Multi-Robot Object SLAM Using Distributed Variational Inference
Multi-robot simultaneous localization and mapping (SLAM) enables a robot team to achieve coordinated tasks by relying on a common map of the environment. Constructing a map by centralized processing of the robot observations is undesirable because it creates a single point of failure and requires pr...
Saved in:
Published in | IEEE robotics and automation letters Vol. 9; no. 10; pp. 8722 - 8729 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-robot simultaneous localization and mapping (SLAM) enables a robot team to achieve coordinated tasks by relying on a common map of the environment. Constructing a map by centralized processing of the robot observations is undesirable because it creates a single point of failure and requires pre-existing infrastructure and significant communication throughput. This letter formulates multi-robot object SLAM as a variational inference problem over a communication graph subject to consensus constraints on the object estimates maintained by different robots. To solve the problem, we develop a distributed mirror descent algorithm with regularization enforcing consensus among the communicating robots. Using Gaussian distributions in the algorithm, we also derive a distributed multi-state constraint Kalman filter (MSCKF) for multi-robot object SLAM. Experiments on real and simulated data show that our method improves the trajectory and object estimates, compared to individual-robot SLAM, while achieving better scaling to large robot teams, compared to centralized multi-robot SLAM. |
---|---|
AbstractList | Multi-robot simultaneous localization and mapping (SLAM) enables a robot team to achieve coordinated tasks by relying on a common map of the environment. Constructing a map by centralized processing of the robot observations is undesirable because it creates a single point of failure and requires pre-existing infrastructure and significant communication throughput. This letter formulates multi-robot object SLAM as a variational inference problem over a communication graph subject to consensus constraints on the object estimates maintained by different robots. To solve the problem, we develop a distributed mirror descent algorithm with regularization enforcing consensus among the communicating robots. Using Gaussian distributions in the algorithm, we also derive a distributed multi-state constraint Kalman filter (MSCKF) for multi-robot object SLAM. Experiments on real and simulated data show that our method improves the trajectory and object estimates, compared to individual-robot SLAM, while achieving better scaling to large robot teams, compared to centralized multi-robot SLAM. |
Author | Cao, Hanwen Shreedharan, Sriram Atanasov, Nikolay |
Author_xml | – sequence: 1 givenname: Hanwen orcidid: 0000-0003-2606-7433 surname: Cao fullname: Cao, Hanwen email: h1cao@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA – sequence: 2 givenname: Sriram orcidid: 0000-0003-2216-7867 surname: Shreedharan fullname: Shreedharan, Sriram email: sshreedharan@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA – sequence: 3 givenname: Nikolay orcidid: 0000-0003-0272-7580 surname: Atanasov fullname: Atanasov, Nikolay email: natanasov@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA |
BookMark | eNp9kD1PwzAQhi1UJErpzsCQP5DibycTqgqFSqkqFcoa2e4ZuQoJst2Bf09KO1QMTPcuz917zzUatF0LCN0SPCEEl_fVejqhmPIJ44KworxAQ8qUypmScnCWr9A4xh3GmAiqWCmG6GG5b5LP153pUrYyO7Ape62my2wTffuRPfqYgjf7BNvsXQevk-9a3WSL1kGA1sINunS6iTA-zRHazJ_eZi95tXpezKZVbqnkKTdOGw2G9x21tYAJL4zDBcFbV0jJKCeOGdDCcVsaqoWihmiClWKcGmENGyF83GtDF2MAV38F_6nDd01wfXBQ9w7qg4P65KBH5B_E-vT7QAraN_-Bd0fQA8DZHSk4I4T9AIY3as8 |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_LRA_2024_3451389 |
Cites_doi | 10.1109/tro.2024.3422003 10.1109/LRA.2020.2965893 10.23919/ACC.2017.7962962 10.1109/ICRA.2018.8460664 10.1201/9780203509128 10.1109/IROS.2018.8593941 10.1109/TRO.2021.3137751 10.1109/LRA.2020.2967681 10.1109/IVS.2011.5940405 10.1109/LRA.2024.3451389 10.1109/ICRA.2013.6631323 10.1109/ICCV.2019.00939 10.1109/LRA.2018.2793349 10.1177/0278364920937608 10.1109/RCAR.2016.7784092 10.1109/ICRA40945.2020.9196524 10.1109/ACCESS.2023.3249661 10.1109/ICRA.2018.8460217 10.1109/TRO.2016.2624754 10.1137/15M1024950 10.1016/S0167-6377(02)00231-6 10.1109/ROBOT.2007.364024 10.1177/0278364911430419 10.1109/CVPR.2012.6248074 10.1109/ROBOT.2008.4543634 10.1109/TRO.2023.3327635 10.15607/RSS.2009.V.009 10.1109/LCSYS.2022.3167654 10.1109/TRO.2021.3072346 10.1109/TRA.2002.803461 10.1177/0278364904045479 10.1016/S0262-8856(97)00056-5 10.1016/j.eswa.2022.117734 10.1177/0278364906072768 10.1016/j.robot.2014.08.007 10.1109/IROS51168.2021.9636687 10.1177/0278364917732640 10.1109/TRO.2020.3001664 10.1109/IVS.2010.5548123 10.1109/IROS51168.2021.9636031 10.1109/TSP.2009.2016247 10.1017/9781316671528 10.1109/TRO.2008.2006706 10.1109/ICRA.2019.8793604 10.1109/IROS.2010.5652875 10.1007/11744023_32 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LRA.2024.3451389 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 8729 |
ExternalDocumentID | 10_1109_LRA_2024_3451389 10654311 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF FRR CAREER grantid: 2045945 – fundername: ARL DCIST CRA grantid: W911NF-17-2-0181 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c264t-bfabaeb4024acce0148bf0810df8663241f3bea5f4c9b2a572b1a1077342b5cb3 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Thu Apr 24 22:53:59 EDT 2025 Tue Jul 01 00:21:14 EDT 2025 Wed Aug 27 02:29:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c264t-bfabaeb4024acce0148bf0810df8663241f3bea5f4c9b2a572b1a1077342b5cb3 |
ORCID | 0000-0003-2216-7867 0000-0003-2606-7433 0000-0003-0272-7580 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10654311 crossref_citationtrail_10_1109_LRA_2024_3451389 crossref_primary_10_1109_LRA_2024_3451389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 Kinnari (ref2) 2024 ref16 ref19 ref18 Lucas (ref43) 1981; 2 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 Li (ref6) 2022 ref8 ref7 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref26 doi: 10.1109/tro.2024.3422003 – ident: ref23 doi: 10.1109/LRA.2020.2965893 – ident: ref48 doi: 10.23919/ACC.2017.7962962 – ident: ref12 doi: 10.1109/ICRA.2018.8460664 – ident: ref38 doi: 10.1201/9780203509128 – ident: ref47 doi: 10.1109/IROS.2018.8593941 – ident: ref22 doi: 10.1109/TRO.2021.3137751 – ident: ref24 doi: 10.1109/LRA.2020.2967681 – ident: ref39 doi: 10.1109/IVS.2011.5940405 – ident: ref36 doi: 10.1109/LRA.2024.3451389 – ident: ref17 doi: 10.1109/ICRA.2013.6631323 – ident: ref45 doi: 10.1109/ICCV.2019.00939 – ident: ref40 doi: 10.1109/LRA.2018.2793349 – ident: ref34 doi: 10.1177/0278364920937608 – ident: ref4 doi: 10.1109/RCAR.2016.7784092 – ident: ref41 doi: 10.1109/ICRA40945.2020.9196524 – ident: ref13 doi: 10.1109/ACCESS.2023.3249661 – ident: ref25 doi: 10.1109/ICRA.2018.8460217 – ident: ref1 doi: 10.1109/TRO.2016.2624754 – ident: ref27 doi: 10.1137/15M1024950 – ident: ref7 doi: 10.1016/S0167-6377(02)00231-6 – ident: ref8 doi: 10.1109/ROBOT.2007.364024 – ident: ref10 doi: 10.1177/0278364911430419 – ident: ref42 doi: 10.1109/CVPR.2012.6248074 – ident: ref3 doi: 10.1109/ROBOT.2008.4543634 – ident: ref21 doi: 10.1109/TRO.2023.3327635 – ident: ref30 doi: 10.15607/RSS.2009.V.009 – ident: ref35 doi: 10.1109/LCSYS.2022.3167654 – ident: ref15 doi: 10.1109/TRO.2021.3072346 – ident: ref28 doi: 10.1109/TRA.2002.803461 – ident: ref29 doi: 10.1177/0278364904045479 – ident: ref5 doi: 10.1016/S0262-8856(97)00056-5 – ident: ref14 doi: 10.1016/j.eswa.2022.117734 – ident: ref18 doi: 10.1177/0278364906072768 – ident: ref31 doi: 10.1016/j.robot.2014.08.007 – year: 2022 ident: ref6 article-title: YOLOv6: A single-stage object detection framework for industrial applications – ident: ref20 doi: 10.1109/IROS51168.2021.9636687 – ident: ref19 doi: 10.1177/0278364917732640 – ident: ref32 doi: 10.1109/TRO.2020.3001664 – ident: ref44 doi: 10.1109/IVS.2010.5548123 – ident: ref33 doi: 10.1109/IROS51168.2021.9636031 – ident: ref49 doi: 10.1109/TSP.2009.2016247 – ident: ref37 doi: 10.1017/9781316671528 – ident: ref9 doi: 10.1109/TRO.2008.2006706 – ident: ref11 doi: 10.1109/ICRA.2019.8793604 – year: 2024 ident: ref2 article-title: SOS-SLAM: Segmentation for open-set SLAM in unstructured environments – ident: ref16 doi: 10.1109/IROS.2010.5652875 – ident: ref46 doi: 10.1007/11744023_32 – volume: 2 start-page: 674 volume-title: Proc. Int. Joint Conf. Artif. Intell. year: 1981 ident: ref43 article-title: An iterative image registration technique with an application to stereo vision |
SSID | ssj0001527395 |
Score | 2.2837186 |
Snippet | Multi-robot simultaneous localization and mapping (SLAM) enables a robot team to achieve coordinated tasks by relying on a common map of the environment.... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 8722 |
SubjectTerms | Distributed robot systems Kalman filters Mirrors multi-robot SLAM Multi-robot systems Optimization probability and statistical methods Robot kinematics Simultaneous localization and mapping Static analysis Trajectory |
Title | Multi-Robot Object SLAM Using Distributed Variational Inference |
URI | https://ieeexplore.ieee.org/document/10654311 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEeVQYWhqRt_Eg8oQpaFdQWqVDULfI5zgJqEUoXBn47PieBggRiiyLbsny2fN_5vu8IOaeQcQZS-CaKqM9oas8cFZjhKIWOUs4jQHLyeCKGM3Y75_OSrO64MMYYl3xmAvx0b_npUq8wVGZPODIhkclbs8itIGt9BVRQSkzy6imyI9ujac8CwJAFlHF8j_t29azVUnFXyWCHTKpJFBkkT8Eqh0C__dBn_Pcsd8l26VR6vWIX7JENs9gnW2tSgwfk0jFt_ekSlrl3Bxh98e5HvbHncga8a9TPxdJXJvUeLXwuQ4TeTcUHbJDZoP9wNfTL4gm-tj5O7kOmQBmw8JAprQ0GDiGz938nzWKBGu3djIJRPGNaQqh4FEJXWSwYURYC10APSX2xXJgj4kUxzaSwnpakjFk8qYDGQsVhquxgIoUmaVfrmuhSWRwLXDwnDmF0ZGItkaAlktISTXLx2eOlUNX4o20D13itXbG8x7_8PyGb2L1IuDsl9fx1Zc6s45BDi9TG7_2W2zYfb5i_tA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZQGYCBs4hyemBhSNrGR5IJVRxqIS1SaVG3yM9xFlCDULrw6_HLAQUJxBZFtmX52Xrn9z1CzhmkgkMoHeP7zOEssW-OSaxwDKX2EyF8QHDycCT7U343E7MKrF5gYYwxRfGZcfGzyOUnmV5gqMy-cERCIpJ31Sp-0S3hWl8hFSQTC0WdjOyE7Wjcsy6gx13GBWbkvimfpW4qhTK53SKjehtlDcmzu8jB1e8_GBr_vc9tslmZlbRX3oMdsmLmu2RjiWxwj1wWWFtnnEGW0wfA-At9jHpDWlQN0Gtk0MXmVyahT9aBroKEdFAjAptkenszueo7VfsER1srJ3cgVaAMWAeRK60Nhg4htRZAJ0kDiSzt3ZSBUSLlOgRPCd-DrrLeoM-4B0ID2yeNeTY3B4T6AUtDaW2tkHFuPUoFLJAq8BJlF5MJtEi7PtdYV9zi2OLiJS58jE4YW0nEKIm4kkSLXHzOeC15Nf4Y28QzXhpXHu_hL__PyFp_MoziaDC6PyLruFRZfndMGvnbwpxYMyKH0-LyfAAUB8HM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Robot+Object+SLAM+Using+Distributed+Variational+Inference&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Cao%2C+Hanwen&rft.au=Shreedharan%2C+Sriram&rft.au=Atanasov%2C+Nikolay&rft.date=2024-10-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=9&rft.issue=10&rft.spage=8722&rft.epage=8729&rft_id=info:doi/10.1109%2FLRA.2024.3451389&rft.externalDocID=10654311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |