Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells
Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni x Fe 1−x S 2 ) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 5; no. 20; pp. 4996 - 5004 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni
x
Fe
1−x
S
2
) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and elemental sulfur (S) as a sulfur source. As Ni is incorporated into the iron pyrite (FeS
2
) NCs, the X-ray diffraction (XRD) peaks shift towards lower diffraction angles indicating higher lattice constants of the alloyed NCs in accord with Vegard's law. Scherrer-analysis and scanning electron microscopy (SEM) imaging indicate that the average particle sizes of alloyed NCs are smaller compared to pure FeS
2
NCs. In UV-Vis-NIR spectra, the alloyed NCs have higher absorbance in the infrared (IR) region than pure FeS
2
NCs indicating Ni-alloyed NCs have higher densities of mid-band gap defect states. Based on thermal probe and Hall-effect measurements, the majority charge carriers in these alloyed NCs depend upon the material composition. Pure iron pyrite (FeS
2
) and Ni
0.1
Fe
0.9
S
2
NCs show p-type conductivity while Ni
0.2
Fe
0.8
S
2
and higher Ni concentration alloys exhibit n-type conductivity. Application of these alloyed NC thin films as the hole transport layer for CdTe solar cells revealed that Ni
0.05
Fe
0.95
S
2
NCs perform best with the average increase in efficiency of ∼5%, with the best cell performing up to 8% better than the laboratory standard copper/gold (Cu/Au) cell. |
---|---|
AbstractList | Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni
x
Fe
1−x
S
2
) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and elemental sulfur (S) as a sulfur source. As Ni is incorporated into the iron pyrite (FeS
2
) NCs, the X-ray diffraction (XRD) peaks shift towards lower diffraction angles indicating higher lattice constants of the alloyed NCs in accord with Vegard's law. Scherrer-analysis and scanning electron microscopy (SEM) imaging indicate that the average particle sizes of alloyed NCs are smaller compared to pure FeS
2
NCs. In UV-Vis-NIR spectra, the alloyed NCs have higher absorbance in the infrared (IR) region than pure FeS
2
NCs indicating Ni-alloyed NCs have higher densities of mid-band gap defect states. Based on thermal probe and Hall-effect measurements, the majority charge carriers in these alloyed NCs depend upon the material composition. Pure iron pyrite (FeS
2
) and Ni
0.1
Fe
0.9
S
2
NCs show p-type conductivity while Ni
0.2
Fe
0.8
S
2
and higher Ni concentration alloys exhibit n-type conductivity. Application of these alloyed NC thin films as the hole transport layer for CdTe solar cells revealed that Ni
0.05
Fe
0.95
S
2
NCs perform best with the average increase in efficiency of ∼5%, with the best cell performing up to 8% better than the laboratory standard copper/gold (Cu/Au) cell. Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (NixFe1-xS2) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and elemental sulfur (S) as a sulfur source. As Ni is incorporated into the iron pyrite (FeS2) NCs, the X-ray diffraction (XRD) peaks shift towards lower diffraction angles indicating higher lattice constants of the alloyed NCs in accord with Vegard's law. Scherrer-analysis and scanning electron microscopy (SEM) imaging indicate that the average particle sizes of alloyed NCs are smaller compared to pure FeS2 NCs. In UV-Vis-NIR spectra, the alloyed NCs have higher absorbance in the infrared (IR) region than pure FeS2 NCs indicating Ni-alloyed NCs have higher densities of mid-band gap defect states. Based on thermal probe and Hall-effect measurements, the majority charge carriers in these alloyed NCs depend upon the material composition. Pure iron pyrite (FeS2) and Ni0.1Fe0.9S2 NCs show p-type conductivity while Ni0.2Fe0.8S2 and higher Ni concentration alloys exhibit n-type conductivity. Application of these alloyed NC thin films as the hole transport layer for CdTe solar cells revealed that Ni0.05Fe0.95S2 NCs perform best with the average increase in efficiency of similar to 5%, with the best cell performing up to 8% better than the laboratory standard copper/gold (Cu/Au) cell. |
Author | Bhandari, Khagendra P. Bastola, Ebin Ellingson, Randy J. |
Author_xml | – sequence: 1 givenname: Ebin orcidid: 0000-0002-4194-3385 surname: Bastola fullname: Bastola, Ebin organization: Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 – sequence: 2 givenname: Khagendra P. surname: Bhandari fullname: Bhandari, Khagendra P. organization: Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 – sequence: 3 givenname: Randy J. surname: Ellingson fullname: Ellingson, Randy J. organization: Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 |
BookMark | eNptUctKxTAQDaLg6278gixFqObVtF3KxRcIbnRd4jThRtOkJumi_-LHmquiIM5m5jBnDjNzDtGuD14jdELJOSW8u1g3j2tCOtHe7qADRmpSNTUXuz81k_toldILKdFS2cruAL1fTpOzoLINHgeDIYxTSPYTQvA5Buf0gL2FV-0q5VxYCrSxtNPsjB00npZos8Ze-QBxSVk5nDfWY2PdmLBKBWm8CU7jHJVPU4gZO7XoiAsJ1DDaecRZOzfHrVwKTkUMBadjtGeUS3r1nY_Q0_XV4_q2un-4uVtf3lfApMgVdAMF1VLBa8EbQYVsmGmGZyJNS1vG6qbpKCOgFKFgGAdOKch2EPyZwNAafoROv3SnGN5mnXI_2rTdQHkd5tTTjtacSSJkoZIvKsSQUtSmB5s_v1eOs66npN960f96UUbO_oxM0Y4qLv-RPwCp9Y7b |
CitedBy_id | crossref_primary_10_1021_acsaelm_2c00489 crossref_primary_10_1016_j_ceramint_2022_01_045 crossref_primary_10_1016_j_physe_2019_113688 crossref_primary_10_1557_mrc_2018_117 crossref_primary_10_1016_j_jcis_2022_09_129 crossref_primary_10_1557_adv_2018_349 crossref_primary_10_1016_j_ceramint_2018_05_091 crossref_primary_10_1002_slct_201800405 crossref_primary_10_1016_j_jmrt_2022_01_166 crossref_primary_10_1039_D0MA00394H crossref_primary_10_3390_coatings12050589 crossref_primary_10_1021_acsaem_3c00947 crossref_primary_10_1002_jccs_202400015 crossref_primary_10_1063_1_5084778 crossref_primary_10_1016_j_solidstatesciences_2021_106722 crossref_primary_10_1002_ente_202000429 crossref_primary_10_1016_j_ceramint_2021_07_280 crossref_primary_10_1016_j_solener_2019_04_082 crossref_primary_10_1016_j_solmat_2018_06_025 crossref_primary_10_1134_S1063774520060188 crossref_primary_10_1016_j_mseb_2018_11_003 crossref_primary_10_1002_ese3_843 crossref_primary_10_1007_s10876_019_01708_3 crossref_primary_10_1557_jmr_2019_363 |
Cites_doi | 10.1016/S1387-7003(99)00154-9 10.1107/S0021889878012844 10.1016/j.jmmm.2015.08.012 10.1039/b900444k 10.1002/adma.200401216 10.1149/1.1391596 10.1039/C6RA06351A 10.1021/jp506288w 10.1021/nn305833u 10.1016/S0254-0584(00)00269-8 10.1063/1.4706558 10.1002/slct.201601378 10.1039/c3ra46248j 10.1016/j.jcrysgro.2005.09.062 10.1016/S0927-0248(02)00344-6 10.1021/ja3053464 10.1016/j.jallcom.2014.11.217 10.1038/srep03577 10.1016/0927-0248(93)90095-K 10.1080/00018737200101278 10.1039/C1JM13879K 10.1039/c2cs35310e 10.1088/0022-3727/16/12/011 10.1039/c2nr31193c 10.1103/PhysRevB.84.245211 10.2298/FUEE1303187A 10.1063/1.349377 10.1016/j.solmat.2015.03.032 10.1007/s00339-016-0117-5 10.1098/rspa.1913.0040 10.1039/C4NR01196A 10.1016/j.solmat.2017.01.044 10.1039/c3ta11039g 10.1039/C4TA06320A 10.1021/ja0484505 10.1016/S0040-6090(97)00121-1 10.1016/j.jcrysgro.2004.07.017 10.1039/C4NJ01461H 10.1039/C5TC03275J 10.1021/ja1096368 10.1021/acs.jpcc.5b11204 10.1039/C3CC49175G 10.1002/anie.201601757 10.1007/BF01349680 10.1016/0038-1098(77)90967-X 10.1039/C5TA00028A 10.1063/1.92863 10.1007/s12274-015-0965-x 10.1039/c3ee43169j |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/C7TC00948H |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 5004 |
ExternalDocumentID | 10_1039_C7TC00948H |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c264t-c9d1ca81435437414672f7db06f818225779120caa01cf23c311c68d43b0cd8f3 |
ISSN | 2050-7526 |
IngestDate | Fri Jul 11 01:32:54 EDT 2025 Tue Jul 01 02:08:40 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c264t-c9d1ca81435437414672f7db06f818225779120caa01cf23c311c68d43b0cd8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4194-3385 |
PQID | 1915326046 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1915326046 crossref_citationtrail_10_1039_C7TC00948H crossref_primary_10_1039_C7TC00948H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2017 |
References | Ferrer (C7TC00948H-(cit27)/*[position()=1]) 1991; 70 Bhandari (C7TC00948H-(cit55)/*[position()=1]) 2017; 163 Bhandari (C7TC00948H-(cit35)/*[position()=1]) 2015; 140 Büker (C7TC00948H-(cit13)/*[position()=1]) 1999; 146 Xiao (C7TC00948H-(cit12)/*[position()=1]) 2015; 629 Ennaoui (C7TC00948H-(cit4)/*[position()=1]) 1993; 29 Bragg (C7TC00948H-(cit42)/*[position()=1]) 1913; 88 Ferrer (C7TC00948H-(cit48)/*[position()=1]) 2003; 76 Freeouf (C7TC00948H-(cit53)/*[position()=1]) 1981; 39 Khalid (C7TC00948H-(cit23)/*[position()=1]) 2015; 3 Pang (C7TC00948H-(cit16)/*[position()=1]) 2014; 4 Bronold (C7TC00948H-(cit20)/*[position()=1]) 1997; 304 Bhandari (C7TC00948H-(cit33)/*[position()=1]) 2015; 3 Faber (C7TC00948H-(cit18)/*[position()=1]) 2014; 118 Mao (C7TC00948H-(cit10)/*[position()=1]) 2013; 1 Yang (C7TC00948H-(cit31)/*[position()=1]) 2009; 11 Huckaba (C7TC00948H-(cit36)/*[position()=1]) 2016; 1 Liu (C7TC00948H-(cit5)/*[position()=1]) 2015; 3 Clark (C7TC00948H-(cit50)/*[position()=1]) 2016; 400 Langford (C7TC00948H-(cit44)/*[position()=1]) 1978; 11 Puthussery (C7TC00948H-(cit32)/*[position()=1]) 2011; 133 Suzuki (C7TC00948H-(cit45)/*[position()=1]) 1977; 23 Sun (C7TC00948H-(cit11)/*[position()=1]) 2011; 84 Ferrer (C7TC00948H-(cit26)/*[position()=1]) 1995; 7 Cabán-Acevedo (C7TC00948H-(cit1)/*[position()=1]) 2013; 7 Gong (C7TC00948H-(cit19)/*[position()=1]) 2016; 9 Hu (C7TC00948H-(cit29)/*[position()=1]) 1999; 2 Petruck (C7TC00948H-(cit39)/*[position()=1]) 1969; 9 Janik (C7TC00948H-(cit51)/*[position()=1]) 1983; 16 Chate (C7TC00948H-(cit49)/*[position()=1]) 2016; 122 Rajes (C7TC00948H-(cit28)/*[position()=1]) 2013; 3 Calió (C7TC00948H-(cit37)/*[position()=1]) 2016; 55 Lehner (C7TC00948H-(cit24)/*[position()=1]) 2006; 286 Wang (C7TC00948H-(cit38)/*[position()=1]) 2014; 50 Limpinsel (C7TC00948H-(cit2)/*[position()=1]) 2014; 7 Corwine (C7TC00948H-(cit52)/*[position()=1]) 2004; 82 Vegard (C7TC00948H-(cit43)/*[position()=1]) 1921; 5 Axelevitch (C7TC00948H-(cit46)/*[position()=1]) 2013; 26 Liu (C7TC00948H-(cit40)/*[position()=1]) 2014; 6 Gudelli (C7TC00948H-(cit8)/*[position()=1]) 2014; 4 Bastola (C7TC00948H-(cit34)/*[position()=1]) 2016; 6 Lai (C7TC00948H-(cit17)/*[position()=1]) 2012; 22 Wilson (C7TC00948H-(cit15)/*[position()=1]) 1972; 21 Anuar (C7TC00948H-(cit25)/*[position()=1]) 2010; 15 de Boer (C7TC00948H-(cit54)/*[position()=1]) 2005; 17 Hu (C7TC00948H-(cit9)/*[position()=1]) 2012; 134 Khalid (C7TC00948H-(cit22)/*[position()=1]) 2015; 39 Liang (C7TC00948H-(cit7)/*[position()=1]) 2012; 4 Xuefeng (C7TC00948H-(cit30)/*[position()=1]) 2000; 66 Ho (C7TC00948H-(cit21)/*[position()=1]) 2004; 270 Zhang (C7TC00948H-(cit41)/*[position()=1]) 2004; 126 Lehner (C7TC00948H-(cit47)/*[position()=1]) 2012; 111 Kinner (C7TC00948H-(cit14)/*[position()=1]) 2016; 120 Wadia (C7TC00948H-(cit3)/*[position()=1]) 2009; 43 Gao (C7TC00948H-(cit6)/*[position()=1]) 2013; 42 |
References_xml | – volume: 2 start-page: 569 year: 1999 ident: C7TC00948H-(cit29)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/S1387-7003(99)00154-9 – volume: 11 start-page: 102 year: 1978 ident: C7TC00948H-(cit44)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889878012844 – volume: 400 start-page: 56 year: 2016 ident: C7TC00948H-(cit50)/*[position()=1] publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.08.012 – volume: 11 start-page: 1383 year: 2009 ident: C7TC00948H-(cit31)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/b900444k – volume: 17 start-page: 621 year: 2005 ident: C7TC00948H-(cit54)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200401216 – volume: 146 start-page: 261 year: 1999 ident: C7TC00948H-(cit13)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1391596 – volume: 6 start-page: 69708 year: 2016 ident: C7TC00948H-(cit34)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA06351A – volume: 118 start-page: 21347 year: 2014 ident: C7TC00948H-(cit18)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp506288w – volume: 7 start-page: 1731 year: 2013 ident: C7TC00948H-(cit1)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn305833u – volume: 66 start-page: 97 year: 2000 ident: C7TC00948H-(cit30)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(00)00269-8 – volume: 111 start-page: 083717 year: 2012 ident: C7TC00948H-(cit47)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4706558 – volume: 1 start-page: 5316 year: 2016 ident: C7TC00948H-(cit36)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201601378 – volume: 4 start-page: 9424 year: 2014 ident: C7TC00948H-(cit8)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c3ra46248j – volume: 286 start-page: 306 year: 2006 ident: C7TC00948H-(cit24)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.09.062 – volume: 76 start-page: 183 year: 2003 ident: C7TC00948H-(cit48)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(02)00344-6 – volume: 134 start-page: 13216 year: 2012 ident: C7TC00948H-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3053464 – volume: 629 start-page: 43 year: 2015 ident: C7TC00948H-(cit12)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.11.217 – volume: 4 start-page: 3577 year: 2014 ident: C7TC00948H-(cit16)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03577 – volume: 29 start-page: 289 year: 1993 ident: C7TC00948H-(cit4)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(93)90095-K – volume: 21 start-page: 143 year: 1972 ident: C7TC00948H-(cit15)/*[position()=1] publication-title: Adv. Phys. doi: 10.1080/00018737200101278 – volume: 22 start-page: 19 year: 2012 ident: C7TC00948H-(cit17)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/C1JM13879K – volume: 15 start-page: 62 year: 2010 ident: C7TC00948H-(cit25)/*[position()=1] publication-title: Thammasat Int. J. Sci. Technol. – volume: 82 start-page: 481 year: 2004 ident: C7TC00948H-(cit52)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells – volume: 42 start-page: 2986 year: 2013 ident: C7TC00948H-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35310e – volume: 16 start-page: 2333 year: 1983 ident: C7TC00948H-(cit51)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/16/12/011 – volume: 4 start-page: 6265 year: 2012 ident: C7TC00948H-(cit7)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31193c – volume: 84 start-page: 245211 year: 2011 ident: C7TC00948H-(cit11)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.245211 – volume: 26 start-page: 187 year: 2013 ident: C7TC00948H-(cit46)/*[position()=1] publication-title: Facta universitatis-series: Electronics and Energetics doi: 10.2298/FUEE1303187A – volume: 70 start-page: 2641 year: 1991 ident: C7TC00948H-(cit27)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.349377 – volume: 140 start-page: 108 year: 2015 ident: C7TC00948H-(cit35)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.03.032 – volume: 7 start-page: 2115 year: 1995 ident: C7TC00948H-(cit26)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 122 start-page: 1 year: 2016 ident: C7TC00948H-(cit49)/*[position()=1] publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-016-0117-5 – volume: 88 start-page: 428 year: 1913 ident: C7TC00948H-(cit42)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1913.0040 – volume: 6 start-page: 8935 year: 2014 ident: C7TC00948H-(cit40)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR01196A – volume: 163 start-page: 277 year: 2017 ident: C7TC00948H-(cit55)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.01.044 – volume: 1 start-page: 12060 year: 2013 ident: C7TC00948H-(cit10)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11039g – volume: 3 start-page: 6853 year: 2015 ident: C7TC00948H-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06320A – volume: 126 start-page: 8116 year: 2004 ident: C7TC00948H-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0484505 – volume: 43 start-page: 2072 year: 2009 ident: C7TC00948H-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. – volume: 304 start-page: 178 year: 1997 ident: C7TC00948H-(cit20)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00121-1 – volume: 270 start-page: 535 year: 2004 ident: C7TC00948H-(cit21)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.07.017 – volume: 39 start-page: 1013 year: 2015 ident: C7TC00948H-(cit22)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C4NJ01461H – volume: 3 start-page: 12068 year: 2015 ident: C7TC00948H-(cit23)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC03275J – volume: 133 start-page: 716 year: 2011 ident: C7TC00948H-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1096368 – volume: 120 start-page: 5706 year: 2016 ident: C7TC00948H-(cit14)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11204 – volume: 50 start-page: 2618 year: 2014 ident: C7TC00948H-(cit38)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC49175G – volume: 55 start-page: 14522 year: 2016 ident: C7TC00948H-(cit37)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601757 – volume: 5 start-page: 17 year: 1921 ident: C7TC00948H-(cit43)/*[position()=1] publication-title: Z. Phys. doi: 10.1007/BF01349680 – volume: 23 start-page: 847 year: 1977 ident: C7TC00948H-(cit45)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/0038-1098(77)90967-X – volume: 9 start-page: 597 year: 1969 ident: C7TC00948H-(cit39)/*[position()=1] publication-title: Can. Mineral. – volume: 3 start-page: 6315 year: 2015 ident: C7TC00948H-(cit5)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00028A – volume: 39 start-page: 727 year: 1981 ident: C7TC00948H-(cit53)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.92863 – volume: 9 start-page: 28 year: 2016 ident: C7TC00948H-(cit19)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-015-0965-x – volume: 3 start-page: 25 year: 2013 ident: C7TC00948H-(cit28)/*[position()=1] publication-title: Rep. Electrochem. – volume: 7 start-page: 1974 year: 2014 ident: C7TC00948H-(cit2)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43169j |
SSID | ssj0000816869 |
Score | 2.2800763 |
Snippet | Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni
x
Fe
1−x
S
2
)... Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (NixFe1-xS2) pyrite... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 4996 |
SubjectTerms | Cadmium tellurides Copper Iron Nickel Photovoltaic cells Pyrite Scanning electron microscopy Solar cells Synthesis (chemistry) |
Title | Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells |
URI | https://www.proquest.com/docview/1915326046 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKrpDggGABsbxkBBcUpTiPOsmxVEVlBYhDV9pb5TjOtlKbVk16KL9lf-H-CmbsPFx2kRYuUeO4lpL57Pk8ngchHwTzleChcpmSHppupJuknLueEEL5WSRZiLHD33_wyXl4djG46PWuLa-lXZX25a9b40r-R6rQBnLFKNl_kGw7KDTAb5AvXEHCcL2TjIfd6XPjHl77YDUu6Es83V_ATF26eMK-h1uMa0On9HyRKWez3wLndApRrOV2X2JkZDVfFJiuaVViDRrkpVhCF2tJmCzozlIATUc7iRTZarFbORiIstvicCVulB08DCj_wnqBIJsv48im1FzfGZmooeYJej6uN1Wbx8Aq1ZMpvbJ19lfgrkvNf8fposX557m2jxhHhTmsmEW2Fc7Pvu2oUlw2qQWg794569v2DxPoaRZInw2YGw38OpW23VYbSOsVfmAB2WfWcg3bPW6p_gEzpZBvqBUWYFbWUYTHMEkYTzrl2TgM_KFTW09HfcYfJLPuv_fIsQ9bGlAix8Px9Ou31iKoS6DoGoztizX5dIPkUzfAIYM6JBCaFU0fk0e1YOnQYPMJ6anihDy0klyekPvayViWT8mVhVe6zqmFV9rhlR7ilSJeaY1XavBKLbxSxCvVeKWihDtFEa-0xSvVeKXQqcYrbfFKNV6pxuszcv5lPB1N3Lo6iCuBxFeuTDJPihj5fhgALwaN7-dRljKeAwkFNRVFieczKQTzZO4HMvA8yeMsDFImszgPnpOjYl2oF4RGCY9ylXHYCgGhFmkqc5VDlxy4cJzz-JR8bL74TNap87GCy3J2U7yn5H3bd2MSxtza610juBnMNXxPUaj1rpx5CXAQn7OQv7zTSK_IA5wVxir4mhxV2516Azy5St_WAPsNkGrJbA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+composition+controlled+nickel-alloyed+iron+sulfide+pyrite+nanocrystal+thin+films+as+the+hole+transport+layer+in+cadmium+telluride+solar+cells&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Bastola%2C+Ebin&rft.au=Bhandari%2C+Khagendra+P.&rft.au=Ellingson%2C+Randy+J.&rft.date=2017&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=5&rft.issue=20&rft.spage=4996&rft.epage=5004&rft_id=info:doi/10.1039%2FC7TC00948H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TC00948H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |