Analysing Household Food Consumption in Turkey Using Machine Learning Techniques

The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data analysis have opened new avenues for investigating this subject. While studies have employed novel data analysis methods to examine the facto...

Full description

Saved in:
Bibliographic Details
Published inAGRIS on-line Papers in Economics and Informatics Vol. 16; no. 2; pp. 97 - 105
Main Authors Oztornaci, Burak, Ata, Baris, Kartal, Serkan
Format Journal Article
LanguageEnglish
Published Prague Faculty of Economics and Management CULS Prague 01.06.2024
Subjects
Online AccessGet full text
ISSN1804-1930
1804-1930
DOI10.7160/aol.2024.160207

Cover

Loading…
Abstract The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data analysis have opened new avenues for investigating this subject. While studies have employed novel data analysis methods to examine the factors impacting household food consumption, the effect of the chosen analysis method on the research outcome remains unexplored. In this study, we aimed to investigate household food consumption in Turkey between 2012-2019 using various data analysis techniques (Linear Regression, Support Vector Machine, Random Forest, eXtreme Gradient Boosting, and Multi-Layer Perception). Our findings reveal that income emerged as the most influential factor in household food consumption across all methods. However, the impact of other factors varied depending on the method employed. This suggests that the method chosen to analyse factors other than income in studies of this nature can significantly impact the results. Researchers should exercise caution when selecting their analysis method.
AbstractList The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data analysis have opened new avenues for investigating this subject. While studies have employed novel data analysis methods to examine the factors impacting household food consumption, the effect of the chosen analysis method on the research outcome remains unexplored. In this study, we aimed to investigate household food consumption in Turkey between 2012-2019 using various data analysis techniques (Linear Regression, Support Vector Machine, Random Forest, eXtreme Gradient Boosting, and Multi-Layer Perception). Our findings reveal that income emerged as the most influential factor in household food consumption across all methods. However, the impact of other factors varied depending on the method employed. This suggests that the method chosen to analyse factors other than income in studies of this nature can significantly impact the results. Researchers should exercise caution when selecting their analysis method..
Author Oztornaci, Burak
Ata, Baris
Kartal, Serkan
Author_xml – sequence: 1
  givenname: Burak
  surname: Oztornaci
  fullname: Oztornaci, Burak
– sequence: 2
  givenname: Baris
  surname: Ata
  fullname: Ata, Baris
– sequence: 3
  givenname: Serkan
  surname: Kartal
  fullname: Kartal, Serkan
BookMark eNpNkDtvwjAQgK2KSqWUuaulzgG_4jgjQqVUomoHmC3HOZfQYFObDPz7JqVDb7mHPt3pvns08sEDQo-UzAoqydyEdsYIE7O-YaS4QWOqiMhoycnoX32HpikdSB-8ZLwUY_Sx8Ka9pMZ_4nXoEuxDW-NVCDVeBp-64-ncBI8bj7dd_IIL3v2ib8buGw94Ayb6YbAFu_fNdwfpAd060yaY_uUJ2q2et8t1tnl_eV0uNpllUpwzBbmQFmonlFOkqowC6Rzn0nCWU-5YAXlhVVnndVEZWwnCnKkosURVNVDKJ-jpuvcUw3D3rA-hi_0zSXNSFjnLSyl7an6lbAwpRXD6FJujiRdNiR7M6d6cHszpqzn-A-oTY6w
ContentType Journal Article
Copyright 2024. This work is published under https://online.agris.cz/about (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://online.agris.cz/about (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
0U~
1-H
3V.
7WY
7WZ
7X2
7XB
87Z
8FE
8FG
8FH
8FK
8FL
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BYOGL
CCPQU
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
L.-
L.0
M0C
M0K
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.7160/aol.2024.160207
DatabaseName CrossRef
Global News & ABI/Inform Professional
Trade PRO
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
East Europe, Central Europe Database
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Agricultural Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Trade PRO
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ABI/INFORM Professional Standard
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Agricultural Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1804-1930
EndPage 105
ExternalDocumentID 10_7160_aol_2024_160207
GeographicLocations Turkey
GeographicLocations_xml – name: Turkey
GroupedDBID 5VS
7WY
7X2
8FE
8FG
8FH
8FL
AAYXX
ABDBF
ABUWG
ACUHS
AEUYN
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
BYOGL
CCPQU
CITATION
DWQXO
EOJEC
ESX
FRNLG
HCIFZ
JAG
K60
K6~
KQ8
M0C
M0K
MK~
M~E
OBODZ
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RNS
TUS
0U~
1-H
3V.
7XB
8FK
AZQEC
L.-
L.0
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c264t-8e546cedf48f80bba8e6ff336a32513f27e57c89d5d7bacb402fab10c08bde113
IEDL.DBID BENPR
ISSN 1804-1930
IngestDate Sat Jul 26 02:23:04 EDT 2025
Tue Jul 01 00:53:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-8e546cedf48f80bba8e6ff336a32513f27e57c89d5d7bacb402fab10c08bde113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3097525966?pq-origsite=%requestingapplication%
PQID 3097525966
PQPubID 436323
PageCount 9
ParticipantIDs proquest_journals_3097525966
crossref_primary_10_7160_aol_2024_160207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Prague
PublicationPlace_xml – name: Prague
PublicationTitle AGRIS on-line Papers in Economics and Informatics
PublicationYear 2024
Publisher Faculty of Economics and Management CULS Prague
Publisher_xml – name: Faculty of Economics and Management CULS Prague
SSID ssj0000392394
Score 2.2787879
Snippet The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 97
SubjectTerms Algorithms
Consumer Price Index
Data analysis
Datasets
Decision trees
Econometrics
Expenditures
Family income
Food
Food consumption
Food prices
Households
Impact analysis
Machine learning
Methods
Multilayers
Regression analysis
Statistical analysis
Support vector machines
Variables
Title Analysing Household Food Consumption in Turkey Using Machine Learning Techniques
URI https://www.proquest.com/docview/3097525966
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoEB8RSFUnlgYLGaxHHiTKhUDRVSqwq1UrfITi4VS9Ln_8dOHB4LsyUP38l33z38HcAT1xweGZM0i1RIjaASFRxDiiG6EZcyTAPzOXk6CyZL_33FV7bgtrdjlY1PrBx1VqamRj5g-hquuXoQvGy21GyNMt1Vu0KjBR3tggVvQ-d1PJt_fFdZHB3-WeTXmj46NXAGsjQNB883ZRXPLJH9HY7-euMqxMQXcG65IRnWxryEEyyu4Gy43ll9DLyGuRURKdZkonN2NM0jEpdlRkbVX8rKAZDPgiyOO_08STURQKbVxCQSK6a6JotGuXV_A8t4vBhNqF2KQFPNXQ5UIPeDFLPcF7lwlJICgzxnLJBMUxWWeyHyMBVRxrNQyVTp_DCXynVSR6gMXZfdQrsoC7wDouOUck2SKn3mK5SRx6XRxzNbyXIeiS48N9gkm1r7ItE5g4Ex0TAmBsakhrELvQa7xD6CffJjsvv_jx_g1NxVT2D1oH3YHfFRx_qD6kNLxG99a9YvnhurEw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEB1xFECBOEUgwBYg0VjYXq-PAqEAiRJyKEJBojO79jiisSGHED_FNzLrg6OhS73SFG9n5943AGeCYnjkXBpxoDxDEyoZvkDPQA-tQEjpRa7-nNwfuO1H5_5JPC3BZ_UXRo9VVjYxN9RxFuka-SUnMYJidde9fn0z9NYo3V2tVmgUatHFj3dK2aZXnTu633PbbjVHt22j3CpgROT8Z4aPwnEjjBPHT3xTKemjmyScu5KTr-eJ7aHwIj-IRewpGSlKsBKpLDMyfRWjZXGSuwyrFGYE9IpWb5qD4cN3VcekcIMHTsEhRKmIeSkz3eCwHV3GsfXS2t_u76_1z11aaws2y1iUNQrl2YYlTHdgozGelHwcuAvDkrQkHbN2Np-iblaxVpbF7Db_u5kbHPaSstF8QuaA5RMIrJ9PaCIryVvHbFQxxU734HEhcO3DSpqleACM_KKydFIsHe4olIEtpObj01vQEhH4NbiosAlfC66NkHIUDWNIMIYaxrCAsQb1CruwfHTT8EdFDv8_PoW19qjfC3udQfcI1rXcYvqrDiuzyRyPKc6YqZPychk8L1qfvgDebOi2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RIFXlAPQlApTugUq9mNher70-VIhXmhCgOSQSPbm79jhCSHZIHCH60_gr_Blm_eiDQ28cerY0kndmZ7557DcAu4IwPHKurCTUgWUIlSwpMLAwQCcUSgWxbx4nn1_4vbF3eikul-C-eQtjxiobn1g66iSPTY28w0mMIKzu-520HosYHnf3pzeW2SBlOq3NOo3KRAZ4d0vp2_xL_5h0_cl1uyejo55VbxiwYgIChSVReH6MSerJVNpaK4l-mnLuK05xn6dugCKIZZiIJNAq1pRspUo7dmxLnaDjcJL7ApalT2lHC5YPv3_7evarwmMT9OChV_EJUVpid1Rumh2uZ0o6rllg-2co_DsSlOGtuwYPzcFUUy3Xe4tC78U_n3BG_p8ntw6rNepmB9U1eQ1LmL2BlYPJrGYewbcwrOlZsgnr5Ys5mrYc6-Z5wo7KV6qla2VXGRstZuT4WDlrwc7LWVRkNU3thI0aTtz5Oxg_yy-9h1aWZ7gBjBCAdkz6rzzuaVShK5RhHjT73lIRyjZ8bjQfTStWkYiyMWMkERlJZIwkqoykDduNVqPavcyj3yrd_Pfnj_CSdB2d9S8GW_DKiK3G3LahVcwW-IEAVaF3astl8OO5Vf4IGVg1WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysing+Household+Food+Consumption+in+Turkey+Using+Machine+Learning+Techniques&rft.jtitle=AGRIS+on-line+Papers+in+Economics+and+Informatics&rft.au=Oztornaci%2C+Burak&rft.au=Ata%2C+Baris&rft.au=Kartal%2C+Serkan&rft.date=2024-06-01&rft.pub=Faculty+of+Economics+and+Management+CULS+Prague&rft.eissn=1804-1930&rft.volume=16&rft.issue=2&rft.spage=97&rft.epage=105&rft_id=info:doi/10.7160%2Faol.2024.160207&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1804-1930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1804-1930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1804-1930&client=summon