Synthesis and Characterization of Magnetic Xerogel Monolith as an Adsorbent for As(V) Removal from Groundwater

Arsenic contamination of groundwater is still a global problem due to the toxicity at low dose on human health confirmed by epidemiological studies. Magnetic xerogel monoliths (MXs) were synthesized by the sol-gel polymerization using resorcinol, formaldehyde, alkaline catalyst and magnetite. The va...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 9; no. 2; p. 386
Main Authors Khamkure, Sasirot, Garrido-Hoyos, Sofía Esperanza, Gamero-Melo, Prócoro, Reyes-Rosas, Audberto
Format Journal Article
LanguageEnglish
Published 01.02.2021
Online AccessGet full text

Cover

Loading…
Abstract Arsenic contamination of groundwater is still a global problem due to the toxicity at low dose on human health confirmed by epidemiological studies. Magnetic xerogel monoliths (MXs) were synthesized by the sol-gel polymerization using resorcinol, formaldehyde, alkaline catalyst and magnetite. The varying molar ratios of magnetite and resorcinol (M/R) in the gel were evaluated for As(V) removal from groundwater. The surface chemistry, structure and morphology of MXs related to arsenic adsorption were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and point of zero charge. Batch adsorption experiments were carried out to investigate the effects of Fe contents, initial pH and adsorbent dose on As(V) removal performance. The MXs with molar ratio of M/R at 0.15 gave the maximum As(V) adsorption capacity and removal with values of 62.8 µg/g and 86.7%, respectively. The adsorption data were well described by the Elovich equation of the kinetic model and the Freundlich isotherm. The thermodynamic studies demonstrated that the adsorption process was endothermic and spontaneous in nature. MXs showed to be a good alternative for As(V) removal from groundwater and achieving the efficient desorption, and thus fulfilled the Mexican standard for drinking water.
AbstractList Arsenic contamination of groundwater is still a global problem due to the toxicity at low dose on human health confirmed by epidemiological studies. Magnetic xerogel monoliths (MXs) were synthesized by the sol-gel polymerization using resorcinol, formaldehyde, alkaline catalyst and magnetite. The varying molar ratios of magnetite and resorcinol (M/R) in the gel were evaluated for As(V) removal from groundwater. The surface chemistry, structure and morphology of MXs related to arsenic adsorption were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and point of zero charge. Batch adsorption experiments were carried out to investigate the effects of Fe contents, initial pH and adsorbent dose on As(V) removal performance. The MXs with molar ratio of M/R at 0.15 gave the maximum As(V) adsorption capacity and removal with values of 62.8 µg/g and 86.7%, respectively. The adsorption data were well described by the Elovich equation of the kinetic model and the Freundlich isotherm. The thermodynamic studies demonstrated that the adsorption process was endothermic and spontaneous in nature. MXs showed to be a good alternative for As(V) removal from groundwater and achieving the efficient desorption, and thus fulfilled the Mexican standard for drinking water.
Author Gamero-Melo, Prócoro
Reyes-Rosas, Audberto
Garrido-Hoyos, Sofía Esperanza
Khamkure, Sasirot
Author_xml – sequence: 1
  givenname: Sasirot
  surname: Khamkure
  fullname: Khamkure, Sasirot
– sequence: 2
  givenname: Sofía Esperanza
  surname: Garrido-Hoyos
  fullname: Garrido-Hoyos, Sofía Esperanza
– sequence: 3
  givenname: Prócoro
  orcidid: 0000-0001-6733-2032
  surname: Gamero-Melo
  fullname: Gamero-Melo, Prócoro
– sequence: 4
  givenname: Audberto
  surname: Reyes-Rosas
  fullname: Reyes-Rosas, Audberto
BookMark eNpNkD1PwzAYhC1UJErpwD_wSIeAPxo7HqMKClIrJL7EFr1x7CYotSvbgMqvJxUIccvdcPcMd4pGzjuD0Dkll5wrcrULijDCC3GExowxmSlJ5ehfPkHTGN_IIEV5kYsxco97l1oTu4jBNXjRQgCdTOi-IHXeYW_xGjbOpE7jVxP8xvR47Z3vu9RiOIxw2UQfauMStj7gMl68zPCD2foP6LENfouXwb-75hMG7Bk6ttBHM_31CXq-uX5a3Gar--Xdolxlmol5yqCYS0VyYYEKQrWyXDcKGLeiri0ppGY0l3ND2VCyhtJG1Erqwipd16oROZ-g2Q9XBx9jMLbahW4LYV9RUh2-qv6-4t_qRV7O
CitedBy_id crossref_primary_10_1016_j_rineng_2022_100553
crossref_primary_10_1016_j_jhazmat_2021_126299
crossref_primary_10_1016_j_wse_2022_07_001
crossref_primary_10_1016_j_cej_2021_129909
crossref_primary_10_1016_j_ijbiomac_2024_131078
crossref_primary_10_2166_ws_2021_429
Cites_doi 10.1186/2052-336X-12-58
10.1016/S0016-7037(98)00221-X
10.1109/ICESI.2019.8863020
10.1016/j.apsusc.2017.11.053
10.3390/pr7100759
10.2166/ws.2020.168
10.1007/s11356-018-1304-z
10.1155/2014/304524
10.1007/s10450-018-9933-6
10.1016/j.carbon.2004.10.022
10.1016/j.reactfunctpolym.2012.06.008
10.1016/j.carbon.2011.05.001
10.2166/wst.2017.204
10.1007/s10853-009-3355-5
10.22490/21456453.982
10.1080/19443994.2015.1111812
10.1016/j.envres.2016.11.008
10.2298/PAC1601017M
10.1080/17518253.2014.955062
10.3390/w5020834
10.1007/s10971-018-4611-4
10.1016/j.carbon.2004.08.013
10.3390/pr8060746
10.1007/s42452-019-0977-3
10.1021/la047636e
10.3390/gels4020036
10.1016/j.apcatb.2016.06.021
10.1007/s10311-011-0349-8
10.1021/la034536k
10.1007/978-3-319-18875-1_3
10.1088/1742-6596/869/1/012035
10.1557/jmr.2005.0403
10.1016/j.clay.2010.12.020
10.1016/j.chemosphere.2019.01.130
10.1039/c003396k
10.2166/wqrj.2004.037
10.1016/j.arabjc.2016.08.006
10.1007/BF01139044
10.1007/978-3-319-58136-1
10.1016/j.jcis.2015.10.018
10.2965/jwet.2009.43
10.1016/j.wri.2013.09.003
10.29024/aogh.913
10.1007/s10653-008-9167-8
10.4067/S0717-97072016000100001
10.1002/adma.200390020
10.1016/j.jaap.2016.03.017
10.1016/j.jenvman.2015.10.039
10.1016/j.jcis.2012.04.062
10.1080/19438150903185077
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/pr9020386
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr9020386
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PIMPY
PROAC
RNS
ID FETCH-LOGICAL-c264t-a8479056fa1601c9f3cd9a23f6bbf087c21574e12905fe11d6b97c8f9cbb9d653
ISSN 2227-9717
IngestDate Fri Aug 23 04:48:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c264t-a8479056fa1601c9f3cd9a23f6bbf087c21574e12905fe11d6b97c8f9cbb9d653
ORCID 0000-0001-6733-2032
OpenAccessLink https://www.mdpi.com/2227-9717/9/2/386/pdf?version=1614252174
ParticipantIDs crossref_primary_10_3390_pr9020386
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Processes
PublicationYear 2021
References Malekian (ref_57) 2011; 51
Myneni (ref_49) 1998; 62
ref_14
Vithanage (ref_10) 2011; 10
Pekala (ref_18) 1989; 24
Fathy (ref_36) 2016; 119
ref_56
ref_52
Tipsawat (ref_45) 2018; 446
ref_17
Ritter (ref_19) 2003; 15
Pal (ref_4) 2009; 6
Min (ref_15) 2017; 76
(ref_8) 2006; 20
Urbano (ref_13) 2012; 72
(ref_34) 2005; 43
Gore (ref_37) 2018; 25
Regufe (ref_27) 2018; 24
Yean (ref_55) 2005; 20
Armienta (ref_1) 2008; 30
(ref_31) 2013; 218–219
ref_23
(ref_47) 2010; 12
Khamkure (ref_20) 2020; 20
Amaringo (ref_39) 2013; 4
Attia (ref_46) 2017; 869
Verma (ref_29) 2015; 4
Wei (ref_53) 2016; 462
Job (ref_38) 2004; 42
Mirzaeian (ref_21) 2009; 44
Ignasiak (ref_25) 2014; 68
Ribeiro (ref_32) 2016; 199
Zeng (ref_43) 2004; 39
Hoyos (ref_11) 2013; 5
Zhang (ref_54) 2005; 21
Garelick (ref_2) 2009; 197
Yao (ref_16) 2014; 12
ref_33
Perdigoto (ref_35) 2012; 380
Lata (ref_3) 2016; 166
Huang (ref_26) 2018; 86
Yu (ref_50) 2019; 222
Hanbali (ref_44) 2014; 7
Mandal (ref_51) 2013; 4
Elcik (ref_9) 2015; 57
Retana (ref_7) 2018; 84
(ref_24) 2003; 19
Ozkula (ref_12) 2016; 61
Haro (ref_28) 2011; 49
Kalijadis (ref_30) 2016; 10
Kawasaki (ref_42) 2009; 7
Ettinger (ref_6) 2017; 153
Oyedoh (ref_22) 2013; 32
ref_41
ref_40
Taleb (ref_48) 2019; 12
ref_5
References_xml – volume: 12
  start-page: 58
  year: 2014
  ident: ref_16
  article-title: Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite
  publication-title: J. Environ. Health Sci. Eng.
  doi: 10.1186/2052-336X-12-58
  contributor:
    fullname: Yao
– volume: 62
  start-page: 3499
  year: 1998
  ident: ref_49
  article-title: Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00221-X
  contributor:
    fullname: Myneni
– ident: ref_52
  doi: 10.1109/ICESI.2019.8863020
– volume: 32
  start-page: 1651
  year: 2013
  ident: ref_22
  article-title: Preparation of controlled porosity resorcinol formaldehyde xerogels for adsorption applications
  publication-title: Chem. Eng. Trans.
  contributor:
    fullname: Oyedoh
– volume: 446
  start-page: 287
  year: 2018
  ident: ref_45
  article-title: Magnetite (Fe3O4) nanoparticles: Synthesis, characterization and electrochemical properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.053
  contributor:
    fullname: Tipsawat
– ident: ref_14
  doi: 10.3390/pr7100759
– volume: 20
  start-page: 2747
  year: 2020
  ident: ref_20
  article-title: Prediction of the pH effect on arsenic (V) removal by varying catalyst of magnetic xerogel monoliths based on FREN model
  publication-title: Water Supply
  doi: 10.2166/ws.2020.168
  contributor:
    fullname: Khamkure
– volume: 25
  start-page: 11729
  year: 2018
  ident: ref_37
  article-title: Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-1304-z
  contributor:
    fullname: Gore
– ident: ref_5
  doi: 10.1155/2014/304524
– volume: 24
  start-page: 169
  year: 2018
  ident: ref_27
  article-title: Resorcinol–formaldehyde carbon xerogel as selective adsorbent of carbon dioxide present on biogas
  publication-title: Adsorption
  doi: 10.1007/s10450-018-9933-6
  contributor:
    fullname: Regufe
– volume: 43
  start-page: 455
  year: 2005
  ident: ref_34
  article-title: Carbon aerogels for catalysis applications: An overview
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.10.022
– volume: 72
  start-page: 642
  year: 2012
  ident: ref_13
  article-title: Water-insoluble polymer–clay nanocomposite ion exchange resin based on N-methyl-d-glucamine ligand groups for arsenic removal
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2012.06.008
  contributor:
    fullname: Urbano
– volume: 49
  start-page: 3723
  year: 2011
  ident: ref_28
  article-title: Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.05.001
  contributor:
    fullname: Haro
– volume: 76
  start-page: 192
  year: 2017
  ident: ref_15
  article-title: Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.204
  contributor:
    fullname: Min
– volume: 44
  start-page: 2705
  year: 2009
  ident: ref_21
  article-title: The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3355-5
  contributor:
    fullname: Mirzaeian
– volume: 4
  start-page: 27
  year: 2013
  ident: ref_39
  article-title: Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes
  publication-title: Rev. Investig. Agrar. Ambient.
  doi: 10.22490/21456453.982
  contributor:
    fullname: Amaringo
– volume: 197
  start-page: 17
  year: 2009
  ident: ref_2
  article-title: Arsenic pollution sources
  publication-title: Rev. Environ. Contam. Toxicol.
  contributor:
    fullname: Garelick
– volume: 57
  start-page: 20422
  year: 2015
  ident: ref_9
  article-title: Performance of nanofiltration and reverse osmosis membranes for arsenic removal from drinking water
  publication-title: Desalination Water Treat.
  doi: 10.1080/19443994.2015.1111812
  contributor:
    fullname: Elcik
– volume: 153
  start-page: 8
  year: 2017
  ident: ref_6
  article-title: Arsenic levels among pregnant women and newborns in Canada: Results from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2016.11.008
  contributor:
    fullname: Ettinger
– volume: 10
  start-page: 17
  year: 2016
  ident: ref_30
  article-title: Arsenic(III) adsorption from aqueous solutions on novel carbon cryogel/ceria nanocomposite
  publication-title: Process. Appl. Ceram.
  doi: 10.2298/PAC1601017M
  contributor:
    fullname: Kalijadis
– volume: 7
  start-page: 342
  year: 2014
  ident: ref_44
  article-title: Remediation of lead by pretreated red algae: Adsorption isotherm, kinetic, column modeling and simulation studies
  publication-title: Green Chem. Lett. Rev.
  doi: 10.1080/17518253.2014.955062
  contributor:
    fullname: Hanbali
– volume: 5
  start-page: 834
  year: 2013
  ident: ref_11
  article-title: Comparing two operating configurations in a full-scale arsenic removal plant. Case study: Guatemala
  publication-title: Water
  doi: 10.3390/w5020834
  contributor:
    fullname: Hoyos
– volume: 86
  start-page: 175
  year: 2018
  ident: ref_26
  article-title: Preparation of SiO2–ZrO2 xerogel and its application for the removal of organic dye
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-018-4611-4
  contributor:
    fullname: Huang
– volume: 20
  start-page: 236
  year: 2006
  ident: ref_8
  article-title: Arsenic in drinking water in the Los Altos de Jalisco region of Mexico
  publication-title: Rev. Panam. Salud Pública
– volume: 42
  start-page: 3217
  year: 2004
  ident: ref_38
  article-title: Synthesis of transition metal-doped carbon xerogels by solubilization of metal salts in resorcinol–formaldehyde aqueous solution
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.08.013
  contributor:
    fullname: Job
– ident: ref_33
  doi: 10.3390/pr8060746
– ident: ref_41
  doi: 10.1007/s42452-019-0977-3
– volume: 21
  start-page: 2895
  year: 2005
  ident: ref_54
  article-title: Slow adsorption reaction between arsenic species and goethite (α-FeOOH): Diffusion or heterogeneous surface reaction control
  publication-title: Langmuir
  doi: 10.1021/la047636e
  contributor:
    fullname: Zhang
– ident: ref_23
  doi: 10.3390/gels4020036
– volume: 199
  start-page: 170
  year: 2016
  ident: ref_32
  article-title: Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.06.021
  contributor:
    fullname: Ribeiro
– volume: 10
  start-page: 217
  year: 2011
  ident: ref_10
  article-title: Arsenic uptake by plants and possible phytoremediation applications: A brief overview
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-011-0349-8
  contributor:
    fullname: Vithanage
– volume: 4
  start-page: 37
  year: 2015
  ident: ref_29
  article-title: Synthesis of iron-doped resorcinol formaldehyde-based aerogels for the removal of Cr(VI) from water
  publication-title: Green Process. Synth.
  contributor:
    fullname: Verma
– volume: 19
  start-page: 5650
  year: 2003
  ident: ref_24
  article-title: Physicochemical surface properties of Fe, Co, Ni, and Cu-doped monolithic organic aerogels
  publication-title: Langmuir
  doi: 10.1021/la034536k
– volume: 218–219
  start-page: 43
  year: 2013
  ident: ref_31
  article-title: Advances in the development of nanostructured catalysts based on carbon gels
  publication-title: Catal. Today
– ident: ref_56
  doi: 10.1007/978-3-319-18875-1_3
– ident: ref_40
– volume: 869
  start-page: 12035
  year: 2017
  ident: ref_46
  article-title: Conduction mechanism and dielectric properties of pure and composite resorcinol formaldehyde aerogels doped with silver
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/869/1/012035
  contributor:
    fullname: Attia
– volume: 20
  start-page: 3255
  year: 2005
  ident: ref_55
  article-title: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2005.0403
  contributor:
    fullname: Yean
– volume: 51
  start-page: 323
  year: 2011
  ident: ref_57
  article-title: Ion-exchange process for ammonium removal and release using natural Iranian zeolite
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2010.12.020
  contributor:
    fullname: Malekian
– volume: 222
  start-page: 258
  year: 2019
  ident: ref_50
  article-title: Ultrafast and deep removal of arsenic in high-concentration wastewater: A superior bulk adsorbent of porous Fe2O3 nanocubes-impregnated graphene aerogel
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.130
  contributor:
    fullname: Yu
– volume: 12
  start-page: 10365
  year: 2010
  ident: ref_47
  article-title: Textural and mechanical characteristics of carbon aerogels synthesized by polymerization of resorcinol and formaldehyde using alkali carbonates as basification agents
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c003396k
– volume: 39
  start-page: 267
  year: 2004
  ident: ref_43
  article-title: Arsenic adsorption from aqueous solutions on an Fe(III)-Si binary oxide adsorbent
  publication-title: Water Qual. Res. J.
  doi: 10.2166/wqrj.2004.037
  contributor:
    fullname: Zeng
– volume: 12
  start-page: 4675
  year: 2019
  ident: ref_48
  article-title: Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2016.08.006
  contributor:
    fullname: Taleb
– volume: 24
  start-page: 3221
  year: 1989
  ident: ref_18
  article-title: Organic aerogels from the polycondensation of resorcinol with formaldehyde
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01139044
  contributor:
    fullname: Pekala
– ident: ref_17
  doi: 10.1007/978-3-319-58136-1
– volume: 462
  start-page: 252
  year: 2016
  ident: ref_53
  article-title: The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO2 anatase [101] surface
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.10.018
  contributor:
    fullname: Wei
– volume: 7
  start-page: 43
  year: 2009
  ident: ref_42
  article-title: Removal of arsenic from simulated groundwater by adsorption using iron-modified rice husk carbon
  publication-title: J. Water Environ. Technol.
  doi: 10.2965/jwet.2009.43
  contributor:
    fullname: Kawasaki
– volume: 4
  start-page: 51
  year: 2013
  ident: ref_51
  article-title: Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43)
  publication-title: Water Resour. Ind.
  doi: 10.1016/j.wri.2013.09.003
  contributor:
    fullname: Mandal
– volume: 84
  start-page: 257
  year: 2018
  ident: ref_7
  article-title: Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children
  publication-title: Ann. Glob. Health
  doi: 10.29024/aogh.913
  contributor:
    fullname: Retana
– volume: 30
  start-page: 345
  year: 2008
  ident: ref_1
  article-title: Arsenic and fluoride in the groundwater of Mexico
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-008-9167-8
  contributor:
    fullname: Armienta
– volume: 61
  start-page: 2752
  year: 2016
  ident: ref_12
  article-title: Arsenic sorption using mixtures of ion exchange resins containing n-methyl-d-glucamine and quaternary ammonium groups
  publication-title: J. Chil. Chem. Soc.
  doi: 10.4067/S0717-97072016000100001
  contributor:
    fullname: Ozkula
– volume: 15
  start-page: 101
  year: 2003
  ident: ref_19
  article-title: Preparation and properties of resorcinol-formaldehyde organic and carbon gels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390020
  contributor:
    fullname: Ritter
– volume: 119
  start-page: 60
  year: 2016
  ident: ref_36
  article-title: Pore structure and adsorption properties of carbon xerogels derived from carbonization of tannic acid-resorcinol-formaldehyde resin
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2016.03.017
  contributor:
    fullname: Fathy
– volume: 166
  start-page: 387
  year: 2016
  ident: ref_3
  article-title: Removal of arsenic from water using nano adsorbents and challenges: A review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.10.039
  contributor:
    fullname: Lata
– volume: 68
  start-page: 544
  year: 2014
  ident: ref_25
  article-title: Heavy metal ions removal from aqueous solutions using carbon aerogels and xerogels
  publication-title: Chemik
  contributor:
    fullname: Ignasiak
– volume: 380
  start-page: 134
  year: 2012
  ident: ref_35
  article-title: Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.04.062
  contributor:
    fullname: Perdigoto
– volume: 6
  start-page: 295
  year: 2009
  ident: ref_4
  article-title: Contamination of groundwater by arsenic: A review of occurrence, causes, impacts, remedies and membrane-based purification
  publication-title: J. Integr. Environ. Sci.
  doi: 10.1080/19438150903185077
  contributor:
    fullname: Pal
SSID ssj0000913856
Score 2.2511544
Snippet Arsenic contamination of groundwater is still a global problem due to the toxicity at low dose on human health confirmed by epidemiological studies. Magnetic...
SourceID crossref
SourceType Aggregation Database
StartPage 386
Title Synthesis and Characterization of Magnetic Xerogel Monolith as an Adsorbent for As(V) Removal from Groundwater
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVCucABtQVEoSALcWhVuXSznz6GUohAQahfyq2y13ZboazRbkKVHvpf-KfM7HqdVcihcFlF1jpaZV68zzNvngl5pw54JhQempFFhkWx4kwagSKAEA90z0VqMKE_-pYMz6Iv43jc6_3uqJZmU7mf367sK_mfqMIYxBW7ZP8hsv5LYQA-Q3zhChGG671ifDIvgL-hpQimvw-99_Kt54EjcVlgm-LeWJf2ElWstkDF2xWeLwN_7YGqbClrgyZbQqyAb55jouBYT-wv7G3E7hPMTxXqRrRKXsdlXY_BQoT49UpMfsxcUltU16X1mprPoiyvlWVDO290fSfW1DX6j2LvCM3KgaKKxc0TeFo20k1Z6Htdzf8Qwj7Z-vqQnuuKHduq6UcbzBQKxG03h9EPWtlzu9RhQy7jadPFua9XjLm1mncg2e-su2Hjp738PghDjgLKnyXHgusqz-2ld6FXKMLeCCdf-KkPyMN-ymNUjY7uFmk8tFXN6jOC_fM2_lU4-72f3WE9Hfpyuk6euH0HHTQg2iA9XWySxx03yk2y4db5iu44M_Ldp6TwGKOAMbqMMWoNbTFGHcZoizEqcBL1GKOAMTqods53qcMXRXzRDr6ekbNPR6eHQ-bO6GA5UOkpE8BuOJBoIwLY2ufchLnioh-aREpzkKU5UMo00pjtjI0OApVInuaZ4bmUXCVx-JysFbbQLwiNJQdyngqZx1EkZSCAE2hg71GqoyRJxRZ52_6GEJbaiuXirzC9vM9Nr8ijBQq3ydq0nOnXwC2n8k0d3T9xN3xp
link.rule.ids 315,786,790,27955,27956
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+Characterization+of+Magnetic+Xerogel+Monolith+as+an+Adsorbent+for+As%28V%29+Removal+from+Groundwater&rft.jtitle=Processes&rft.au=Khamkure%2C+Sasirot&rft.au=Garrido-Hoyos%2C+Sof%C3%ADa+Esperanza&rft.au=Gamero-Melo%2C+Pr%C3%B3coro&rft.au=Reyes-Rosas%2C+Audberto&rft.date=2021-02-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=9&rft.issue=2&rft.spage=386&rft_id=info:doi/10.3390%2Fpr9020386&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr9020386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon