A Soft Sensor for Flow Estimation and Uncertainty Analysis Based on Artificial Intelligence: A Case Study of Water Supply Systems
The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of industrial systems demands efficient sensing and control methods, giving rise to soft sensors that have the potential to replace traditional...
Saved in:
Published in | Automation (Basel) Vol. 5; no. 2; pp. 106 - 127 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of industrial systems demands efficient sensing and control methods, giving rise to soft sensors that have the potential to replace traditional physical sensors in order to reduce costs and enhance efficiency. This study explores the implementation of an artificial neural network (ANN) based soft sensor model in a water supply system to predict flow rates within the system. The soft sensor is centered on a Long Short-Term Memory (LSTM) artificial neural network model using Monte Carlo dropout to reduce uncertainty and improve estimation performance. Based on the results of this work, it is concluded that the proposed soft sensor (with Monte Carlo dropout) can predict flow rates more precisely, contributing to the reduction in water losses, as well as cost savings. This approach offers a valuable solution for minimizing water losses and ensuring the efficient use of this vital resource. Regarding the use of soft sensors based on LSTM neural networks with a careful choice of Monte Carlo dropout parameters, when compared to the multilayer perceptron model, the LSTM model with Monte Carlo dropout showed better mean absolute error, root mean square error, and coefficient of determination: 0.2450, 0.3121, and 0.996437 versus 0.2556, 0.3522, and 0.9954. Furthermore, this choice of Monte Carlo dropout parameters allowed us to achieve an LSTM network model capable of reducing uncertainty to 1.8290, keeping the error metrics also at low levels. |
---|---|
AbstractList | The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of industrial systems demands efficient sensing and control methods, giving rise to soft sensors that have the potential to replace traditional physical sensors in order to reduce costs and enhance efficiency. This study explores the implementation of an artificial neural network (ANN) based soft sensor model in a water supply system to predict flow rates within the system. The soft sensor is centered on a Long Short-Term Memory (LSTM) artificial neural network model using Monte Carlo dropout to reduce uncertainty and improve estimation performance. Based on the results of this work, it is concluded that the proposed soft sensor (with Monte Carlo dropout) can predict flow rates more precisely, contributing to the reduction in water losses, as well as cost savings. This approach offers a valuable solution for minimizing water losses and ensuring the efficient use of this vital resource. Regarding the use of soft sensors based on LSTM neural networks with a careful choice of Monte Carlo dropout parameters, when compared to the multilayer perceptron model, the LSTM model with Monte Carlo dropout showed better mean absolute error, root mean square error, and coefficient of determination: 0.2450, 0.3121, and 0.996437 versus 0.2556, 0.3522, and 0.9954. Furthermore, this choice of Monte Carlo dropout parameters allowed us to achieve an LSTM network model capable of reducing uncertainty to 1.8290, keeping the error metrics also at low levels. |
Author | Cardoso, Altamar Alencar Fernandes, Fernanda M. Lima Alencar, Gabryel M. Raposo de Moura Duarte, Rafael Gomes, Heber Pimentel Melo, Petrônio Ferreira de Villanueva, Juan M. Mauricio |
Author_xml | – sequence: 1 givenname: Gabryel M. Raposo de surname: Alencar fullname: Alencar, Gabryel M. Raposo de – sequence: 2 givenname: Fernanda M. Lima surname: Fernandes fullname: Fernandes, Fernanda M. Lima – sequence: 3 givenname: Rafael surname: Moura Duarte fullname: Moura Duarte, Rafael – sequence: 4 givenname: Petrônio Ferreira de surname: Melo fullname: Melo, Petrônio Ferreira de – sequence: 5 givenname: Altamar Alencar surname: Cardoso fullname: Cardoso, Altamar Alencar – sequence: 6 givenname: Heber Pimentel orcidid: 0000-0001-8374-1469 surname: Gomes fullname: Gomes, Heber Pimentel – sequence: 7 givenname: Juan M. Mauricio orcidid: 0000-0002-8760-9390 surname: Villanueva fullname: Villanueva, Juan M. Mauricio |
BookMark | eNplkU2LFDEQhoOs4LruD_AW8Dyaz-60t3bY1YEFD-3iMaSTypKhNxmTNNLH_edGR0TYQ1FF8dRb1Fuv0UVMERB6S8l7zgfywaw1PZoaUpSEEULUC3TJup7vBJHs4r_6Fbou5dgI1g9C9uISPY14Sr7iCWJJGfsWt0v6iW9KDWdJbKLD99FCribEuuExmmUroeBPpoDDjRhzDT7YYBZ8iBWWJTxAG_iIR7xvDJ7q6jacPP5uKmQ8rafTsuFpKxUeyxv00pulwPXffIXub2--7b_s7r5-PuzHu51lnag7ZXtH2SBmZRUjnFFDpe2o9I54cGJwILgcKIG5V04S21PnlDBSEMc6sIRfocNZ1yVz1KfczsubTiboP42UH7Rpd9gFtJ2lM1wyZ4ZO2GFQdp6Vh175mQiYTdN6d9Y65fRjhVL1Ma25-VI0Jz1rfhPZNYqeKZtTKRn8v62U6N-P088ex38B_eiQ8Q |
Cites_doi | 10.1023/B:AIRE.0000045502.10941.a9 10.1109/EALS.2014.7009497 10.1109/ACCESS.2020.2988668 10.1016/j.isatra.2022.10.044 10.1007/s11269-022-03175-4 10.1109/DDCLS58216.2023.10165845 10.3390/s23229236 10.1016/j.jwpe.2023.104041 10.3390/s24051396 10.1109/TCST.2017.2767022 10.3390/s23229175 10.3390/automation4010002 10.1007/978-94-015-3994-4 10.1016/j.jtice.2023.105185 10.3390/s22239130 10.3390/s22083084 10.3390/s21010075 10.3390/s24072340 10.3390/s24082521 10.1080/00031305.1984.10483182 10.3390/s23229119 10.1016/j.ins.2019.12.022 10.1162/neco.1997.9.8.1735 10.21437/Interspeech.2014-80 10.1109/EAIS.2016.7502508 10.1109/19.536707 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/automation5020008 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2673-4052 |
EndPage | 127 |
ExternalDocumentID | oai_doaj_org_article_cb5da352da964c998cbb8fe78fb04eba 10_3390_automation5020008 |
GroupedDBID | AADQD AAYXX ABJCF AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ M7S MODMG M~E OK1 PIMPY PTHSS 8FE 8FG ABUWG AZQEC DWQXO L6V PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c264t-8c7d1294b8c820321a15c615fd0fed49de435910eb78d50c71dd84a540d26ec03 |
IEDL.DBID | DOA |
ISSN | 2673-4052 |
IngestDate | Tue Oct 22 15:07:37 EDT 2024 Thu Oct 10 18:12:12 EDT 2024 Fri Aug 23 01:12:44 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c264t-8c7d1294b8c820321a15c615fd0fed49de435910eb78d50c71dd84a540d26ec03 |
ORCID | 0000-0001-8374-1469 0000-0002-8760-9390 |
OpenAccessLink | https://doaj.org/article/cb5da352da964c998cbb8fe78fb04eba |
PQID | 3072267056 |
PQPubID | 5046915 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cb5da352da964c998cbb8fe78fb04eba proquest_journals_3072267056 crossref_primary_10_3390_automation5020008 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Automation (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shen (ref_15) 2020; 8 Shan (ref_10) 2023; 2023 Flores (ref_3) 2023; 4 ref_14 ref_36 ref_13 Gal (ref_27) 1996; 45 ref_35 ref_12 ref_30 Hua (ref_11) 2023; 136 Hodge (ref_29) 2004; 22 ref_19 ref_18 ref_17 Hochreiter (ref_25) 1997; 9 Bezerra (ref_32) 2020; 518 Bernieri (ref_31) 1996; 45 Ge (ref_16) 2019; 27 ref_24 Angelov (ref_33) 2014; 8 ref_23 ref_22 ref_20 Salvino (ref_4) 2022; 22 ref_1 ref_2 Brito (ref_7) 2014; 2 ref_28 Saw (ref_34) 1984; 38 ref_26 ref_9 ref_8 Xu (ref_21) 2023; 54 Flores (ref_5) 2022; 22 ref_6 |
References_xml | – volume: 22 start-page: 85 year: 2004 ident: ref_29 article-title: A survey of outlier detection methodologies publication-title: Artif. Intell. Rev. doi: 10.1023/B:AIRE.0000045502.10941.a9 contributor: fullname: Hodge – ident: ref_30 – ident: ref_13 doi: 10.1109/EALS.2014.7009497 – volume: 8 start-page: 73855 year: 2020 ident: ref_15 article-title: LSTM Soft Sensor Development of Batch Processes With Multivariate Trajectory-Based Ensemble Just-in-Time Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988668 contributor: fullname: Shen – volume: 2 start-page: 605 year: 2014 ident: ref_7 article-title: Design of a Soft Sensor with Technique Neuro-Fuzzy to Infer the Product Composition a Distillation Process publication-title: Lect. Notes Eng. Comput. Sci. contributor: fullname: Brito – volume: 136 start-page: 139 year: 2023 ident: ref_11 article-title: An evolutionary deep learning soft sensor model based on random forest feature selection technique for penicillin fermentation process publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.10.044 contributor: fullname: Hua – volume: 22 start-page: 2779 year: 2022 ident: ref_4 article-title: Design of a Control System Using an Artificial Neural Network to Optimize the Energy Efficiency of Water Distribution Systems publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03175-4 contributor: fullname: Salvino – ident: ref_20 doi: 10.1109/DDCLS58216.2023.10165845 – ident: ref_19 doi: 10.3390/s23229236 – volume: 54 start-page: 104041 year: 2023 ident: ref_21 article-title: A novel long short-term memory artificial neural network (LSTM)-based soft-sensor to monitor and forecast wastewater treatment performance publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2023.104041 contributor: fullname: Xu – volume: 45 start-page: 894 year: 1996 ident: ref_27 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning publication-title: IEEE Trans. Instrum. Meas. contributor: fullname: Gal – ident: ref_8 doi: 10.3390/s24051396 – volume: 27 start-page: 323 year: 2019 ident: ref_16 article-title: Supervised Nonlinear Dynamic System for Soft Sensor Application Aided by Variational Auto-Encoder publication-title: IEEE Trans. Control. Syst. Technol. doi: 10.1109/TCST.2017.2767022 contributor: fullname: Ge – ident: ref_24 doi: 10.3390/s23229175 – ident: ref_1 – volume: 4 start-page: 11 year: 2023 ident: ref_3 article-title: Fuzzy Pressure Control: A Novel Approach to Optimizing Energy Efficiency in Series-Parallel Pumping Systems publication-title: Automation doi: 10.3390/automation4010002 contributor: fullname: Flores – ident: ref_35 – ident: ref_28 doi: 10.1007/978-94-015-3994-4 – volume: 8 start-page: 53 year: 2014 ident: ref_33 article-title: Outside the box: An alternative data analytics framework publication-title: J. Autom. Mob. Robot. Intell. Syst. contributor: fullname: Angelov – ident: ref_6 – volume: 2023 start-page: 105185 year: 2023 ident: ref_10 article-title: Soft sensor model predictive control for azeotropic distillation of the separation of DIPE/IPA/water mixture publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2023.105185 contributor: fullname: Shan – volume: 22 start-page: 9130 year: 2022 ident: ref_5 article-title: Fuzzy Control of Pressure in aWater Supply Network Based on Neural Network System Modeling and IoT Measurements publication-title: Sensors doi: 10.3390/s22239130 contributor: fullname: Flores – ident: ref_18 doi: 10.3390/s22083084 – ident: ref_2 – ident: ref_17 doi: 10.3390/s21010075 – ident: ref_12 – ident: ref_23 doi: 10.3390/s24072340 – ident: ref_22 doi: 10.3390/s24082521 – volume: 38 start-page: 130 year: 1984 ident: ref_34 article-title: Chebyshev inequality with estimated mean and variance publication-title: Am. Stat. doi: 10.1080/00031305.1984.10483182 contributor: fullname: Saw – ident: ref_9 doi: 10.3390/s23229119 – volume: 518 start-page: 13 year: 2020 ident: ref_32 article-title: An evolving approach to data streams clustering based on typicality and eccentricity data analytics publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.12.022 contributor: fullname: Bezerra – volume: 9 start-page: 1735 year: 1997 ident: ref_25 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – ident: ref_26 doi: 10.21437/Interspeech.2014-80 – ident: ref_36 – ident: ref_14 doi: 10.1109/EAIS.2016.7502508 – volume: 45 start-page: 894 year: 1996 ident: ref_31 article-title: On-line fault detection and diagnosis obtained by implementing neural algorithms on a digital signal processor publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.536707 contributor: fullname: Bernieri |
SSID | ssj0002794574 |
Score | 2.311019 |
Snippet | The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 106 |
SubjectTerms | Artificial intelligence Artificial neural networks Control methods Controllers Costs dropout Energy consumption Energy efficiency Flow velocity Industry 4.0 Multilayer perceptrons Network topologies Neural networks Parameters Penicillin Sanitation Sensors soft sensor Software Time series Uncertainty analysis Variables Water supply Water supply systems |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXt7qU9hKZpyaZpmENPBROvLdtyL2V32SUNJJQmS3MzkkbOpazTjUPZY_95n2xtPgj0agkJPKOZ9_TxRohPiUJeYaejNFcgKCXojkmNjGpZ12zLLDXsHwqfnecnS3l6lV2FDbfbcK1yGxO7QM2N9Xvkx_BFIIUC-frrze_IV43yp6uhhMZLMUzAFJKBGE7n599_3O-yJHC3rJD9cWYKfn-s79qmfxSYxf6ZinqSkDrd_mdhucs1izdiJ4BEmvRW3RUv3OqteP1IOnBP_J3QBSIoXYCGNmsC9KTFr-YPzbFk-4lJr5iWsGl35t9uaKs_QlNkLib08BP0ChL07ZE05xea0Ax9yF8y3FBT008g0jV1FUA3FETO34nlYn45O4lCOYXIAvW0kbIFI7tLo6zyddPHepxZAJqa49qxLNkBOgE9OFMozmJbjJmV1IB0nOTOxul7MVg1K7cvyKlEAycWrJyVGuOlMYZma_MSDYkbic_bf1rd9KoZFdiGN0D1zAAjMfV__b6jF7zuPjTr6yqsn8qajDXAIusylxYc0Rqjaleo2sTSGT0Sh1ubVWEV3lYPPnPw_-YP4lUCsNJfATsUg3Z95z4CbLTmKHjUP9UN2Go priority: 102 providerName: ProQuest |
Title | A Soft Sensor for Flow Estimation and Uncertainty Analysis Based on Artificial Intelligence: A Case Study of Water Supply Systems |
URI | https://www.proquest.com/docview/3072267056 https://doaj.org/article/cb5da352da964c998cbb8fe78fb04eba |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pa9swFMfF2l7aw9j6g2XrwjvsVDB1bNmWd0tKsnbQMtqG9mYkPfkwRjwyh5HLYP_5vrKckdHDLr34YAvJ6El6n4ek7xPiQ6LgV9jpKM0VApQS4Y5JjYxqWddsyyw17C8KX9_kl3P5-TF73Er15c-EBXng0HHn1mSsQQmsy1xaBAfWGFW7QtUmls4ENIrLrWDqa7edVsqskGEbM0Vcf65XbRMuA2axv56i_nFEnV7_k-W48zGzV-JlD4c0Dj_1Wrxwi0NxsCUZeCR-j-kOKyfdIfxslgTkpNm35idNMVVDw6QXTHPYstvrb9e00R2hCTwWE0r4BoJyBF1tSXJ-pDFdoAz5w4Vramp6AIkuqcv8uaZe3PxYzGfT-4vLqE-jEFnQThspWzC8ujTKKp8vfaRHmQXI1BzXjmXJDsgEanCmUJzFthgxK6mBcpzkzsbpidhdNAv3RpBTiQYfFqyclRr1pTGqZmvzEh8SNxBnmz6tvge1jApRhjdA9cQAAzHxvf63oBe67l7A_FVv_up_5h-I043Nqn72_aiwboEqC7Dd2-do453YT4Ay4YDYqdhtlyv3HijSmqHYUbNPQ7E3md58uR12YxDP61_TP1tD5VM |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELX4OACHqlAQS2mZA6dKEdnESZxeqgWxXVrgAiu4RbbH4YI2yxKE9sg_73OSpVRIvdqWLXnGM29szxshDiMFv8JOB3GqEKDkCHdMbGRQyrJkmyexYZ8ofHGZjsby121y2124PXbfKhc2sTHUXFl_R34EXQRSyOCvf0wfAl81yr-udiU0lsWqjOFofKb48OfrHUsEZUsy2T5mxojuj_RTXbUpgUnok1TUP-6oYe1_Z5QbTzP8KD50EJEGrUw3xZKbbImNN8SBn8TLgK5gP-kKQWg1IwBPGt5Xz3SKA9suTHrCNIZEmxf_ek4L9hE6ht9iwgi_QMsfQWdviDm_04BOMIb8F8M5VSXdAI_OqKn_OaeO4nxbjIen1yejoCumEFhgnjpQNmP4dmmUVb5qel_3Ews4U3JYOpY5OwAnYAdnMsVJaLM-s5IagI6j1Nkw3hErk2ridgU5FWmgxIyVs1JjvjjE1GxtmqMjcj3xbbGnxbTlzCgQa3gBFO8E0BPHftdfB3q666ahmt0V3ekprElYAyqyzlNpESFaY1TpMlWaUDqje2J_IbOiO4OPxV-N2ft_94FYG11fnBfnZ5e_P4v1CLCl_Qy2L1bq2ZP7AthRm6-Nbv0BhQ7Z9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6xIk3bwzT2Q3SwcQ97QoqaJk7i8DK10ArYqNBYNd4i22fzghpWgqY-7j_fOXEZCGmvtmVLvvPdd_b5O4DPiWS_QlZFaS45QCk53NGpFpETzpEps1ST_yh8NsuP5-L0MrsM-U-3Ia1ybRNbQ0218XfkA9ZFRgoF--uBC2kR50fTLze_Il9Byr-0hnIaz2CzEKxVPdgcT2bn3-9vXBJWvawQ3dNmyrH-QN01dfdBMIv9lxX5yDm1HP5PTHTrd6av4VUAjDjqJLwFG3bxBl4-oBF8C39GeMHWFC84JK2XyDAUp9f1b5zw8e0WRrUgnLN82_f_ZoVrLhIcsxcj5BF-gY5NAk8e0HQe4AgPeQz6hMMV1g5_MjpdYlsNdIWB8PwdzKeTH4fHUSitEBlGQE0kTUHs6YWWRvoa6kM1zAyDG0exsyRKsgyjGElYXUjKYlMMiaRQDO8oya2J0_fQW9QLuw1oZaIYMxYkrRGK50tjnpqMyUvuSGwf9td7Wt10DBoVRx5eANUTAfRh7Hf9fqAnv24b6uVVFc5SZXRGioEjqTIXhuNFo7V0tpBOx8Jq1YfdtcyqcCJvq3_68-H_3XvwnBWr-nYy-7oDLxLGMF1m2C70muWd_cgYpNGfgnL9BTL_35g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Soft+Sensor+for+Flow+Estimation+and+Uncertainty+Analysis+Based+on+Artificial+Intelligence%3A+A+Case+Study+of+Water+Supply+Systems&rft.jtitle=Automation+%28Basel%29&rft.au=Gabryel+M.+Raposo+de+Alencar&rft.au=Fernanda+M.+Lima+Fernandes&rft.au=Rafael+Moura+Duarte&rft.au=Petr%C3%B4nio+Ferreira+de+Melo&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2673-4052&rft.volume=5&rft.issue=2&rft.spage=106&rft.epage=127&rft_id=info:doi/10.3390%2Fautomation5020008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cb5da352da964c998cbb8fe78fb04eba |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-4052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-4052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-4052&client=summon |