A Soft Sensor for Flow Estimation and Uncertainty Analysis Based on Artificial Intelligence: A Case Study of Water Supply Systems

The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of industrial systems demands efficient sensing and control methods, giving rise to soft sensors that have the potential to replace traditional...

Full description

Saved in:
Bibliographic Details
Published inAutomation (Basel) Vol. 5; no. 2; pp. 106 - 127
Main Authors Alencar, Gabryel M. Raposo de, Fernandes, Fernanda M. Lima, Moura Duarte, Rafael, Melo, Petrônio Ferreira de, Cardoso, Altamar Alencar, Gomes, Heber Pimentel, Villanueva, Juan M. Mauricio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of industrial systems demands efficient sensing and control methods, giving rise to soft sensors that have the potential to replace traditional physical sensors in order to reduce costs and enhance efficiency. This study explores the implementation of an artificial neural network (ANN) based soft sensor model in a water supply system to predict flow rates within the system. The soft sensor is centered on a Long Short-Term Memory (LSTM) artificial neural network model using Monte Carlo dropout to reduce uncertainty and improve estimation performance. Based on the results of this work, it is concluded that the proposed soft sensor (with Monte Carlo dropout) can predict flow rates more precisely, contributing to the reduction in water losses, as well as cost savings. This approach offers a valuable solution for minimizing water losses and ensuring the efficient use of this vital resource. Regarding the use of soft sensors based on LSTM neural networks with a careful choice of Monte Carlo dropout parameters, when compared to the multilayer perceptron model, the LSTM model with Monte Carlo dropout showed better mean absolute error, root mean square error, and coefficient of determination: 0.2450, 0.3121, and 0.996437 versus 0.2556, 0.3522, and 0.9954. Furthermore, this choice of Monte Carlo dropout parameters allowed us to achieve an LSTM network model capable of reducing uncertainty to 1.8290, keeping the error metrics also at low levels.
AbstractList The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of industrial systems demands efficient sensing and control methods, giving rise to soft sensors that have the potential to replace traditional physical sensors in order to reduce costs and enhance efficiency. This study explores the implementation of an artificial neural network (ANN) based soft sensor model in a water supply system to predict flow rates within the system. The soft sensor is centered on a Long Short-Term Memory (LSTM) artificial neural network model using Monte Carlo dropout to reduce uncertainty and improve estimation performance. Based on the results of this work, it is concluded that the proposed soft sensor (with Monte Carlo dropout) can predict flow rates more precisely, contributing to the reduction in water losses, as well as cost savings. This approach offers a valuable solution for minimizing water losses and ensuring the efficient use of this vital resource. Regarding the use of soft sensors based on LSTM neural networks with a careful choice of Monte Carlo dropout parameters, when compared to the multilayer perceptron model, the LSTM model with Monte Carlo dropout showed better mean absolute error, root mean square error, and coefficient of determination: 0.2450, 0.3121, and 0.996437 versus 0.2556, 0.3522, and 0.9954. Furthermore, this choice of Monte Carlo dropout parameters allowed us to achieve an LSTM network model capable of reducing uncertainty to 1.8290, keeping the error metrics also at low levels.
Author Cardoso, Altamar Alencar
Fernandes, Fernanda M. Lima
Alencar, Gabryel M. Raposo de
Moura Duarte, Rafael
Gomes, Heber Pimentel
Melo, Petrônio Ferreira de
Villanueva, Juan M. Mauricio
Author_xml – sequence: 1
  givenname: Gabryel M. Raposo de
  surname: Alencar
  fullname: Alencar, Gabryel M. Raposo de
– sequence: 2
  givenname: Fernanda M. Lima
  surname: Fernandes
  fullname: Fernandes, Fernanda M. Lima
– sequence: 3
  givenname: Rafael
  surname: Moura Duarte
  fullname: Moura Duarte, Rafael
– sequence: 4
  givenname: Petrônio Ferreira de
  surname: Melo
  fullname: Melo, Petrônio Ferreira de
– sequence: 5
  givenname: Altamar Alencar
  surname: Cardoso
  fullname: Cardoso, Altamar Alencar
– sequence: 6
  givenname: Heber Pimentel
  orcidid: 0000-0001-8374-1469
  surname: Gomes
  fullname: Gomes, Heber Pimentel
– sequence: 7
  givenname: Juan M. Mauricio
  orcidid: 0000-0002-8760-9390
  surname: Villanueva
  fullname: Villanueva, Juan M. Mauricio
BookMark eNplkU2LFDEQhoOs4LruD_AW8Dyaz-60t3bY1YEFD-3iMaSTypKhNxmTNNLH_edGR0TYQ1FF8dRb1Fuv0UVMERB6S8l7zgfywaw1PZoaUpSEEULUC3TJup7vBJHs4r_6Fbou5dgI1g9C9uISPY14Sr7iCWJJGfsWt0v6iW9KDWdJbKLD99FCribEuuExmmUroeBPpoDDjRhzDT7YYBZ8iBWWJTxAG_iIR7xvDJ7q6jacPP5uKmQ8rafTsuFpKxUeyxv00pulwPXffIXub2--7b_s7r5-PuzHu51lnag7ZXtH2SBmZRUjnFFDpe2o9I54cGJwILgcKIG5V04S21PnlDBSEMc6sIRfocNZ1yVz1KfczsubTiboP42UH7Rpd9gFtJ2lM1wyZ4ZO2GFQdp6Vh175mQiYTdN6d9Y65fRjhVL1Ma25-VI0Jz1rfhPZNYqeKZtTKRn8v62U6N-P088ex38B_eiQ8Q
Cites_doi 10.1023/B:AIRE.0000045502.10941.a9
10.1109/EALS.2014.7009497
10.1109/ACCESS.2020.2988668
10.1016/j.isatra.2022.10.044
10.1007/s11269-022-03175-4
10.1109/DDCLS58216.2023.10165845
10.3390/s23229236
10.1016/j.jwpe.2023.104041
10.3390/s24051396
10.1109/TCST.2017.2767022
10.3390/s23229175
10.3390/automation4010002
10.1007/978-94-015-3994-4
10.1016/j.jtice.2023.105185
10.3390/s22239130
10.3390/s22083084
10.3390/s21010075
10.3390/s24072340
10.3390/s24082521
10.1080/00031305.1984.10483182
10.3390/s23229119
10.1016/j.ins.2019.12.022
10.1162/neco.1997.9.8.1735
10.21437/Interspeech.2014-80
10.1109/EAIS.2016.7502508
10.1109/19.536707
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/automation5020008
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2673-4052
EndPage 127
ExternalDocumentID oai_doaj_org_article_cb5da352da964c998cbb8fe78fb04eba
10_3390_automation5020008
GroupedDBID AADQD
AAYXX
ABJCF
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
M7S
MODMG
M~E
OK1
PIMPY
PTHSS
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c264t-8c7d1294b8c820321a15c615fd0fed49de435910eb78d50c71dd84a540d26ec03
IEDL.DBID DOA
ISSN 2673-4052
IngestDate Tue Oct 22 15:07:37 EDT 2024
Thu Oct 10 18:12:12 EDT 2024
Fri Aug 23 01:12:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-8c7d1294b8c820321a15c615fd0fed49de435910eb78d50c71dd84a540d26ec03
ORCID 0000-0001-8374-1469
0000-0002-8760-9390
OpenAccessLink https://doaj.org/article/cb5da352da964c998cbb8fe78fb04eba
PQID 3072267056
PQPubID 5046915
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_cb5da352da964c998cbb8fe78fb04eba
proquest_journals_3072267056
crossref_primary_10_3390_automation5020008
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Automation (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shen (ref_15) 2020; 8
Shan (ref_10) 2023; 2023
Flores (ref_3) 2023; 4
ref_14
ref_36
ref_13
Gal (ref_27) 1996; 45
ref_35
ref_12
ref_30
Hua (ref_11) 2023; 136
Hodge (ref_29) 2004; 22
ref_19
ref_18
ref_17
Hochreiter (ref_25) 1997; 9
Bezerra (ref_32) 2020; 518
Bernieri (ref_31) 1996; 45
Ge (ref_16) 2019; 27
ref_24
Angelov (ref_33) 2014; 8
ref_23
ref_22
ref_20
Salvino (ref_4) 2022; 22
ref_1
ref_2
Brito (ref_7) 2014; 2
ref_28
Saw (ref_34) 1984; 38
ref_26
ref_9
ref_8
Xu (ref_21) 2023; 54
Flores (ref_5) 2022; 22
ref_6
References_xml – volume: 22
  start-page: 85
  year: 2004
  ident: ref_29
  article-title: A survey of outlier detection methodologies
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/B:AIRE.0000045502.10941.a9
  contributor:
    fullname: Hodge
– ident: ref_30
– ident: ref_13
  doi: 10.1109/EALS.2014.7009497
– volume: 8
  start-page: 73855
  year: 2020
  ident: ref_15
  article-title: LSTM Soft Sensor Development of Batch Processes With Multivariate Trajectory-Based Ensemble Just-in-Time Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988668
  contributor:
    fullname: Shen
– volume: 2
  start-page: 605
  year: 2014
  ident: ref_7
  article-title: Design of a Soft Sensor with Technique Neuro-Fuzzy to Infer the Product Composition a Distillation Process
  publication-title: Lect. Notes Eng. Comput. Sci.
  contributor:
    fullname: Brito
– volume: 136
  start-page: 139
  year: 2023
  ident: ref_11
  article-title: An evolutionary deep learning soft sensor model based on random forest feature selection technique for penicillin fermentation process
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.10.044
  contributor:
    fullname: Hua
– volume: 22
  start-page: 2779
  year: 2022
  ident: ref_4
  article-title: Design of a Control System Using an Artificial Neural Network to Optimize the Energy Efficiency of Water Distribution Systems
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03175-4
  contributor:
    fullname: Salvino
– ident: ref_20
  doi: 10.1109/DDCLS58216.2023.10165845
– ident: ref_19
  doi: 10.3390/s23229236
– volume: 54
  start-page: 104041
  year: 2023
  ident: ref_21
  article-title: A novel long short-term memory artificial neural network (LSTM)-based soft-sensor to monitor and forecast wastewater treatment performance
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2023.104041
  contributor:
    fullname: Xu
– volume: 45
  start-page: 894
  year: 1996
  ident: ref_27
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Gal
– ident: ref_8
  doi: 10.3390/s24051396
– volume: 27
  start-page: 323
  year: 2019
  ident: ref_16
  article-title: Supervised Nonlinear Dynamic System for Soft Sensor Application Aided by Variational Auto-Encoder
  publication-title: IEEE Trans. Control. Syst. Technol.
  doi: 10.1109/TCST.2017.2767022
  contributor:
    fullname: Ge
– ident: ref_24
  doi: 10.3390/s23229175
– ident: ref_1
– volume: 4
  start-page: 11
  year: 2023
  ident: ref_3
  article-title: Fuzzy Pressure Control: A Novel Approach to Optimizing Energy Efficiency in Series-Parallel Pumping Systems
  publication-title: Automation
  doi: 10.3390/automation4010002
  contributor:
    fullname: Flores
– ident: ref_35
– ident: ref_28
  doi: 10.1007/978-94-015-3994-4
– volume: 8
  start-page: 53
  year: 2014
  ident: ref_33
  article-title: Outside the box: An alternative data analytics framework
  publication-title: J. Autom. Mob. Robot. Intell. Syst.
  contributor:
    fullname: Angelov
– ident: ref_6
– volume: 2023
  start-page: 105185
  year: 2023
  ident: ref_10
  article-title: Soft sensor model predictive control for azeotropic distillation of the separation of DIPE/IPA/water mixture
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2023.105185
  contributor:
    fullname: Shan
– volume: 22
  start-page: 9130
  year: 2022
  ident: ref_5
  article-title: Fuzzy Control of Pressure in aWater Supply Network Based on Neural Network System Modeling and IoT Measurements
  publication-title: Sensors
  doi: 10.3390/s22239130
  contributor:
    fullname: Flores
– ident: ref_18
  doi: 10.3390/s22083084
– ident: ref_2
– ident: ref_17
  doi: 10.3390/s21010075
– ident: ref_12
– ident: ref_23
  doi: 10.3390/s24072340
– ident: ref_22
  doi: 10.3390/s24082521
– volume: 38
  start-page: 130
  year: 1984
  ident: ref_34
  article-title: Chebyshev inequality with estimated mean and variance
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1984.10483182
  contributor:
    fullname: Saw
– ident: ref_9
  doi: 10.3390/s23229119
– volume: 518
  start-page: 13
  year: 2020
  ident: ref_32
  article-title: An evolving approach to data streams clustering based on typicality and eccentricity data analytics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.12.022
  contributor:
    fullname: Bezerra
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_25
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: Hochreiter
– ident: ref_26
  doi: 10.21437/Interspeech.2014-80
– ident: ref_36
– ident: ref_14
  doi: 10.1109/EAIS.2016.7502508
– volume: 45
  start-page: 894
  year: 1996
  ident: ref_31
  article-title: On-line fault detection and diagnosis obtained by implementing neural algorithms on a digital signal processor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.536707
  contributor:
    fullname: Bernieri
SSID ssj0002794574
Score 2.311019
Snippet The fourth industrial revolution has transformed the industry, with information technology playing a crucial role in this shift. The increasing digitization of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 106
SubjectTerms Artificial intelligence
Artificial neural networks
Control methods
Controllers
Costs
dropout
Energy consumption
Energy efficiency
Flow velocity
Industry 4.0
Multilayer perceptrons
Network topologies
Neural networks
Parameters
Penicillin
Sanitation
Sensors
soft sensor
Software
Time series
Uncertainty analysis
Variables
Water supply
Water supply systems
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXt7qU9hKZpyaZpmENPBROvLdtyL2V32SUNJJQmS3MzkkbOpazTjUPZY_95n2xtPgj0agkJPKOZ9_TxRohPiUJeYaejNFcgKCXojkmNjGpZ12zLLDXsHwqfnecnS3l6lV2FDbfbcK1yGxO7QM2N9Xvkx_BFIIUC-frrze_IV43yp6uhhMZLMUzAFJKBGE7n599_3O-yJHC3rJD9cWYKfn-s79qmfxSYxf6ZinqSkDrd_mdhucs1izdiJ4BEmvRW3RUv3OqteP1IOnBP_J3QBSIoXYCGNmsC9KTFr-YPzbFk-4lJr5iWsGl35t9uaKs_QlNkLib08BP0ChL07ZE05xea0Ax9yF8y3FBT008g0jV1FUA3FETO34nlYn45O4lCOYXIAvW0kbIFI7tLo6zyddPHepxZAJqa49qxLNkBOgE9OFMozmJbjJmV1IB0nOTOxul7MVg1K7cvyKlEAycWrJyVGuOlMYZma_MSDYkbic_bf1rd9KoZFdiGN0D1zAAjMfV__b6jF7zuPjTr6yqsn8qajDXAIusylxYc0Rqjaleo2sTSGT0Sh1ubVWEV3lYPPnPw_-YP4lUCsNJfATsUg3Z95z4CbLTmKHjUP9UN2Go
  priority: 102
  providerName: ProQuest
Title A Soft Sensor for Flow Estimation and Uncertainty Analysis Based on Artificial Intelligence: A Case Study of Water Supply Systems
URI https://www.proquest.com/docview/3072267056
https://doaj.org/article/cb5da352da964c998cbb8fe78fb04eba
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pa9swFMfF2l7aw9j6g2XrwjvsVDB1bNmWd0tKsnbQMtqG9mYkPfkwRjwyh5HLYP_5vrKckdHDLr34YAvJ6El6n4ek7xPiQ6LgV9jpKM0VApQS4Y5JjYxqWddsyyw17C8KX9_kl3P5-TF73Er15c-EBXng0HHn1mSsQQmsy1xaBAfWGFW7QtUmls4ENIrLrWDqa7edVsqskGEbM0Vcf65XbRMuA2axv56i_nFEnV7_k-W48zGzV-JlD4c0Dj_1Wrxwi0NxsCUZeCR-j-kOKyfdIfxslgTkpNm35idNMVVDw6QXTHPYstvrb9e00R2hCTwWE0r4BoJyBF1tSXJ-pDFdoAz5w4Vramp6AIkuqcv8uaZe3PxYzGfT-4vLqE-jEFnQThspWzC8ujTKKp8vfaRHmQXI1BzXjmXJDsgEanCmUJzFthgxK6mBcpzkzsbpidhdNAv3RpBTiQYfFqyclRr1pTGqZmvzEh8SNxBnmz6tvge1jApRhjdA9cQAAzHxvf63oBe67l7A_FVv_up_5h-I043Nqn72_aiwboEqC7Dd2-do453YT4Ay4YDYqdhtlyv3HijSmqHYUbNPQ7E3md58uR12YxDP61_TP1tD5VM
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELX4OACHqlAQS2mZA6dKEdnESZxeqgWxXVrgAiu4RbbH4YI2yxKE9sg_73OSpVRIvdqWLXnGM29szxshDiMFv8JOB3GqEKDkCHdMbGRQyrJkmyexYZ8ofHGZjsby121y2124PXbfKhc2sTHUXFl_R34EXQRSyOCvf0wfAl81yr-udiU0lsWqjOFofKb48OfrHUsEZUsy2T5mxojuj_RTXbUpgUnok1TUP-6oYe1_Z5QbTzP8KD50EJEGrUw3xZKbbImNN8SBn8TLgK5gP-kKQWg1IwBPGt5Xz3SKA9suTHrCNIZEmxf_ek4L9hE6ht9iwgi_QMsfQWdviDm_04BOMIb8F8M5VSXdAI_OqKn_OaeO4nxbjIen1yejoCumEFhgnjpQNmP4dmmUVb5qel_3Ews4U3JYOpY5OwAnYAdnMsVJaLM-s5IagI6j1Nkw3hErk2ridgU5FWmgxIyVs1JjvjjE1GxtmqMjcj3xbbGnxbTlzCgQa3gBFO8E0BPHftdfB3q666ahmt0V3ekprElYAyqyzlNpESFaY1TpMlWaUDqje2J_IbOiO4OPxV-N2ft_94FYG11fnBfnZ5e_P4v1CLCl_Qy2L1bq2ZP7AthRm6-Nbv0BhQ7Z9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6xIk3bwzT2Q3SwcQ97QoqaJk7i8DK10ArYqNBYNd4i22fzghpWgqY-7j_fOXEZCGmvtmVLvvPdd_b5O4DPiWS_QlZFaS45QCk53NGpFpETzpEps1ST_yh8NsuP5-L0MrsM-U-3Ia1ybRNbQ0218XfkA9ZFRgoF--uBC2kR50fTLze_Il9Byr-0hnIaz2CzEKxVPdgcT2bn3-9vXBJWvawQ3dNmyrH-QN01dfdBMIv9lxX5yDm1HP5PTHTrd6av4VUAjDjqJLwFG3bxBl4-oBF8C39GeMHWFC84JK2XyDAUp9f1b5zw8e0WRrUgnLN82_f_ZoVrLhIcsxcj5BF-gY5NAk8e0HQe4AgPeQz6hMMV1g5_MjpdYlsNdIWB8PwdzKeTH4fHUSitEBlGQE0kTUHs6YWWRvoa6kM1zAyDG0exsyRKsgyjGElYXUjKYlMMiaRQDO8oya2J0_fQW9QLuw1oZaIYMxYkrRGK50tjnpqMyUvuSGwf9td7Wt10DBoVRx5eANUTAfRh7Hf9fqAnv24b6uVVFc5SZXRGioEjqTIXhuNFo7V0tpBOx8Jq1YfdtcyqcCJvq3_68-H_3XvwnBWr-nYy-7oDLxLGMF1m2C70muWd_cgYpNGfgnL9BTL_35g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Soft+Sensor+for+Flow+Estimation+and+Uncertainty+Analysis+Based+on+Artificial+Intelligence%3A+A+Case+Study+of+Water+Supply+Systems&rft.jtitle=Automation+%28Basel%29&rft.au=Gabryel+M.+Raposo+de+Alencar&rft.au=Fernanda+M.+Lima+Fernandes&rft.au=Rafael+Moura+Duarte&rft.au=Petr%C3%B4nio+Ferreira+de+Melo&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2673-4052&rft.volume=5&rft.issue=2&rft.spage=106&rft.epage=127&rft_id=info:doi/10.3390%2Fautomation5020008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cb5da352da964c998cbb8fe78fb04eba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-4052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-4052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-4052&client=summon