6TC03524H-(cit49)/*[position()=1]) 2013; 42
Romero (C6TC03524H-(cit42)/*[position()=1]) 2013; 135
Blasse (C6TC03524H-(cit23)/*[position()=1]) 1997; 72–74
Peng (C6TC03524H-(cit24b)/*[position()=1]) 2009; 17
Bridges (C6TC03524H-(cit31)/*[position()=1]) 2005; 127
Kageyama (C6TC03524H-(cit34)/*[position()=1]) 2008; 47
Romanov (C6TC03524H-(cit19)/*[position()=1]) 2015; 3
Liu (C6TC03524H-(cit21a)/*[position()=1]) 2016; 55
Dianov (C6TC03524H-(cit6b)/*[position()=1]) 2012; 1
Okhrimchuk (C6TC03524H-(cit8a)/*[position()=1]) 1998; 33
Behrh (C6TC03524H-(cit45b)/*[position()=1]) 2015; 54
Sun (C6TC03524H-(cit11b)/*[position()=1]) 2013; 117
Romero (C6TC03524H-(cit43)/*[position()=1]) 2014; 53
Hayward (C6TC03524H-(cit44)/*[position()=1]) 2014; 29
Cao (C6TC03524H-(cit25a)/*[position()=1]) 2016; 661
Seddon (C6TC03524H-(cit35)/*[position()=1]) 2010; 132
Sun (C6TC03524H-(cit15b)/*[position()=1]) 2012; 22
Romanov (C6TC03524H-(cit18)/*[position()=1]) 2014; 149
Newville (C6TC03524H-(cit50)/*[position()=1]) 2001; 8
Shannon (C6TC03524H-(cit51)/*[position()=1]) 1976; 32
Tassel (C6TC03524H-(cit41)/*[position()=1]) 2013; 52
Dixon (C6TC03524H-(cit36b)/*[position()=1]) 2011; 133
Hayward (C6TC03524H-(cit28)/*[position()=1]) 1999; 121
Sun (C6TC03524H-(cit15a)/*[position()=1]) 2012; 41
Xu (C6TC03524H-(cit7b)/*[position()=1]) 2014; 2
Hou (C6TC03524H-(cit45c)/*[position()=1]) 2013; 1
Srivastava (C6TC03524H-(cit24a)/*[position()=1]) 1998; 78
Kobayashi (C6TC03524H-(cit38)/*[position()=1]) 2012; 11
Thompson (C6TC03524H-(cit52)/*[position()=1]) 2010; 183
Sun (C6TC03524H-(cit7a)/*[position()=1]) 2010; 35
Yajima (C6TC03524H-(cit46a)/*[position()=1]) 2015; 7
Bouilly (C6TC03524H-(cit46b)/*[position()=1]) 2015; 27
Sun (C6TC03524H-(cit4)/*[position()=1]) 2014; 64
Yamamoto (C6TC03524H-(cit45a)/*[position()=1]) 2015; 54
Punn (C6TC03524H-(cit53)/*[position()=1]) 2008; 69
Blasse (C6TC03524H-(cit2)/*[position()=1]) 1994; 55
Cao (C6TC03524H-(cit25b)/*[position()=1]) 2012; 21
Zhou (C6TC03524H-(cit27)/*[position()=1]) 2016; 4
Hamstra (C6TC03524H-(cit22)/*[position()=1]) 1994; 4
Popovic (C6TC03524H-(cit48)/*[position()=1]) 2005; 36
Fujimoto (C6TC03524H-(cit6a)/*[position()=1]) 2003; 52
Fujimoto (C6TC03524H-(cit5)/*[position()=1]) 2001; 40
Veber (C6TC03524H-(cit17)/*[position()=1]) 2012; 108
Sun (C6TC03524H-(cit9)/*[position()=1]) 2009; 21
Boulon (C6TC03524H-(cit3)/*[position()=1]) 1980; 22
Su (C6TC03524H-(cit8b)/*[position()=1]) 2013; 2
de Jong (C6TC03524H-(cit26b)/*[position()=1]) 2014; 118
Sun (C6TC03524H-(cit13)/*[position()=1]) 2011; 21
Jeen (C6TC03524H-(cit39b)/*[position()=1]) 2013; 25
Zhang (C6TC03524H-(cit21b)/*[position()=1]) 2016; 6
Sun (C6TC03524H-(cit14)/*[position()=1]) 2012; 22
Zhou (C6TC03524H-(cit16a)/*[position()=1]) 2016; 7
Sun (C6TC03524H-(cit12)/*[position()=1]) 2011; 36
Helps (C6TC03524H-(cit36a)/*[position()=1]) 2010; 49
Hayward (C6TC03524H-(cit30)/*[position()=1]) 2002; 295
Blasse (C6TC03524H-(cit1)/*[position()=1]) 1968; 48
de Jong (C6TC03524H-(cit26a)/*[position()=1]) 2014; 118
Shi (C6TC03524H-(cit47)/*[position()=1]) 1998; 135
Arévalo-López (C6TC03524H-(cit39a)/*[position()=1]) 2012; 124
Zhou (C6TC03524H-(cit16b)/*[position()=1]) 2016; 4
Romanov (C6TC03524H-(cit20)/*[position()=1]) 2015; 167
de Jong (C6TC03524H-(cit26c)/*[position()=1]) 2016; 170
Hayward (C6TC03524H-(cit29)/*[position()=1]) 2000; 12
O'Malley (C6TC03524H-(cit33)/*[position()=1]) 2007; 180
Sun (C6TC03524H-(cit11a)/*[position()=1]) 2012; 134
Sun (C6TC03524H-(cit10)/*[position()=1]) 2011; 7
Tsujimoto (C6TC03524H-(cit32)/*[position()=1]) 2007; 450
Tominaka (C6TC03524H-(cit37)/*[position()=1]) 2011; 50
Yamamoto (C6TC03524H-(cit40)/*[position()=1]) 2013; 42
References_xml – volume: 21
  start-page: 3694
  year: 2009
  ident: C6TC03524H-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900573
– volume: 11
  start-page: 507
  year: 2012
  ident: C6TC03524H-(cit38)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3302
– volume: 55
  start-page: 4967
  year: 2016
  ident: C6TC03524H-(cit21a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601191
– volume: 180
  start-page: 2851
  year: 2007
  ident: C6TC03524H-(cit33)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2007.08.012
– volume: 50
  start-page: 7418
  year: 2011
  ident: C6TC03524H-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101432
– volume: 54
  start-page: 1501
  year: 2015
  ident: C6TC03524H-(cit45a)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic502486e
– volume: 8
  start-page: 322
  year: 2001
  ident: C6TC03524H-(cit50)/*[position()=1]
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049500016964
– volume: 4
  start-page: 1349
  year: 1994
  ident: C6TC03524H-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/jm9940401349
– volume: 27
  start-page: 6354
  year: 2015
  ident: C6TC03524H-(cit46b)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02374
– volume: 17
  start-page: 21169
  year: 2009
  ident: C6TC03524H-(cit24b)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.17.021169
– volume: 42
  start-page: 553
  year: 2013
  ident: C6TC03524H-(cit49)/*[position()=1]
  publication-title: J. Synth. Cryst.
– volume: 35
  start-page: 2215
  year: 2010
  ident: C6TC03524H-(cit7a)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.002215
– volume: 36
  start-page: 100
  year: 2011
  ident: C6TC03524H-(cit12)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.000100
– volume: 170
  start-page: 240
  year: 2016
  ident: C6TC03524H-(cit26c)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2015.10.036
– volume: 52
  start-page: 3325
  year: 2003
  ident: C6TC03524H-(cit6a)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1575492
– volume: 55
  start-page: 171
  year: 1994
  ident: C6TC03524H-(cit2)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(94)90075-2
– volume: 121
  start-page: 8843
  year: 1999
  ident: C6TC03524H-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991573i
– volume: 132
  start-page: 2802
  year: 2010
  ident: C6TC03524H-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910103d
– volume: 450
  start-page: 1062
  year: 2007
  ident: C6TC03524H-(cit32)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06382
– volume: 108
  start-page: 733
  year: 2012
  ident: C6TC03524H-(cit17)/*[position()=1]
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-012-5145-z
– volume: 133
  start-page: 18397
  year: 2011
  ident: C6TC03524H-(cit36b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207616c
– volume: 183
  start-page: 1985
  year: 2010
  ident: C6TC03524H-(cit52)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2010.06.017
– volume: 167
  start-page: 371
  year: 2015
  ident: C6TC03524H-(cit20)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2015.07.020
– volume: 135
  start-page: 1838
  year: 2013
  ident: C6TC03524H-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309798e
– volume: 6
  start-page: 78396
  year: 2016
  ident: C6TC03524H-(cit21b)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA14389J
– volume: 12
  start-page: 2182
  year: 2000
  ident: C6TC03524H-(cit29)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm9906811
– volume: 2
  start-page: 2482
  year: 2014
  ident: C6TC03524H-(cit7b)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc32177k
– volume: 1
  start-page: 5892
  year: 2013
  ident: C6TC03524H-(cit45c)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc30933a
– volume: 295
  start-page: 1882
  year: 2002
  ident: C6TC03524H-(cit30)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1068321
– volume: 64
  start-page: 1
  year: 2014
  ident: C6TC03524H-(cit4)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2014.02.002
– volume: 53
  start-page: 7556
  year: 2014
  ident: C6TC03524H-(cit43)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201403536
– volume: 41
  start-page: 11055
  year: 2012
  ident: C6TC03524H-(cit15a)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt31167d
– volume: 21
  start-page: 4060
  year: 2011
  ident: C6TC03524H-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10164a
– volume: 72–74
  start-page: 129
  year: 1997
  ident: C6TC03524H-(cit23)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(96)00166-4
– volume: 7
  start-page: 2735
  year: 2016
  ident: C6TC03524H-(cit16a)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01147
– volume: 4
  start-page: 2295
  year: 2016
  ident: C6TC03524H-(cit16b)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04333F
– volume: 78
  start-page: 239
  year: 1998
  ident: C6TC03524H-(cit24a)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(98)00010-6
– volume: 7
  start-page: 1017
  year: 2015
  ident: C6TC03524H-(cit46a)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2370
– volume: 47
  start-page: 5740
  year: 2008
  ident: C6TC03524H-(cit34)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801146
– volume: 33
  start-page: 2182
  year: 1998
  ident: C6TC03524H-(cit8a)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.33.002182
– volume: 7
  start-page: 199
  year: 2011
  ident: C6TC03524H-(cit10)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201001011
– volume: 3
  start-page: 3592
  year: 2015
  ident: C6TC03524H-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02606C
– volume: 22
  start-page: 20175
  year: 2012
  ident: C6TC03524H-(cit15b)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34101h
– volume: 661
  start-page: 77
  year: 2016
  ident: C6TC03524H-(cit25a)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.11.176
– volume: 4
  start-page: 4899
  year: 2016
  ident: C6TC03524H-(cit27)/*[position()=1]
  publication-title: J. Mater. Chem.
– volume: 118
  start-page: 17932
  year: 2014
  ident: C6TC03524H-(cit26b)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503453y
– volume: 135
  start-page: 43
  year: 1998
  ident: C6TC03524H-(cit47)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1997.7588
– volume: 118
  start-page: 9696
  year: 2014
  ident: C6TC03524H-(cit26a)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp502996t
– volume: 149
  start-page: 292
  year: 2014
  ident: C6TC03524H-(cit18)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2014.01.049
– volume: 2
  start-page: 757
  year: 2013
  ident: C6TC03524H-(cit8b)/*[position()=1]
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.000757
– volume: 40
  start-page: L279
  year: 2001
  ident: C6TC03524H-(cit5)/*[position()=1]
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.40.L279
– volume: 124
  start-page: 10949
  year: 2012
  ident: C6TC03524H-(cit39a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201206203
– volume: 1
  start-page: e12
  year: 2012
  ident: C6TC03524H-(cit6b)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2012.12
– volume: 36
  start-page: 2
  year: 2005
  ident: C6TC03524H-(cit48)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1253
– volume: 127
  start-page: 5996
  year: 2005
  ident: C6TC03524H-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042683e
– volume: 117
  start-page: 6399
  year: 2013
  ident: C6TC03524H-(cit11b)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp401861c
– volume: 21
  start-page: 15728
  year: 2012
  ident: C6TC03524H-(cit25b)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.21.015728
– volume: 42
  start-page: 946
  year: 2013
  ident: C6TC03524H-(cit40)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.130581
– volume: 48
  start-page: 217
  year: 1968
  ident: C6TC03524H-(cit1)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1667905
– volume: 49
  start-page: 11062
  year: 2010
  ident: C6TC03524H-(cit36a)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101613b
– volume: 32
  start-page: 751
  year: 1976
  ident: C6TC03524H-(cit51)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
  doi: 10.1107/S0567739476001551
– volume: 52
  start-page: 6096
  year: 2013
  ident: C6TC03524H-(cit41)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic400444u
– volume: 22
  start-page: 12837
  year: 2012
  ident: C6TC03524H-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30251a
– volume: 69
  start-page: 2687
  year: 2008
  ident: C6TC03524H-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2008.07.003
– volume: 22
  start-page: 1163
  year: 1980
  ident: C6TC03524H-(cit3)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.22.1163
– volume: 54
  start-page: 11501
  year: 2015
  ident: C6TC03524H-(cit45b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504224
– volume: 134
  start-page: 2918
  year: 2012
  ident: C6TC03524H-(cit11a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211426b
– volume: 25
  start-page: 3651
  year: 2013
  ident: C6TC03524H-(cit39b)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300531
– volume: 29
  start-page: 064010
  year: 2014
  ident: C6TC03524H-(cit44)/*[position()=1]
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/6/064010
SSID ssj0000816869
Score 2.2368457
Snippet Bismuth-doped luminescent materials have gained significant attention in recent years owing to their huge potential for applications in telecommunications,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 9489
SubjectTerms Atomic absorption analysis
Crystal structure
Emission
Oxygen
Phosphors
Polyhedrons
Precursors
Reduction
Title Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals
URI https://www.proquest.com/docview/1845802712
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZymB7GFu30a7b0NheRlAX2fJFjyVLyUravTiQ9cXIskwCbRxiu9D-rP3CHcmy49AOuj3EGEkcEp_PR59OzgWhL0mgmCd4SASjKWFCSCJ4QImQwJE4Y6nHdYLz-YU_mbGzuTfv9X53opaqMjmWdw_mlfyPVmEM9KqzZP9Bs61QGIB70C9cQcNwfZSORx3GtwLIEhC6MRHlYHJ0PLsOvRysF3kBn00xUCZRylLOdV6aBKnBRldvbcQky-K6KhdET90ITUdhmqjrZR0fLTe3QCevir9wWqC_9e8eyKaR3PFgVOcENTM6rjFfl22Vgk4jnlQZu9UGCS0rA7-cnKvl1jzV1ulySc6qFtmXi9ys_SXsTtwZA2CT7_YlsP4N2vVvGDPoDL0hCTzHFszujlk3qLXjrAPXugSUNcqc1V2K7AbPWd33-t7mMXR17VXpl1IXiWWL7RbZhAVc_IxPZ9NpHI3n0RO058DRxOmjvZNx9GPaevZMKxPTS7H96k1dXJd_24rfZUK7RMCwm-glemFViE9qjL1CPbXaR887xSr30VMTLCyL1-iuwR3OM7yDO9zBHW5xhy3ucHKLt7jDLe60mHu4w13c4QZ3b9DsdByNJsT28CASqHZJMjfIXJmEvgxFloZCBolyPZqEXLmKZVQIniZwRGFuJuDkoDjNMum5Ani1zBy4e4v6q3ylDhAWSZA4jtJ-twCO9UoIQbNhKkIV-pSm_iH62jzPWNoC97rPylVsAi1cHo_8aGSe_eQQfW7XruuyLg-u-tSoJYZ3Rv-VJlYqr4qYhswLh05AnXePWHOEnm2R_R71y02lPgCXLZOPFjx_ANi6qjw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creation+of+near-infrared+luminescent+phosphors+enabled+by+topotactic+reduction+of+bismuth-activated+red-emitting+crystals&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Liu%2C+Bo-Mei&rft.au=Yong%2C+Zi-Jun&rft.au=Zhou%2C+Yang&rft.au=Zhou%2C+Dan-Dan&rft.date=2016-01-01&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=4&rft.issue=40&rft.spage=9489&rft.epage=9498&rft_id=info:doi/10.1039%2Fc6tc03524h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon