Analysing Household Food Consumption in Turkey Using Machine Learning Techniques
The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data analysis have opened new avenues for investigating this subject. While studies have employed novel data analysis methods to examine the facto...
Saved in:
Published in | AGRIS on-line Papers in Economics and Informatics Vol. 16; no. 2; pp. 97 - 105 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Prague
Faculty of Economics and Management CULS Prague
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1804-1930 1804-1930 |
DOI | 10.7160/aol.2024.160207 |
Cover
Loading…
Abstract | The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data analysis have opened new avenues for investigating this subject. While studies have employed novel data analysis methods to examine the factors impacting household food consumption, the effect of the chosen analysis method on the research outcome remains unexplored. In this study, we aimed to investigate household food consumption in Turkey between 2012-2019 using various data analysis techniques (Linear Regression, Support Vector Machine, Random Forest, eXtreme Gradient Boosting, and Multi-Layer Perception). Our findings reveal that income emerged as the most influential factor in household food consumption across all methods. However, the impact of other factors varied depending on the method employed. This suggests that the method chosen to analyse factors other than income in studies of this nature can significantly impact the results. Researchers should exercise caution when selecting their analysis method. |
---|---|
AbstractList | The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data analysis have opened new avenues for investigating this subject. While studies have employed novel data analysis methods to examine the factors impacting household food consumption, the effect of the chosen analysis method on the research outcome remains unexplored. In this study, we aimed to investigate household food consumption in Turkey between 2012-2019 using various data analysis techniques (Linear Regression, Support Vector Machine, Random Forest, eXtreme Gradient Boosting, and Multi-Layer Perception). Our findings reveal that income emerged as the most influential factor in household food consumption across all methods. However, the impact of other factors varied depending on the method employed. This suggests that the method chosen to analyse factors other than income in studies of this nature can significantly impact the results. Researchers should exercise caution when selecting their analysis method.. |
Author | Oztornaci, Burak Ata, Baris Kartal, Serkan |
Author_xml | – sequence: 1 givenname: Burak surname: Oztornaci fullname: Oztornaci, Burak – sequence: 2 givenname: Baris surname: Ata fullname: Ata, Baris – sequence: 3 givenname: Serkan surname: Kartal fullname: Kartal, Serkan |
BookMark | eNpNkDtvwjAQgK2KSqWUuaulzgG_4jgjQqVUomoHmC3HOZfQYFObDPz7JqVDb7mHPt3pvns08sEDQo-UzAoqydyEdsYIE7O-YaS4QWOqiMhoycnoX32HpikdSB-8ZLwUY_Sx8Ka9pMZ_4nXoEuxDW-NVCDVeBp-64-ncBI8bj7dd_IIL3v2ib8buGw94Ayb6YbAFu_fNdwfpAd060yaY_uUJ2q2et8t1tnl_eV0uNpllUpwzBbmQFmonlFOkqowC6Rzn0nCWU-5YAXlhVVnndVEZWwnCnKkosURVNVDKJ-jpuvcUw3D3rA-hi_0zSXNSFjnLSyl7an6lbAwpRXD6FJujiRdNiR7M6d6cHszpqzn-A-oTY6w |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://online.agris.cz/about (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://online.agris.cz/about (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 0U~ 1-H 3V. 7WY 7WZ 7X2 7XB 87Z 8FE 8FG 8FH 8FK 8FL ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI BYOGL CCPQU DWQXO FRNLG F~G HCIFZ K60 K6~ L.- L.0 M0C M0K P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.7160/aol.2024.160207 |
DatabaseName | CrossRef Global News & ABI/Inform Professional Trade PRO ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection Natural Science Collection East Europe, Central Europe Database ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Agricultural Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Trade PRO ProQuest Central China ABI/INFORM Complete ProQuest Central Global News & ABI/Inform Professional ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ABI/INFORM Professional Standard Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition East Europe, Central Europe Database Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1804-1930 |
EndPage | 105 |
ExternalDocumentID | 10_7160_aol_2024_160207 |
GeographicLocations | Turkey |
GeographicLocations_xml | – name: Turkey |
GroupedDBID | 5VS 7WY 7X2 8FE 8FG 8FH 8FL AAYXX ABDBF ABUWG ACUHS AEUYN AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BENPR BEZIV BGLVJ BHPHI BPHCQ BYOGL CCPQU CITATION DWQXO EOJEC ESX FRNLG HCIFZ JAG K60 K6~ KQ8 M0C M0K MK~ M~E OBODZ OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC RNS TUS 0U~ 1-H 3V. 7XB 8FK AZQEC L.- L.0 PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c264t-8e546cedf48f80bba8e6ff336a32513f27e57c89d5d7bacb402fab10c08bde113 |
IEDL.DBID | BENPR |
ISSN | 1804-1930 |
IngestDate | Sat Jul 26 02:23:04 EDT 2025 Tue Jul 01 00:53:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c264t-8e546cedf48f80bba8e6ff336a32513f27e57c89d5d7bacb402fab10c08bde113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3097525966?pq-origsite=%requestingapplication% |
PQID | 3097525966 |
PQPubID | 436323 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3097525966 crossref_primary_10_7160_aol_2024_160207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Prague |
PublicationPlace_xml | – name: Prague |
PublicationTitle | AGRIS on-line Papers in Economics and Informatics |
PublicationYear | 2024 |
Publisher | Faculty of Economics and Management CULS Prague |
Publisher_xml | – name: Faculty of Economics and Management CULS Prague |
SSID | ssj0000392394 |
Score | 2.2787879 |
Snippet | The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 97 |
SubjectTerms | Algorithms Consumer Price Index Data analysis Datasets Decision trees Econometrics Expenditures Family income Food Food consumption Food prices Households Impact analysis Machine learning Methods Multilayers Regression analysis Statistical analysis Support vector machines Variables |
Title | Analysing Household Food Consumption in Turkey Using Machine Learning Techniques |
URI | https://www.proquest.com/docview/3097525966 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoEB8RSFUnlgYLGaxHHiTKhUDRVSqwq1UrfITi4VS9Ln_8dOHB4LsyUP38l33z38HcAT1xweGZM0i1RIjaASFRxDiiG6EZcyTAPzOXk6CyZL_33FV7bgtrdjlY1PrBx1VqamRj5g-hquuXoQvGy21GyNMt1Vu0KjBR3tggVvQ-d1PJt_fFdZHB3-WeTXmj46NXAGsjQNB883ZRXPLJH9HY7-euMqxMQXcG65IRnWxryEEyyu4Gy43ll9DLyGuRURKdZkonN2NM0jEpdlRkbVX8rKAZDPgiyOO_08STURQKbVxCQSK6a6JotGuXV_A8t4vBhNqF2KQFPNXQ5UIPeDFLPcF7lwlJICgzxnLJBMUxWWeyHyMBVRxrNQyVTp_DCXynVSR6gMXZfdQrsoC7wDouOUck2SKn3mK5SRx6XRxzNbyXIeiS48N9gkm1r7ItE5g4Ex0TAmBsakhrELvQa7xD6CffJjsvv_jx_g1NxVT2D1oH3YHfFRx_qD6kNLxG99a9YvnhurEw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEB1xFECBOEUgwBYg0VjYXq-PAqEAiRJyKEJBojO79jiisSGHED_FNzLrg6OhS73SFG9n5943AGeCYnjkXBpxoDxDEyoZvkDPQA-tQEjpRa7-nNwfuO1H5_5JPC3BZ_UXRo9VVjYxN9RxFuka-SUnMYJidde9fn0z9NYo3V2tVmgUatHFj3dK2aZXnTu633PbbjVHt22j3CpgROT8Z4aPwnEjjBPHT3xTKemjmyScu5KTr-eJ7aHwIj-IRewpGSlKsBKpLDMyfRWjZXGSuwyrFGYE9IpWb5qD4cN3VcekcIMHTsEhRKmIeSkz3eCwHV3GsfXS2t_u76_1z11aaws2y1iUNQrl2YYlTHdgozGelHwcuAvDkrQkHbN2Np-iblaxVpbF7Db_u5kbHPaSstF8QuaA5RMIrJ9PaCIryVvHbFQxxU734HEhcO3DSpqleACM_KKydFIsHe4olIEtpObj01vQEhH4NbiosAlfC66NkHIUDWNIMIYaxrCAsQb1CruwfHTT8EdFDv8_PoW19qjfC3udQfcI1rXcYvqrDiuzyRyPKc6YqZPychk8L1qfvgDebOi2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RIFXlAPQlApTugUq9mNher70-VIhXmhCgOSQSPbm79jhCSHZIHCH60_gr_Blm_eiDQ28cerY0kndmZ7557DcAu4IwPHKurCTUgWUIlSwpMLAwQCcUSgWxbx4nn1_4vbF3eikul-C-eQtjxiobn1g66iSPTY28w0mMIKzu-520HosYHnf3pzeW2SBlOq3NOo3KRAZ4d0vp2_xL_5h0_cl1uyejo55VbxiwYgIChSVReH6MSerJVNpaK4l-mnLuK05xn6dugCKIZZiIJNAq1pRspUo7dmxLnaDjcJL7ApalT2lHC5YPv3_7evarwmMT9OChV_EJUVpid1Rumh2uZ0o6rllg-2co_DsSlOGtuwYPzcFUUy3Xe4tC78U_n3BG_p8ntw6rNepmB9U1eQ1LmL2BlYPJrGYewbcwrOlZsgnr5Ys5mrYc6-Z5wo7KV6qla2VXGRstZuT4WDlrwc7LWVRkNU3thI0aTtz5Oxg_yy-9h1aWZ7gBjBCAdkz6rzzuaVShK5RhHjT73lIRyjZ8bjQfTStWkYiyMWMkERlJZIwkqoykDduNVqPavcyj3yrd_Pfnj_CSdB2d9S8GW_DKiK3G3LahVcwW-IEAVaF3astl8OO5Vf4IGVg1WQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysing+Household+Food+Consumption+in+Turkey+Using+Machine+Learning+Techniques&rft.jtitle=AGRIS+on-line+Papers+in+Economics+and+Informatics&rft.au=Oztornaci%2C+Burak&rft.au=Ata%2C+Baris&rft.au=Kartal%2C+Serkan&rft.date=2024-06-01&rft.pub=Faculty+of+Economics+and+Management+CULS+Prague&rft.eissn=1804-1930&rft.volume=16&rft.issue=2&rft.spage=97&rft.epage=105&rft_id=info:doi/10.7160%2Faol.2024.160207&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1804-1930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1804-1930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1804-1930&client=summon |