Importance of sampling frequency for the observed dynamics of SOC content in the Danish long-term monitoring network
Monitoring soil organic carbon (SOC) content is crucial for understanding the role of agricultural soils in carbon sequestration and climate change mitigation. However, the influence of sampling frequency on the accuracy of SOC content trends remains an open question. This study investigates the eff...
Saved in:
Published in | Geoderma Regional Vol. 40; p. e00931 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monitoring soil organic carbon (SOC) content is crucial for understanding the role of agricultural soils in carbon sequestration and climate change mitigation. However, the influence of sampling frequency on the accuracy of SOC content trends remains an open question. This study investigates the effect of different sampling intervals using soils from the Danish long-term Soil Monitoring Network (SMN), which includes both decadal (every 10–12 years) and more frequent (7–11 times over 30 years) sampling since 1986, where the latter samples were originally collected (and archived) for analysis of soil mineral nitrogen. Our results show that decadal sampling effectively captures long-term SOC content trends, with no significant differences compared to more frequent sampling. Year-to-year variability in SOC content was high, suggesting that short-term fluctuations may mask long-term trends. This variability is reduced when SOC content trends are analysed over multi-year periods. To balance resource limitations with the need for temporal resolution, we suggest that a 3–5 year sampling scheme could be implemented, where a subset of SMN sites is sampled each year. This approach would provide finer temporal detail without the cost and effort of annual monitoring, while maintaining the ability to detect meaningful trends in SOC content dynamics. From an operational perspective, a rotational or rolling sampling strategy where only a fraction of sites (e.g., 20–30 %) are sampled each year such that all sites are eventually sampled in the monitoring period, would also help to maintain continuity of field expertise and laboratory capacity, ensuring consistent data quality over time.
•No significant difference in long-term SOC trends between sampling frequencies.•Subsoil (25–50 cm) showed more consistent SOC trend increase than topsoil (0–25 cm).•SOC trends for data at one year apart showed high variability within each site.•The variability was reduced when SOC trends over multiple years were derived. |
---|---|
AbstractList | Monitoring soil organic carbon (SOC) content is crucial for understanding the role of agricultural soils in carbon sequestration and climate change mitigation. However, the influence of sampling frequency on the accuracy of SOC content trends remains an open question. This study investigates the effect of different sampling intervals using soils from the Danish long-term Soil Monitoring Network (SMN), which includes both decadal (every 10–12 years) and more frequent (7–11 times over 30 years) sampling since 1986, where the latter samples were originally collected (and archived) for analysis of soil mineral nitrogen. Our results show that decadal sampling effectively captures long-term SOC content trends, with no significant differences compared to more frequent sampling. Year-to-year variability in SOC content was high, suggesting that short-term fluctuations may mask long-term trends. This variability is reduced when SOC content trends are analysed over multi-year periods. To balance resource limitations with the need for temporal resolution, we suggest that a 3–5 year sampling scheme could be implemented, where a subset of SMN sites is sampled each year. This approach would provide finer temporal detail without the cost and effort of annual monitoring, while maintaining the ability to detect meaningful trends in SOC content dynamics. From an operational perspective, a rotational or rolling sampling strategy where only a fraction of sites (e.g., 20–30 %) are sampled each year such that all sites are eventually sampled in the monitoring period, would also help to maintain continuity of field expertise and laboratory capacity, ensuring consistent data quality over time. Monitoring soil organic carbon (SOC) content is crucial for understanding the role of agricultural soils in carbon sequestration and climate change mitigation. However, the influence of sampling frequency on the accuracy of SOC content trends remains an open question. This study investigates the effect of different sampling intervals using soils from the Danish long-term Soil Monitoring Network (SMN), which includes both decadal (every 10–12 years) and more frequent (7–11 times over 30 years) sampling since 1986, where the latter samples were originally collected (and archived) for analysis of soil mineral nitrogen. Our results show that decadal sampling effectively captures long-term SOC content trends, with no significant differences compared to more frequent sampling. Year-to-year variability in SOC content was high, suggesting that short-term fluctuations may mask long-term trends. This variability is reduced when SOC content trends are analysed over multi-year periods. To balance resource limitations with the need for temporal resolution, we suggest that a 3–5 year sampling scheme could be implemented, where a subset of SMN sites is sampled each year. This approach would provide finer temporal detail without the cost and effort of annual monitoring, while maintaining the ability to detect meaningful trends in SOC content dynamics. From an operational perspective, a rotational or rolling sampling strategy where only a fraction of sites (e.g., 20–30 %) are sampled each year such that all sites are eventually sampled in the monitoring period, would also help to maintain continuity of field expertise and laboratory capacity, ensuring consistent data quality over time. •No significant difference in long-term SOC trends between sampling frequencies.•Subsoil (25–50 cm) showed more consistent SOC trend increase than topsoil (0–25 cm).•SOC trends for data at one year apart showed high variability within each site.•The variability was reduced when SOC trends over multiple years were derived. |
ArticleNumber | e00931 |
Author | Lama, Rojina Harbo, Laura Sofie Elsgaard, Lars Lemming, Camilla |
Author_xml | – sequence: 1 givenname: Laura Sofie orcidid: 0000-0002-1625-6209 surname: Harbo fullname: Harbo, Laura Sofie email: laura.harbo@thuenen.de organization: Thünen Institute of Climate-Smart Agriculture, D-38116 Braunschweig, Germany – sequence: 2 givenname: Rojina orcidid: 0009-0008-5128-4003 surname: Lama fullname: Lama, Rojina organization: Department of Agroecology, Aarhus University, DK-8830 Tjele, Denmark – sequence: 3 givenname: Camilla surname: Lemming fullname: Lemming, Camilla organization: SEGES Innovation P/S, DK-8200 Aarhus N, Denmark – sequence: 4 givenname: Lars orcidid: 0000-0003-0058-7609 surname: Elsgaard fullname: Elsgaard, Lars organization: Department of Agroecology, Aarhus University, DK-8830 Tjele, Denmark |
BookMark | eNp9kDtPAzEQhC0UJMLjH1C4pLngs--BGyQUXpEiUQC15bPXweHODrYDyr_H4SioqHZWOzvSfMdo4rwDhM5LMitJ2VyuZyvwOsQZJbSeASGclQdoSllNi7xUkz_6CJ3FuCaEUF6ztqFTlBbDxocknQLsDY5y2PTWrbAJ8LEFp3bY-IDTW752EcInaKx3Tg5Wxb3_-WmOlXcJXMLW_fhupbPxDfferYoEYcCDdzb5sE91kL58eD9Fh0b2Ec5-5wl6vb97mT8Wy6eHxfxmWSjaVKmQrblquGxbowiVpOy4YkB005q26mqda2TBZEU1a-qurjRva8pLTsBQqbqanaCLMXcTfG4TkxhsVND30oHfRsFoJtFyRnm2VqNVBR9jACM2wQ4y7ERJxJ6zWIuRs9hzFiPn_HY9vkGu8WkhiKhsxgbaBlBJaG__D_gGbIyLow |
Cites_doi | 10.1016/j.geoderma.2024.117027 10.1111/gcb.14815 10.1016/j.still.2018.04.011 10.1111/ejss.12169 10.1111/j.1365-2486.2008.01658.x 10.1007/s10661-011-1982-1 10.3390/rs11060676 10.1016/j.geoderma.2023.116616 10.1126/science.abl7991 10.1007/s10705-019-10027-y 10.1111/ejss.13570 10.1007/BF00010148 10.1007/s10661-019-7435-y 10.3390/soilsystems2020035 10.1016/j.geoderma.2023.116719 10.1016/j.geoderma.2007.06.003 10.1111/j.1365-2389.2009.01157.x 10.1080/17583004.2022.2135459 10.1016/j.catena.2012.01.001 10.1002/jpln.202000113 10.1007/s13280-019-01165-2 10.3390/rs16173168 10.2136/sssaj2018.09.0335 10.1038/nature04514 10.5194/soil-3-61-2017 10.1016/j.soilbio.2008.10.033 10.1111/sum.13092 10.2136/sssaj2013.10.0447 10.1111/ejss.13379 10.1111/ejss.13477 10.1016/j.agee.2014.10.024 10.3390/su152115444 10.1111/ejss.12558 10.1016/S0167-1987(97)00044-5 10.1016/j.agee.2023.108619 10.1038/s41467-020-18887-7 10.1007/s11104-022-05718-5 10.1002/jpln.202100393 10.1016/j.geoderma.2017.09.028 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2025.e00931 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2025_e00931 S2352009425000161 |
GroupedDBID | --M 0R~ 4.4 457 4G. 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AFJKZ AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c264t-a7f869a77fc02a01b9c3e0d67f74b5d000f743a42d365b54d97529190ef2acb53 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Wed Jul 02 04:51:27 EDT 2025 Tue Jul 01 05:16:35 EDT 2025 Sat Mar 29 16:11:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Subsoil Soil monitoring network Organic carbon Topsoil Sampling design |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c264t-a7f869a77fc02a01b9c3e0d67f74b5d000f743a42d365b54d97529190ef2acb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1625-6209 0009-0008-5128-4003 0000-0003-0058-7609 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352009425000161 |
PQID | 3200279329 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3200279329 crossref_primary_10_1016_j_geodrs_2025_e00931 elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e00931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jensen, Christensen, Schjønning, Watts, Munkholm (bb0165) 2018; 69 Meurer, Hendriks, Faber, Kuikman, van Egmond, Garland, Putku, Barancikova, Makovníková, Chenu, Herrmann, Bispo (bb0190) 2024; 75 Poeplau, Don (bb0215) 2015; 200 European Commission (bb0100) 2023 Don, Seidel, Leifeld, Kätterer, Martin, Pellerin, Emde, Seitz, Chenu (bb0085) 2023 Davidson, Janssens (bb0060) 2006; 440 FAO (bb0105) 2020 Wuest (bb0270) 2014; 78 Østergaard (bb0210) 1989 Rollett, Williams (bb0240) 2020 Danmarks Statistik (bb0055) 2025 Oldfield, Eagle, Rubin, Rudek, Sanderman, Gordon (bb0205) 2022; 375 DMI, Danmarks Meteorologiske Institut (bb0075) 2021 Harbo, Olesen, Liang, Christensen, Elsgaard (bb0130) 2022; 30 Poeplau, Jacobs, Don, Vos, Schneider, Wittnebel, Tiemeyer, Heidkamp, Prietz, Flessa (bb0220) 2020; 183 Harbo, Schulz, Heinemann, Dechow, Poeplau (bb0140) 2023; 482 Black, Reed, Kendall, Parkhurst, Cannon, Chapman, Orman (bb0025) 2022; 13 Smith, Soussana, Angers, Schipper, Chenu, Rasse, Batjes (bb0260) 2020; 26 Don, Schumacher, Scherer-Lorenzen, Scholten, Schulze (bb0080) 2007; 141 Jensen, Eriksen, Thomsen, Munkholm, Christensen (bb0170) 2021 Goidts, Van Wesemael, Crucifix (bb0120) 2009; 60 Taghizadeh-Toosi, Olesen, Kristensen, Elsgaard, Østergaard, Lægdsmand, Greve, Christensen (bb0265) 2014; 65 Heidmann, Christensen, Olesen (bb0150) 2002 Gocke, Guigue, Bauke, Barkusky, Baumecker, Berns, Hobley (bb0115) 2023; 438 Poeplau, Prietz, Don (bb0225) 2022; 185 Nerger, Klüver, Cordsen, Fohrer (bb0200) 2020; 116 Abdulraheem, Zhang, Li, Moshayedi, Farooque, Hu (bb0005) 2023; 15 European Commission (bb0095) 2021 British Society of Soil Science (bb0035) 2023 Saby, Bellamy, Morvan, Arrouays, Jones, Verheijen, Kibblewhite (bb0250) 2008; 14 Dupla, Bonvin, Deluz, Lugassy, Verrecchia, Baveye, Grand, Boivin (bb0090) 2024; 40 Mobley, Yang, Yanai, Nelson, Bacon, Heine, Richter (bb0195) 2019; 83 Li, Cui, Wu, McLaren, Xia, Pandey, Liu (bb0185) 2024; 16 Chabbi, Kögel-Knabner, Rumpel (bb0040) 2009; 41 Heinze, Ludwig, Piepho, Mikutta, Don, Wordell-Dietrich, Helfrich (bb0155) 2018; 311 Angelopoulou, Tziolas, Balafoutis, Zalidis, Bochtis (bb0015) 2019; 11 Bentley, Feeney, Matthews, Evans, Garbutt, Thomson, Emmett (bb0020) 2023 Amelung, Bossio, de Vries, Kogel-Knabner, Lehmann, Amundson (bb0010) 2020; 11 Gubler, Wächter, Schwab, Müller, Keller (bb0125) 2019; 191 Rumpel, Amiraslani, Chenu, Garcia Cardenas, Kaonga, Koutika, Ladha (bb0245) 2020; 49 Heidmann, Nielsen, Olesen, Christensen, Østergaard (bb0145) 2001 Bradford, Eash, Polussa, Jevon, Kuebbing, Hammac, Rosenzweig, Oldfield (bb0030) 2023; 440 Desaules (bb0065) 2012; 184 DMI, Danmarks Meteorologiske Institut (bb0070) 2021 R Core Team (bb0230) 2023 Harbo, Olesen, Lemming, Christensen, Elsgaard (bb0135) 2023; 74 da Silva, Kay, Perfect (bib271) 1997; 44 Heitkötter, Marschner (bb0160) 2018; 2 Jungkunst, Göpel, Horvath, Ott, Brunn (bb0175) 2022; 1 Froger, Tondini, Arrouays, Oorts, Poeplau, Wetterlind, Putku (bb0110) 2024; 449 Robinson, Bentley, Jones, Feeney, Garbutt, Tandy, Lebron (bb0235) 2024; 75 Poeplau, Cora, Axel (bib272) 2017; 3 Skadell, Schneider, Gocke, Guigue, Amelung, Bauke, Hobley (bb0255) 2023; 356 Chenu, Angers, Barré, Derrien, Arrouays, Balesdent (bb0045) 2019; 188 Leinweber, Schulten, Körschens (bb0180) 1994; 160 Croft, Kuhn, Anderson (bb0050) 2012; 94 Chabbi (10.1016/j.geodrs.2025.e00931_bb0040) 2009; 41 Jensen (10.1016/j.geodrs.2025.e00931_bb0170) 2021 Harbo (10.1016/j.geodrs.2025.e00931_bb0130) 2022; 30 Poeplau (10.1016/j.geodrs.2025.e00931_bb0225) 2022; 185 Chenu (10.1016/j.geodrs.2025.e00931_bb0045) 2019; 188 FAO (10.1016/j.geodrs.2025.e00931_bb0105) 2020 Nerger (10.1016/j.geodrs.2025.e00931_bb0200) 2020; 116 Robinson (10.1016/j.geodrs.2025.e00931_bb0235) 2024; 75 Goidts (10.1016/j.geodrs.2025.e00931_bb0120) 2009; 60 Poeplau (10.1016/j.geodrs.2025.e00931_bib272) 2017; 3 Croft (10.1016/j.geodrs.2025.e00931_bb0050) 2012; 94 Danmarks Statistik (10.1016/j.geodrs.2025.e00931_bb0055) Mobley (10.1016/j.geodrs.2025.e00931_bb0195) 2019; 83 Don (10.1016/j.geodrs.2025.e00931_bb0080) 2007; 141 Bentley (10.1016/j.geodrs.2025.e00931_bb0020) 2023 Gubler (10.1016/j.geodrs.2025.e00931_bb0125) 2019; 191 R Core Team (10.1016/j.geodrs.2025.e00931_bb0230) Bradford (10.1016/j.geodrs.2025.e00931_bb0030) 2023; 440 Dupla (10.1016/j.geodrs.2025.e00931_bb0090) 2024; 40 Leinweber (10.1016/j.geodrs.2025.e00931_bb0180) 1994; 160 Harbo (10.1016/j.geodrs.2025.e00931_bb0140) 2023; 482 Heidmann (10.1016/j.geodrs.2025.e00931_bb0145) 2001 Li (10.1016/j.geodrs.2025.e00931_bb0185) 2024; 16 Poeplau (10.1016/j.geodrs.2025.e00931_bb0215) 2015; 200 Heidmann (10.1016/j.geodrs.2025.e00931_bb0150) 2002 Heinze (10.1016/j.geodrs.2025.e00931_bb0155) 2018; 311 Østergaard (10.1016/j.geodrs.2025.e00931_bb0210) 1989 Poeplau (10.1016/j.geodrs.2025.e00931_bb0220) 2020; 183 Harbo (10.1016/j.geodrs.2025.e00931_bb0135) 2023; 74 Gocke (10.1016/j.geodrs.2025.e00931_bb0115) 2023; 438 British Society of Soil Science (10.1016/j.geodrs.2025.e00931_bb0035) Meurer (10.1016/j.geodrs.2025.e00931_bb0190) 2024; 75 Skadell (10.1016/j.geodrs.2025.e00931_bb0255) 2023; 356 Amelung (10.1016/j.geodrs.2025.e00931_bb0010) 2020; 11 Angelopoulou (10.1016/j.geodrs.2025.e00931_bb0015) 2019; 11 Saby (10.1016/j.geodrs.2025.e00931_bb0250) 2008; 14 Jungkunst (10.1016/j.geodrs.2025.e00931_bb0175) 2022; 1 Wuest (10.1016/j.geodrs.2025.e00931_bb0270) 2014; 78 Desaules (10.1016/j.geodrs.2025.e00931_bb0065) 2012; 184 DMI, Danmarks Meteorologiske Institut (10.1016/j.geodrs.2025.e00931_bb0070) Rumpel (10.1016/j.geodrs.2025.e00931_bb0245) 2020; 49 Abdulraheem (10.1016/j.geodrs.2025.e00931_bb0005) 2023; 15 Froger (10.1016/j.geodrs.2025.e00931_bb0110) 2024; 449 Taghizadeh-Toosi (10.1016/j.geodrs.2025.e00931_bb0265) 2014; 65 Davidson (10.1016/j.geodrs.2025.e00931_bb0060) 2006; 440 Jensen (10.1016/j.geodrs.2025.e00931_bb0165) 2018; 69 European Commission (10.1016/j.geodrs.2025.e00931_bb0095) Don (10.1016/j.geodrs.2025.e00931_bb0085) 2023 Heitkötter (10.1016/j.geodrs.2025.e00931_bb0160) 2018; 2 Black (10.1016/j.geodrs.2025.e00931_bb0025) 2022; 13 European Commission (10.1016/j.geodrs.2025.e00931_bb0100) Oldfield (10.1016/j.geodrs.2025.e00931_bb0205) 2022; 375 Smith (10.1016/j.geodrs.2025.e00931_bb0260) 2020; 26 da Silva (10.1016/j.geodrs.2025.e00931_bib271) 1997; 44 DMI, Danmarks Meteorologiske Institut (10.1016/j.geodrs.2025.e00931_bb0075) 2021 Rollett (10.1016/j.geodrs.2025.e00931_bb0240) |
References_xml | – volume: 183 start-page: 665 year: 2020 end-page: 681 ident: bb0220 article-title: Stocks of organic carbon in German agricultural soils—key results of the first comprehensive inventory publication-title: J. Plant Nutr. Soil Sci. – year: 2023 ident: bb0230 article-title: R: A Language and Environment for Statistical Computing. Vienna, Austria – year: 2021 ident: bb0095 article-title: EU soil strategy for 2030 - reaping the benefits of healthy soils for people, food, nature and climate – year: 2025 ident: bb0055 article-title: HST77 - Høstresultat efter enhed, område, afgrøde og tid – volume: 16 start-page: 3168 year: 2024 ident: bb0185 article-title: Soil organic carbon estimation via remote sensing and machine learning techniques: global topic modeling and research trend exploration publication-title: Remote Sens. – volume: 1 year: 2022 ident: bb0175 article-title: Global soil organic carbon-climate interactions: why scales matter publication-title: WIREs Clim. Change – volume: 83 start-page: S133 year: 2019 end-page: S140 ident: bb0195 article-title: How to estimate statistically detectable trends in a time series: a study of soil carbon and nutrient concentrations at the Calhoun LTSE publication-title: Soil Sci. Soc. Am. J. – volume: 375 start-page: 1222 year: 2022 end-page: 1225 ident: bb0205 article-title: Crediting agricultural soil carbon sequestration publication-title: Science – volume: 116 start-page: 57 year: 2020 end-page: 69 ident: bb0200 article-title: Intensive long-term monitoring of soil organic carbon and nutrients in northern Germany publication-title: Nutr. Cycl. Agroecosyst. – volume: 11 start-page: 10 year: 2020 end-page: 15 ident: bb0010 article-title: Towards a global-scale soil climate mitigation strategy publication-title: Nat. Commun. – volume: 30 year: 2022 ident: bb0130 article-title: Estimating organic carbon stocks of mineral soils in Denmark: impact of bulk density and content of rock fragments publication-title: Geoderma Reg. – volume: 44 start-page: 81 year: 1997 end-page: 93 ident: bib271 article-title: “Management versus Inherent Soil Properties Effects on Bulk Density and Relative Compaction.” publication-title: Soil and Tillage Research – volume: 311 start-page: 37 year: 2018 end-page: 44 ident: bb0155 article-title: Factors controlling the variability of organic matter in the top- and subsoil of a sandy dystric cambisol under beech forest publication-title: Geoderma – year: 2023 ident: bb0100 article-title: Proposal for a directive of the European Parliament and of the council on soil monitoring and resilience (soil monitoring law) – volume: 356 year: 2023 ident: bb0255 article-title: Twenty percent of agricultural management effects on organic carbon stocks occur in subsoils – results of ten long-term experiments publication-title: Agric. Ecosyst. Environ. – volume: 14 start-page: 2432 year: 2008 end-page: 2442 ident: bb0250 article-title: Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content? publication-title: Glob. Chang. Biol. – volume: 482 start-page: 647 year: 2023 end-page: 663 ident: bb0140 article-title: Flower strips as a carbon sequestration measure in temperate croplands publication-title: Plant Soil – volume: 75 year: 2024 ident: bb0235 article-title: Five decades’ experience of long-term soil monitoring, and key design principles, to assist the EU Soil Health Mission publication-title: Eur. J. Soil Sci. – volume: 2 start-page: 35 year: 2018 ident: bb0160 article-title: Is there anybody out there? Substrate availability controls microbial activity outside of hotspots in subsoils publication-title: Soil Syst. – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: bb0060 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 188 start-page: 41 year: 2019 end-page: 52 ident: bb0045 article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations publication-title: Soil Tillage Res. – year: 2021 ident: bb0070 article-title: “Nedbør og sol i Danmark.” 2021 – volume: 65 start-page: 730 year: 2014 end-page: 740 ident: bb0265 article-title: Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009 publication-title: Eur. J. Soil Sci. – volume: 41 start-page: 256 year: 2009 end-page: 261 ident: bb0040 article-title: Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile publication-title: Soil Biol. Biochem. – year: 2023 ident: bb0020 article-title: “Qualitative Impact Assessment of Land Management Interventions on Ecosystem Services (‘QEIA’). Report-3 Theme-6: Carbon Sequestration.” Publication - Report – year: 2021 ident: bb0075 article-title: Temperaturen http://www.dmi.dk/klima/temaforside-klimaet-frem-til-i-dag/nedbor-og-sol-i-danmark/i Danmark – volume: 26 start-page: 219 year: 2020 end-page: 241 ident: bb0260 article-title: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal publication-title: Glob. Chang. Biol. – year: 2020 ident: bb0105 article-title: A protocol for measurement, monitoring, reporting and verification of soil organic carbon in agricultural landscapes – volume: 449 year: 2024 ident: bb0110 article-title: Comparing LUCAS soil and national systems: towards a harmonized European soil monitoring network publication-title: Geoderma – volume: 94 start-page: 64 year: 2012 end-page: 74 ident: bb0050 article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems publication-title: Catena – volume: 15 start-page: 15444 year: 2023 ident: bb0005 article-title: Advancement of remote sensing for soil measurements and applications: a comprehensive review publication-title: Sustainability – volume: 60 start-page: 723 year: 2009 end-page: 739 ident: bb0120 article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales publication-title: Eur. J. Soil Sci. – year: 2021 ident: bb0170 article-title: Cereal straw incorporation and ryegrass cover crops: the path to equilibrium in soil carbon storage is short publication-title: Eur. J. Soil Sci. – year: 2020 ident: bb0240 article-title: Review of best practice for SOC monitoring – volume: 75 year: 2024 ident: bb0190 article-title: How does national SOC monitoring on agricultural soilsalign with the EU strategies? An example usingfive case studies publication-title: Eur. J. Soil Sci. – volume: 13 start-page: 554 year: 2022 end-page: 580 ident: bb0025 article-title: What makes an operational farm soil carbon code? Insights from a global comparison of existing soil carbon codes using a structured analytical framework publication-title: Carbon Manag – volume: 3 start-page: 61 year: 2017 end-page: 66 ident: bib272 article-title: “Soil Organic Carbon Stocks Are Systematically Overestimated by Misuse of the Parameters Bulk Density and Rock Fragment Content.” publication-title: SOIL – start-page: 224 year: 1989 end-page: 234 ident: bb0210 article-title: Management systems to reduce impact of nitrates: Analytical methods for optimization of nitrogen fertilization in agriculture publication-title: Management Systems to Reduce Impact of Nitrates – volume: 191 start-page: 277 year: 2019 ident: bb0125 article-title: Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends publication-title: Environ. Monit. Assess. – volume: 78 start-page: 1442 year: 2014 end-page: 1447 ident: bb0270 article-title: Seasonal variation in soil organic carbon publication-title: Soil Sci. Soc. Am. J. – volume: 184 start-page: 487 year: 2012 end-page: 502 ident: bb0065 article-title: Measurement instability and temporal bias in chemical soil monitoring: sources and control measures publication-title: Environ. Monit. Assess. – year: 2023 ident: bb0035 article-title: Guidance note for land managers soil carbon: What are carbon stocks and how can they be measured – year: 2023 ident: bb0085 article-title: Carbon sequestration in soils and climate change mitigation—definitions and pitfalls publication-title: Glob. Chang. Biol. – volume: 69 start-page: 604 year: 2018 end-page: 612 ident: bb0165 article-title: Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure publication-title: Eur. J. Soil Sci. – start-page: 77 year: 2002 end-page: 86 ident: bb0150 article-title: Changes in soil C and N content in different cropping systems and soil types publication-title: Proc. Int. Workshop on Greenhouse Gas Inventories for Agriculture in the Nordic Countries. DIAS Report, Plant Production, No. 81 – volume: 11 start-page: 676 year: 2019 ident: bb0015 article-title: Remote sensing techniques for soil organic carbon estimation: a review publication-title: Remote Sens. – year: 2001 ident: bb0145 article-title: Ændringer i indhold af kulstof og kvælstof i dyrket jord: Resultater fra kvadratnettet 1987-1998. DJF Rapport, Markbrug, No. 54. Danmarks Jordbrugsforskning publication-title: Danish with English summary – volume: 160 start-page: 225 year: 1994 end-page: 235 ident: bb0180 article-title: Seasonal variations of soil organic matter in a long-term agricultural experiment publication-title: Plant Soil – volume: 40 year: 2024 ident: bb0090 article-title: Are soil carbon credits empty promises? Shortcomings of current soil carbon quantification methodologies and improvement avenues publication-title: Soil Use Manag. – volume: 74 year: 2023 ident: bb0135 article-title: Limitations of farm management data in analyses of decadal changes in SOC stocks in the Danish soil-monitoring network publication-title: Eur. J. Soil Sci. – volume: 440 year: 2023 ident: bb0030 article-title: Testing the feasibility of quantifying change in agricultural soil carbon stocks through empirical sampling publication-title: Geoderma – volume: 141 start-page: 272 year: 2007 end-page: 282 ident: bb0080 article-title: Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks publication-title: Geoderma – volume: 438 year: 2023 ident: bb0115 article-title: Interactive effects of agricultural management on soil organic carbon accrual: a synthesis of long-term field experiments in Germany publication-title: Geoderma – volume: 200 start-page: 33 year: 2015 end-page: 41 ident: bb0215 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops - a meta-analysis publication-title: Agric. Ecosyst. Environ. – volume: 185 start-page: 403 year: 2022 end-page: 416 ident: bb0225 article-title: Plot-scale variability of organic carbon in temperate agricultural soils—implications for soil monitoring publication-title: J. Plant Nutr. Soil Sci. – volume: 49 start-page: 350 year: 2020 end-page: 360 ident: bb0245 article-title: The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy publication-title: Ambio – volume: 449 year: 2024 ident: 10.1016/j.geodrs.2025.e00931_bb0110 article-title: Comparing LUCAS soil and national systems: towards a harmonized European soil monitoring network publication-title: Geoderma doi: 10.1016/j.geoderma.2024.117027 – ident: 10.1016/j.geodrs.2025.e00931_bb0230 – volume: 26 start-page: 219 year: 2020 ident: 10.1016/j.geodrs.2025.e00931_bb0260 article-title: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14815 – volume: 188 start-page: 41 year: 2019 ident: 10.1016/j.geodrs.2025.e00931_bb0045 article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.04.011 – ident: 10.1016/j.geodrs.2025.e00931_bb0100 – volume: 65 start-page: 730 year: 2014 ident: 10.1016/j.geodrs.2025.e00931_bb0265 article-title: Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009 publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12169 – volume: 14 start-page: 2432 year: 2008 ident: 10.1016/j.geodrs.2025.e00931_bb0250 article-title: Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content? publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2008.01658.x – start-page: 224 year: 1989 ident: 10.1016/j.geodrs.2025.e00931_bb0210 article-title: Management systems to reduce impact of nitrates: Analytical methods for optimization of nitrogen fertilization in agriculture – volume: 184 start-page: 487 year: 2012 ident: 10.1016/j.geodrs.2025.e00931_bb0065 article-title: Measurement instability and temporal bias in chemical soil monitoring: sources and control measures publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-011-1982-1 – volume: 11 start-page: 676 year: 2019 ident: 10.1016/j.geodrs.2025.e00931_bb0015 article-title: Remote sensing techniques for soil organic carbon estimation: a review publication-title: Remote Sens. doi: 10.3390/rs11060676 – ident: 10.1016/j.geodrs.2025.e00931_bb0055 – volume: 438 year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0115 article-title: Interactive effects of agricultural management on soil organic carbon accrual: a synthesis of long-term field experiments in Germany publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116616 – volume: 375 start-page: 1222 year: 2022 ident: 10.1016/j.geodrs.2025.e00931_bb0205 article-title: Crediting agricultural soil carbon sequestration publication-title: Science doi: 10.1126/science.abl7991 – volume: 116 start-page: 57 year: 2020 ident: 10.1016/j.geodrs.2025.e00931_bb0200 article-title: Intensive long-term monitoring of soil organic carbon and nutrients in northern Germany publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-019-10027-y – volume: 75 issue: 5 year: 2024 ident: 10.1016/j.geodrs.2025.e00931_bb0235 article-title: Five decades’ experience of long-term soil monitoring, and key design principles, to assist the EU Soil Health Mission publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13570 – volume: 160 start-page: 225 year: 1994 ident: 10.1016/j.geodrs.2025.e00931_bb0180 article-title: Seasonal variations of soil organic matter in a long-term agricultural experiment publication-title: Plant Soil doi: 10.1007/BF00010148 – year: 2001 ident: 10.1016/j.geodrs.2025.e00931_bb0145 article-title: Ændringer i indhold af kulstof og kvælstof i dyrket jord: Resultater fra kvadratnettet 1987-1998. DJF Rapport, Markbrug, No. 54. Danmarks Jordbrugsforskning – volume: 191 start-page: 277 year: 2019 ident: 10.1016/j.geodrs.2025.e00931_bb0125 article-title: Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7435-y – volume: 2 start-page: 35 year: 2018 ident: 10.1016/j.geodrs.2025.e00931_bb0160 article-title: Is there anybody out there? Substrate availability controls microbial activity outside of hotspots in subsoils publication-title: Soil Syst. doi: 10.3390/soilsystems2020035 – volume: 440 year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0030 article-title: Testing the feasibility of quantifying change in agricultural soil carbon stocks through empirical sampling publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116719 – volume: 141 start-page: 272 year: 2007 ident: 10.1016/j.geodrs.2025.e00931_bb0080 article-title: Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks publication-title: Geoderma doi: 10.1016/j.geoderma.2007.06.003 – volume: 60 start-page: 723 year: 2009 ident: 10.1016/j.geodrs.2025.e00931_bb0120 article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01157.x – start-page: 77 year: 2002 ident: 10.1016/j.geodrs.2025.e00931_bb0150 article-title: Changes in soil C and N content in different cropping systems and soil types – volume: 13 start-page: 554 year: 2022 ident: 10.1016/j.geodrs.2025.e00931_bb0025 article-title: What makes an operational farm soil carbon code? Insights from a global comparison of existing soil carbon codes using a structured analytical framework publication-title: Carbon Manag doi: 10.1080/17583004.2022.2135459 – volume: 94 start-page: 64 year: 2012 ident: 10.1016/j.geodrs.2025.e00931_bb0050 article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems publication-title: Catena doi: 10.1016/j.catena.2012.01.001 – volume: 183 start-page: 665 year: 2020 ident: 10.1016/j.geodrs.2025.e00931_bb0220 article-title: Stocks of organic carbon in German agricultural soils—key results of the first comprehensive inventory publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.202000113 – ident: 10.1016/j.geodrs.2025.e00931_bb0035 – ident: 10.1016/j.geodrs.2025.e00931_bb0240 – volume: 49 start-page: 350 year: 2020 ident: 10.1016/j.geodrs.2025.e00931_bb0245 article-title: The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy publication-title: Ambio doi: 10.1007/s13280-019-01165-2 – volume: 16 start-page: 3168 year: 2024 ident: 10.1016/j.geodrs.2025.e00931_bb0185 article-title: Soil organic carbon estimation via remote sensing and machine learning techniques: global topic modeling and research trend exploration publication-title: Remote Sens. doi: 10.3390/rs16173168 – volume: 30 year: 2022 ident: 10.1016/j.geodrs.2025.e00931_bb0130 article-title: Estimating organic carbon stocks of mineral soils in Denmark: impact of bulk density and content of rock fragments publication-title: Geoderma Reg. – volume: 83 start-page: S133 year: 2019 ident: 10.1016/j.geodrs.2025.e00931_bb0195 article-title: How to estimate statistically detectable trends in a time series: a study of soil carbon and nutrient concentrations at the Calhoun LTSE publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.09.0335 – volume: 440 start-page: 165 year: 2006 ident: 10.1016/j.geodrs.2025.e00931_bb0060 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 3 start-page: 61 issue: 1 year: 2017 ident: 10.1016/j.geodrs.2025.e00931_bib272 article-title: “Soil Organic Carbon Stocks Are Systematically Overestimated by Misuse of the Parameters Bulk Density and Rock Fragment Content.” publication-title: SOIL doi: 10.5194/soil-3-61-2017 – volume: 41 start-page: 256 year: 2009 ident: 10.1016/j.geodrs.2025.e00931_bb0040 article-title: Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.033 – volume: 40 year: 2024 ident: 10.1016/j.geodrs.2025.e00931_bb0090 article-title: Are soil carbon credits empty promises? Shortcomings of current soil carbon quantification methodologies and improvement avenues publication-title: Soil Use Manag. doi: 10.1111/sum.13092 – volume: 78 start-page: 1442 year: 2014 ident: 10.1016/j.geodrs.2025.e00931_bb0270 article-title: Seasonal variation in soil organic carbon publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.10.0447 – volume: 74 year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0135 article-title: Limitations of farm management data in analyses of decadal changes in SOC stocks in the Danish soil-monitoring network publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13379 – volume: 75 year: 2024 ident: 10.1016/j.geodrs.2025.e00931_bb0190 article-title: How does national SOC monitoring on agricultural soilsalign with the EU strategies? An example usingfive case studies publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13477 – volume: 200 start-page: 33 year: 2015 ident: 10.1016/j.geodrs.2025.e00931_bb0215 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops - a meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.10.024 – volume: 1 issue: 13 year: 2022 ident: 10.1016/j.geodrs.2025.e00931_bb0175 article-title: Global soil organic carbon-climate interactions: why scales matter publication-title: WIREs Clim. Change – volume: 15 start-page: 15444 year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0005 article-title: Advancement of remote sensing for soil measurements and applications: a comprehensive review publication-title: Sustainability doi: 10.3390/su152115444 – ident: 10.1016/j.geodrs.2025.e00931_bb0070 – year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0020 – volume: 69 start-page: 604 issue: 4 year: 2018 ident: 10.1016/j.geodrs.2025.e00931_bb0165 article-title: Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12558 – volume: 44 start-page: 81 issue: 1 year: 1997 ident: 10.1016/j.geodrs.2025.e00931_bib271 article-title: “Management versus Inherent Soil Properties Effects on Bulk Density and Relative Compaction.” publication-title: Soil and Tillage Research doi: 10.1016/S0167-1987(97)00044-5 – year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0085 article-title: Carbon sequestration in soils and climate change mitigation—definitions and pitfalls publication-title: Glob. Chang. Biol. – year: 2020 ident: 10.1016/j.geodrs.2025.e00931_bb0105 – volume: 356 year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0255 article-title: Twenty percent of agricultural management effects on organic carbon stocks occur in subsoils – results of ten long-term experiments publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2023.108619 – volume: 11 start-page: 10 year: 2020 ident: 10.1016/j.geodrs.2025.e00931_bb0010 article-title: Towards a global-scale soil climate mitigation strategy publication-title: Nat. Commun. doi: 10.1038/s41467-020-18887-7 – year: 2021 ident: 10.1016/j.geodrs.2025.e00931_bb0075 – year: 2021 ident: 10.1016/j.geodrs.2025.e00931_bb0170 article-title: Cereal straw incorporation and ryegrass cover crops: the path to equilibrium in soil carbon storage is short publication-title: Eur. J. Soil Sci. – ident: 10.1016/j.geodrs.2025.e00931_bb0095 – volume: 482 start-page: 647 year: 2023 ident: 10.1016/j.geodrs.2025.e00931_bb0140 article-title: Flower strips as a carbon sequestration measure in temperate croplands publication-title: Plant Soil doi: 10.1007/s11104-022-05718-5 – volume: 185 start-page: 403 year: 2022 ident: 10.1016/j.geodrs.2025.e00931_bb0225 article-title: Plot-scale variability of organic carbon in temperate agricultural soils—implications for soil monitoring publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.202100393 – volume: 311 start-page: 37 year: 2018 ident: 10.1016/j.geodrs.2025.e00931_bb0155 article-title: Factors controlling the variability of organic matter in the top- and subsoil of a sandy dystric cambisol under beech forest publication-title: Geoderma doi: 10.1016/j.geoderma.2017.09.028 |
SSID | ssj0002953762 |
Score | 2.3097303 |
Snippet | Monitoring soil organic carbon (SOC) content is crucial for understanding the role of agricultural soils in carbon sequestration and climate change mitigation.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e00931 |
SubjectTerms | carbon sequestration climate change data quality nitrogen Organic carbon Sampling design soil soil minerals Soil monitoring network soil organic carbon Subsoil Topsoil |
Title | Importance of sampling frequency for the observed dynamics of SOC content in the Danish long-term monitoring network |
URI | https://dx.doi.org/10.1016/j.geodrs.2025.e00931 https://www.proquest.com/docview/3200279329 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA7uePEiLiq6uhLBa5zpPLonRxmU0QEFH-gtpPMYR3a6ZWY8-O-3qtMtrCDCXvpFuglfkqov6S9VhJzkQZZ-WCrmMjhIFzyzzg5ZHmyhMuExTyCqLa7z8YO8elJPa2TU7YVBWWVr-5NNb6x1-6Tfotl_nc36d1w0IYOg0yXi8oOsc_Cugx5ZP7ucjK8_llq4xpglvEkzpzjDd7pNdI3Saxpqv8DQ3VydBpziZ185qU_muvFBF1tksyWP9CzV7ydZC9U2WV3OGw4NNad1pEuLGvFqSuMiqaTfKfBSCjyP1iUuwQZPfUpDv8Tydzcjinp1cD50VjXlcNv58pn-qaspQ8tN583AxxVAWiXZ-A55uDi_H41Zm0uBOaA8K2aLOMy1LYroBtwOslI7EQY-L2IhS-UBJbgQVnIvclUq6XWhuAa2ECK3rlRil_Squgp7hCqhZHQSpiJRS2XzobQCvLwOzrvoMr1PWAeeeU0hM0ynJXsxCWyDYJsE9j4pOoTNP01vwKp_8-Zx1yAGRgX-6rBVqN-WRqD2BEwP17_---sHZAPvkuDskPRWi7fwGxjIqjxqexieJ7ePk7_4e92Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBUhObSXktCWpvlSoDmqu5Yle3XoYUkTdrvp5pAEclNlfWy3ZO2w3hD2d_UPdsayCy2UQiAXY2zZmKfRzJP8NEPIh8yLwg0KyWwCB2G9Y8aaAcu8yWWSOqwTiGqLaTa6EV9u5e0G-dnthUFZZev7o09vvHV7pdei2bufz3tXPG1SBoHRReLSKisnfv0I87b60_gzdPIJ5-dn16cj1pYWYBYYwIqZPAwyZfI82D43_aRQNvV9l-UhF4V08EI4SY3gLs1kIYVTueQKgqcP3NgCS0WA39_CbFgwrLaG48lo-ntphyvMkcKbsnaSM_zGbtNeoyyb-cotMVU4lx89Likk_wqKf4WHJuadb5NXLVmlw4jHDtnw5WuyGi8azg5I0SrQ2qAmvZzRsIyq7DUFHkyBV9KqwCVf76iLZe9rbH91eUpRHw_Bjs7Lph1uc6-_07uqnDGMFHTROBpccaRllKm_ITfPAvBbsllWpX9HqEylCFbA1CcoIU02ECYFVqG8dTbYRO0S1oGn72OKDt1p137oCLZGsHUEe5fkHcL6D1PTEEX-8-Rx1yEaRiH-WjGlrx5qnaLWBVwdV--f_PYj8mJ0_fVCX4ynkz3yEu9Esds-2VwtH_wBsJ9VcdhaGyXfntvAfwGXbRhd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+sampling+frequency+for+the+observed+dynamics+of+SOC+content+in+the+Danish+long-term+monitoring+network&rft.jtitle=Geoderma+Regional&rft.au=Harbo%2C+Laura+Sofie&rft.au=Lama%2C+Rojina&rft.au=Lemming%2C+Camilla&rft.au=Elsgaard%2C+Lars&rft.date=2025-03-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e00931&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |