Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells

Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni x Fe 1−x S 2 ) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 5; no. 20; pp. 4996 - 5004
Main Authors Bastola, Ebin, Bhandari, Khagendra P., Ellingson, Randy J.
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni x Fe 1−x S 2 ) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and elemental sulfur (S) as a sulfur source. As Ni is incorporated into the iron pyrite (FeS 2 ) NCs, the X-ray diffraction (XRD) peaks shift towards lower diffraction angles indicating higher lattice constants of the alloyed NCs in accord with Vegard's law. Scherrer-analysis and scanning electron microscopy (SEM) imaging indicate that the average particle sizes of alloyed NCs are smaller compared to pure FeS 2 NCs. In UV-Vis-NIR spectra, the alloyed NCs have higher absorbance in the infrared (IR) region than pure FeS 2 NCs indicating Ni-alloyed NCs have higher densities of mid-band gap defect states. Based on thermal probe and Hall-effect measurements, the majority charge carriers in these alloyed NCs depend upon the material composition. Pure iron pyrite (FeS 2 ) and Ni 0.1 Fe 0.9 S 2 NCs show p-type conductivity while Ni 0.2 Fe 0.8 S 2 and higher Ni concentration alloys exhibit n-type conductivity. Application of these alloyed NC thin films as the hole transport layer for CdTe solar cells revealed that Ni 0.05 Fe 0.95 S 2 NCs perform best with the average increase in efficiency of ∼5%, with the best cell performing up to 8% better than the laboratory standard copper/gold (Cu/Au) cell.
AbstractList Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni x Fe 1−x S 2 ) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and elemental sulfur (S) as a sulfur source. As Ni is incorporated into the iron pyrite (FeS 2 ) NCs, the X-ray diffraction (XRD) peaks shift towards lower diffraction angles indicating higher lattice constants of the alloyed NCs in accord with Vegard's law. Scherrer-analysis and scanning electron microscopy (SEM) imaging indicate that the average particle sizes of alloyed NCs are smaller compared to pure FeS 2 NCs. In UV-Vis-NIR spectra, the alloyed NCs have higher absorbance in the infrared (IR) region than pure FeS 2 NCs indicating Ni-alloyed NCs have higher densities of mid-band gap defect states. Based on thermal probe and Hall-effect measurements, the majority charge carriers in these alloyed NCs depend upon the material composition. Pure iron pyrite (FeS 2 ) and Ni 0.1 Fe 0.9 S 2 NCs show p-type conductivity while Ni 0.2 Fe 0.8 S 2 and higher Ni concentration alloys exhibit n-type conductivity. Application of these alloyed NC thin films as the hole transport layer for CdTe solar cells revealed that Ni 0.05 Fe 0.95 S 2 NCs perform best with the average increase in efficiency of ∼5%, with the best cell performing up to 8% better than the laboratory standard copper/gold (Cu/Au) cell.
Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (NixFe1-xS2) pyrite nanocrystals (NCs). The Ni-alloyed iron pyrite NCs were synthesized using iron (Fe) and nickel (Ni) bromides as Fe and Ni sources, and elemental sulfur (S) as a sulfur source. As Ni is incorporated into the iron pyrite (FeS2) NCs, the X-ray diffraction (XRD) peaks shift towards lower diffraction angles indicating higher lattice constants of the alloyed NCs in accord with Vegard's law. Scherrer-analysis and scanning electron microscopy (SEM) imaging indicate that the average particle sizes of alloyed NCs are smaller compared to pure FeS2 NCs. In UV-Vis-NIR spectra, the alloyed NCs have higher absorbance in the infrared (IR) region than pure FeS2 NCs indicating Ni-alloyed NCs have higher densities of mid-band gap defect states. Based on thermal probe and Hall-effect measurements, the majority charge carriers in these alloyed NCs depend upon the material composition. Pure iron pyrite (FeS2) and Ni0.1Fe0.9S2 NCs show p-type conductivity while Ni0.2Fe0.8S2 and higher Ni concentration alloys exhibit n-type conductivity. Application of these alloyed NC thin films as the hole transport layer for CdTe solar cells revealed that Ni0.05Fe0.95S2 NCs perform best with the average increase in efficiency of similar to 5%, with the best cell performing up to 8% better than the laboratory standard copper/gold (Cu/Au) cell.
Author Bhandari, Khagendra P.
Bastola, Ebin
Ellingson, Randy J.
Author_xml – sequence: 1
  givenname: Ebin
  orcidid: 0000-0002-4194-3385
  surname: Bastola
  fullname: Bastola, Ebin
  organization: Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606
– sequence: 2
  givenname: Khagendra P.
  surname: Bhandari
  fullname: Bhandari, Khagendra P.
  organization: Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606
– sequence: 3
  givenname: Randy J.
  surname: Ellingson
  fullname: Ellingson, Randy J.
  organization: Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606
BookMark eNptUctKxTAQDaLg6278gixFqObVtF3KxRcIbnRd4jThRtOkJumi_-LHmquiIM5m5jBnDjNzDtGuD14jdELJOSW8u1g3j2tCOtHe7qADRmpSNTUXuz81k_toldILKdFS2cruAL1fTpOzoLINHgeDIYxTSPYTQvA5Buf0gL2FV-0q5VxYCrSxtNPsjB00npZos8Ze-QBxSVk5nDfWY2PdmLBKBWm8CU7jHJVPU4gZO7XoiAsJ1DDaecRZOzfHrVwKTkUMBadjtGeUS3r1nY_Q0_XV4_q2un-4uVtf3lfApMgVdAMF1VLBa8EbQYVsmGmGZyJNS1vG6qbpKCOgFKFgGAdOKch2EPyZwNAafoROv3SnGN5mnXI_2rTdQHkd5tTTjtacSSJkoZIvKsSQUtSmB5s_v1eOs66npN960f96UUbO_oxM0Y4qLv-RPwCp9Y7b
CitedBy_id crossref_primary_10_1021_acsaelm_2c00489
crossref_primary_10_1016_j_ceramint_2022_01_045
crossref_primary_10_1016_j_physe_2019_113688
crossref_primary_10_1557_mrc_2018_117
crossref_primary_10_1016_j_jcis_2022_09_129
crossref_primary_10_1557_adv_2018_349
crossref_primary_10_1016_j_ceramint_2018_05_091
crossref_primary_10_1002_slct_201800405
crossref_primary_10_1016_j_jmrt_2022_01_166
crossref_primary_10_1039_D0MA00394H
crossref_primary_10_3390_coatings12050589
crossref_primary_10_1021_acsaem_3c00947
crossref_primary_10_1002_jccs_202400015
crossref_primary_10_1063_1_5084778
crossref_primary_10_1016_j_solidstatesciences_2021_106722
crossref_primary_10_1002_ente_202000429
crossref_primary_10_1016_j_ceramint_2021_07_280
crossref_primary_10_1016_j_solener_2019_04_082
crossref_primary_10_1016_j_solmat_2018_06_025
crossref_primary_10_1134_S1063774520060188
crossref_primary_10_1016_j_mseb_2018_11_003
crossref_primary_10_1002_ese3_843
crossref_primary_10_1007_s10876_019_01708_3
crossref_primary_10_1557_jmr_2019_363
Cites_doi 10.1016/S1387-7003(99)00154-9
10.1107/S0021889878012844
10.1016/j.jmmm.2015.08.012
10.1039/b900444k
10.1002/adma.200401216
10.1149/1.1391596
10.1039/C6RA06351A
10.1021/jp506288w
10.1021/nn305833u
10.1016/S0254-0584(00)00269-8
10.1063/1.4706558
10.1002/slct.201601378
10.1039/c3ra46248j
10.1016/j.jcrysgro.2005.09.062
10.1016/S0927-0248(02)00344-6
10.1021/ja3053464
10.1016/j.jallcom.2014.11.217
10.1038/srep03577
10.1016/0927-0248(93)90095-K
10.1080/00018737200101278
10.1039/C1JM13879K
10.1039/c2cs35310e
10.1088/0022-3727/16/12/011
10.1039/c2nr31193c
10.1103/PhysRevB.84.245211
10.2298/FUEE1303187A
10.1063/1.349377
10.1016/j.solmat.2015.03.032
10.1007/s00339-016-0117-5
10.1098/rspa.1913.0040
10.1039/C4NR01196A
10.1016/j.solmat.2017.01.044
10.1039/c3ta11039g
10.1039/C4TA06320A
10.1021/ja0484505
10.1016/S0040-6090(97)00121-1
10.1016/j.jcrysgro.2004.07.017
10.1039/C4NJ01461H
10.1039/C5TC03275J
10.1021/ja1096368
10.1021/acs.jpcc.5b11204
10.1039/C3CC49175G
10.1002/anie.201601757
10.1007/BF01349680
10.1016/0038-1098(77)90967-X
10.1039/C5TA00028A
10.1063/1.92863
10.1007/s12274-015-0965-x
10.1039/c3ee43169j
ContentType Journal Article
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/C7TC00948H
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 5004
ExternalDocumentID 10_1039_C7TC00948H
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c264t-c9d1ca81435437414672f7db06f818225779120caa01cf23c311c68d43b0cd8f3
ISSN 2050-7526
IngestDate Fri Jul 11 01:32:54 EDT 2025
Tue Jul 01 02:08:40 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c264t-c9d1ca81435437414672f7db06f818225779120caa01cf23c311c68d43b0cd8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4194-3385
PQID 1915326046
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1915326046
crossref_citationtrail_10_1039_C7TC00948H
crossref_primary_10_1039_C7TC00948H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2017
References Ferrer (C7TC00948H-(cit27)/*[position()=1]) 1991; 70
Bhandari (C7TC00948H-(cit55)/*[position()=1]) 2017; 163
Bhandari (C7TC00948H-(cit35)/*[position()=1]) 2015; 140
Büker (C7TC00948H-(cit13)/*[position()=1]) 1999; 146
Xiao (C7TC00948H-(cit12)/*[position()=1]) 2015; 629
Ennaoui (C7TC00948H-(cit4)/*[position()=1]) 1993; 29
Bragg (C7TC00948H-(cit42)/*[position()=1]) 1913; 88
Ferrer (C7TC00948H-(cit48)/*[position()=1]) 2003; 76
Freeouf (C7TC00948H-(cit53)/*[position()=1]) 1981; 39
Khalid (C7TC00948H-(cit23)/*[position()=1]) 2015; 3
Pang (C7TC00948H-(cit16)/*[position()=1]) 2014; 4
Bronold (C7TC00948H-(cit20)/*[position()=1]) 1997; 304
Bhandari (C7TC00948H-(cit33)/*[position()=1]) 2015; 3
Faber (C7TC00948H-(cit18)/*[position()=1]) 2014; 118
Mao (C7TC00948H-(cit10)/*[position()=1]) 2013; 1
Yang (C7TC00948H-(cit31)/*[position()=1]) 2009; 11
Huckaba (C7TC00948H-(cit36)/*[position()=1]) 2016; 1
Liu (C7TC00948H-(cit5)/*[position()=1]) 2015; 3
Clark (C7TC00948H-(cit50)/*[position()=1]) 2016; 400
Langford (C7TC00948H-(cit44)/*[position()=1]) 1978; 11
Puthussery (C7TC00948H-(cit32)/*[position()=1]) 2011; 133
Suzuki (C7TC00948H-(cit45)/*[position()=1]) 1977; 23
Sun (C7TC00948H-(cit11)/*[position()=1]) 2011; 84
Ferrer (C7TC00948H-(cit26)/*[position()=1]) 1995; 7
Cabán-Acevedo (C7TC00948H-(cit1)/*[position()=1]) 2013; 7
Gong (C7TC00948H-(cit19)/*[position()=1]) 2016; 9
Hu (C7TC00948H-(cit29)/*[position()=1]) 1999; 2
Petruck (C7TC00948H-(cit39)/*[position()=1]) 1969; 9
Janik (C7TC00948H-(cit51)/*[position()=1]) 1983; 16
Chate (C7TC00948H-(cit49)/*[position()=1]) 2016; 122
Rajes (C7TC00948H-(cit28)/*[position()=1]) 2013; 3
Calió (C7TC00948H-(cit37)/*[position()=1]) 2016; 55
Lehner (C7TC00948H-(cit24)/*[position()=1]) 2006; 286
Wang (C7TC00948H-(cit38)/*[position()=1]) 2014; 50
Limpinsel (C7TC00948H-(cit2)/*[position()=1]) 2014; 7
Corwine (C7TC00948H-(cit52)/*[position()=1]) 2004; 82
Vegard (C7TC00948H-(cit43)/*[position()=1]) 1921; 5
Axelevitch (C7TC00948H-(cit46)/*[position()=1]) 2013; 26
Liu (C7TC00948H-(cit40)/*[position()=1]) 2014; 6
Gudelli (C7TC00948H-(cit8)/*[position()=1]) 2014; 4
Bastola (C7TC00948H-(cit34)/*[position()=1]) 2016; 6
Lai (C7TC00948H-(cit17)/*[position()=1]) 2012; 22
Wilson (C7TC00948H-(cit15)/*[position()=1]) 1972; 21
Anuar (C7TC00948H-(cit25)/*[position()=1]) 2010; 15
de Boer (C7TC00948H-(cit54)/*[position()=1]) 2005; 17
Hu (C7TC00948H-(cit9)/*[position()=1]) 2012; 134
Khalid (C7TC00948H-(cit22)/*[position()=1]) 2015; 39
Liang (C7TC00948H-(cit7)/*[position()=1]) 2012; 4
Xuefeng (C7TC00948H-(cit30)/*[position()=1]) 2000; 66
Ho (C7TC00948H-(cit21)/*[position()=1]) 2004; 270
Zhang (C7TC00948H-(cit41)/*[position()=1]) 2004; 126
Lehner (C7TC00948H-(cit47)/*[position()=1]) 2012; 111
Kinner (C7TC00948H-(cit14)/*[position()=1]) 2016; 120
Wadia (C7TC00948H-(cit3)/*[position()=1]) 2009; 43
Gao (C7TC00948H-(cit6)/*[position()=1]) 2013; 42
References_xml – volume: 2
  start-page: 569
  year: 1999
  ident: C7TC00948H-(cit29)/*[position()=1]
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/S1387-7003(99)00154-9
– volume: 11
  start-page: 102
  year: 1978
  ident: C7TC00948H-(cit44)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889878012844
– volume: 400
  start-page: 56
  year: 2016
  ident: C7TC00948H-(cit50)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.08.012
– volume: 11
  start-page: 1383
  year: 2009
  ident: C7TC00948H-(cit31)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/b900444k
– volume: 17
  start-page: 621
  year: 2005
  ident: C7TC00948H-(cit54)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401216
– volume: 146
  start-page: 261
  year: 1999
  ident: C7TC00948H-(cit13)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1391596
– volume: 6
  start-page: 69708
  year: 2016
  ident: C7TC00948H-(cit34)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06351A
– volume: 118
  start-page: 21347
  year: 2014
  ident: C7TC00948H-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506288w
– volume: 7
  start-page: 1731
  year: 2013
  ident: C7TC00948H-(cit1)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn305833u
– volume: 66
  start-page: 97
  year: 2000
  ident: C7TC00948H-(cit30)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(00)00269-8
– volume: 111
  start-page: 083717
  year: 2012
  ident: C7TC00948H-(cit47)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4706558
– volume: 1
  start-page: 5316
  year: 2016
  ident: C7TC00948H-(cit36)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201601378
– volume: 4
  start-page: 9424
  year: 2014
  ident: C7TC00948H-(cit8)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c3ra46248j
– volume: 286
  start-page: 306
  year: 2006
  ident: C7TC00948H-(cit24)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.09.062
– volume: 76
  start-page: 183
  year: 2003
  ident: C7TC00948H-(cit48)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(02)00344-6
– volume: 134
  start-page: 13216
  year: 2012
  ident: C7TC00948H-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3053464
– volume: 629
  start-page: 43
  year: 2015
  ident: C7TC00948H-(cit12)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.11.217
– volume: 4
  start-page: 3577
  year: 2014
  ident: C7TC00948H-(cit16)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03577
– volume: 29
  start-page: 289
  year: 1993
  ident: C7TC00948H-(cit4)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(93)90095-K
– volume: 21
  start-page: 143
  year: 1972
  ident: C7TC00948H-(cit15)/*[position()=1]
  publication-title: Adv. Phys.
  doi: 10.1080/00018737200101278
– volume: 22
  start-page: 19
  year: 2012
  ident: C7TC00948H-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM13879K
– volume: 15
  start-page: 62
  year: 2010
  ident: C7TC00948H-(cit25)/*[position()=1]
  publication-title: Thammasat Int. J. Sci. Technol.
– volume: 82
  start-page: 481
  year: 2004
  ident: C7TC00948H-(cit52)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 42
  start-page: 2986
  year: 2013
  ident: C7TC00948H-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35310e
– volume: 16
  start-page: 2333
  year: 1983
  ident: C7TC00948H-(cit51)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/16/12/011
– volume: 4
  start-page: 6265
  year: 2012
  ident: C7TC00948H-(cit7)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31193c
– volume: 84
  start-page: 245211
  year: 2011
  ident: C7TC00948H-(cit11)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.245211
– volume: 26
  start-page: 187
  year: 2013
  ident: C7TC00948H-(cit46)/*[position()=1]
  publication-title: Facta universitatis-series: Electronics and Energetics
  doi: 10.2298/FUEE1303187A
– volume: 70
  start-page: 2641
  year: 1991
  ident: C7TC00948H-(cit27)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.349377
– volume: 140
  start-page: 108
  year: 2015
  ident: C7TC00948H-(cit35)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.03.032
– volume: 7
  start-page: 2115
  year: 1995
  ident: C7TC00948H-(cit26)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 122
  start-page: 1
  year: 2016
  ident: C7TC00948H-(cit49)/*[position()=1]
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-016-0117-5
– volume: 88
  start-page: 428
  year: 1913
  ident: C7TC00948H-(cit42)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1913.0040
– volume: 6
  start-page: 8935
  year: 2014
  ident: C7TC00948H-(cit40)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR01196A
– volume: 163
  start-page: 277
  year: 2017
  ident: C7TC00948H-(cit55)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.01.044
– volume: 1
  start-page: 12060
  year: 2013
  ident: C7TC00948H-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11039g
– volume: 3
  start-page: 6853
  year: 2015
  ident: C7TC00948H-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06320A
– volume: 126
  start-page: 8116
  year: 2004
  ident: C7TC00948H-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0484505
– volume: 43
  start-page: 2072
  year: 2009
  ident: C7TC00948H-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
– volume: 304
  start-page: 178
  year: 1997
  ident: C7TC00948H-(cit20)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00121-1
– volume: 270
  start-page: 535
  year: 2004
  ident: C7TC00948H-(cit21)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.07.017
– volume: 39
  start-page: 1013
  year: 2015
  ident: C7TC00948H-(cit22)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01461H
– volume: 3
  start-page: 12068
  year: 2015
  ident: C7TC00948H-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03275J
– volume: 133
  start-page: 716
  year: 2011
  ident: C7TC00948H-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1096368
– volume: 120
  start-page: 5706
  year: 2016
  ident: C7TC00948H-(cit14)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11204
– volume: 50
  start-page: 2618
  year: 2014
  ident: C7TC00948H-(cit38)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49175G
– volume: 55
  start-page: 14522
  year: 2016
  ident: C7TC00948H-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601757
– volume: 5
  start-page: 17
  year: 1921
  ident: C7TC00948H-(cit43)/*[position()=1]
  publication-title: Z. Phys.
  doi: 10.1007/BF01349680
– volume: 23
  start-page: 847
  year: 1977
  ident: C7TC00948H-(cit45)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(77)90967-X
– volume: 9
  start-page: 597
  year: 1969
  ident: C7TC00948H-(cit39)/*[position()=1]
  publication-title: Can. Mineral.
– volume: 3
  start-page: 6315
  year: 2015
  ident: C7TC00948H-(cit5)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00028A
– volume: 39
  start-page: 727
  year: 1981
  ident: C7TC00948H-(cit53)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.92863
– volume: 9
  start-page: 28
  year: 2016
  ident: C7TC00948H-(cit19)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0965-x
– volume: 3
  start-page: 25
  year: 2013
  ident: C7TC00948H-(cit28)/*[position()=1]
  publication-title: Rep. Electrochem.
– volume: 7
  start-page: 1974
  year: 2014
  ident: C7TC00948H-(cit2)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43169j
SSID ssj0000816869
Score 2.2800763
Snippet Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (Ni x Fe 1−x S 2 )...
Here, we report hot-injection colloidal synthesis, characterization, and control of electronic conductivity of nickel-alloyed iron sulfide (NixFe1-xS2) pyrite...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4996
SubjectTerms Cadmium tellurides
Copper
Iron
Nickel
Photovoltaic cells
Pyrite
Scanning electron microscopy
Solar cells
Synthesis (chemistry)
Title Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells
URI https://www.proquest.com/docview/1915326046
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKrpDggGABsbxkBBcUpTiPOsmxVEVlBYhDV9pb5TjOtlKbVk16KL9lf-H-CmbsPFx2kRYuUeO4lpL57Pk8ngchHwTzleChcpmSHppupJuknLueEEL5WSRZiLHD33_wyXl4djG46PWuLa-lXZX25a9b40r-R6rQBnLFKNl_kGw7KDTAb5AvXEHCcL2TjIfd6XPjHl77YDUu6Es83V_ATF26eMK-h1uMa0On9HyRKWez3wLndApRrOV2X2JkZDVfFJiuaVViDRrkpVhCF2tJmCzozlIATUc7iRTZarFbORiIstvicCVulB08DCj_wnqBIJsv48im1FzfGZmooeYJej6uN1Wbx8Aq1ZMpvbJ19lfgrkvNf8fposX557m2jxhHhTmsmEW2Fc7Pvu2oUlw2qQWg794569v2DxPoaRZInw2YGw38OpW23VYbSOsVfmAB2WfWcg3bPW6p_gEzpZBvqBUWYFbWUYTHMEkYTzrl2TgM_KFTW09HfcYfJLPuv_fIsQ9bGlAix8Px9Ou31iKoS6DoGoztizX5dIPkUzfAIYM6JBCaFU0fk0e1YOnQYPMJ6anihDy0klyekPvayViWT8mVhVe6zqmFV9rhlR7ilSJeaY1XavBKLbxSxCvVeKWihDtFEa-0xSvVeKXQqcYrbfFKNV6pxuszcv5lPB1N3Lo6iCuBxFeuTDJPihj5fhgALwaN7-dRljKeAwkFNRVFieczKQTzZO4HMvA8yeMsDFImszgPnpOjYl2oF4RGCY9ylXHYCgGhFmkqc5VDlxy4cJzz-JR8bL74TNap87GCy3J2U7yn5H3bd2MSxtza610juBnMNXxPUaj1rpx5CXAQn7OQv7zTSK_IA5wVxir4mhxV2516Azy5St_WAPsNkGrJbA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+composition+controlled+nickel-alloyed+iron+sulfide+pyrite+nanocrystal+thin+films+as+the+hole+transport+layer+in+cadmium+telluride+solar+cells&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Bastola%2C+Ebin&rft.au=Bhandari%2C+Khagendra+P.&rft.au=Ellingson%2C+Randy+J.&rft.date=2017&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=5&rft.issue=20&rft.spage=4996&rft.epage=5004&rft_id=info:doi/10.1039%2FC7TC00948H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TC00948H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon