Toward Efficient Video Compression Artifact Detection and Removal: A Benchmark Dataset
Video compression leads to compression artifacts, among which Perceivable Encoding Artifacts (PEAs) degrade user perception. Most of existing state-of-the-art Video Compression Artifact Removal (VCAR) methods indiscriminately process all artifacts, thus leading to over-enhancement in non-PEA regions...
Saved in:
Published in | IEEE transactions on multimedia Vol. 26; pp. 10816 - 10827 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Video compression leads to compression artifacts, among which Perceivable Encoding Artifacts (PEAs) degrade user perception. Most of existing state-of-the-art Video Compression Artifact Removal (VCAR) methods indiscriminately process all artifacts, thus leading to over-enhancement in non-PEA regions. Therefore, accurate detection and location of PEAs is crucial. In this paper, we propose the largest-ever Fine-grained PEA database (FPEA). First, we employ the popular video codecs, VVC and AVS3, as well as their common test settings, to generate four types of spatial PEAs (blurring, blocking, ringing and color bleeding) and two types of temporal PEAs (flickering and floating). Second, we design a labeling platform and recruit sufficient subjects to manually locate all the above types of PEAs. Third, we propose a voting mechanism and feature matching to synthesize all subjective labels to obtain the final PEA labels with fine-grained locations. Besides, we also provide Mean Opinion Score (MOS) values of all compressed video sequences. Experimental results show the effectiveness of FPEA database on both VCAR and compressed Video Quality Assessment (VQA). We envision that FPEA database will benefit the future development of VCAR, VQA and perception-aware video encoders. The FPEA database has been made publicly available. |
---|---|
AbstractList | Video compression leads to compression artifacts, among which Perceivable Encoding Artifacts (PEAs) degrade user perception. Most of existing state-of-the-art Video Compression Artifact Removal (VCAR) methods indiscriminately process all artifacts, thus leading to over-enhancement in non-PEA regions. Therefore, accurate detection and location of PEAs is crucial. In this paper, we propose the largest-ever Fine-grained PEA database (FPEA). First, we employ the popular video codecs, VVC and AVS3, as well as their common test settings, to generate four types of spatial PEAs (blurring, blocking, ringing and color bleeding) and two types of temporal PEAs (flickering and floating). Second, we design a labeling platform and recruit sufficient subjects to manually locate all the above types of PEAs. Third, we propose a voting mechanism and feature matching to synthesize all subjective labels to obtain the final PEA labels with fine-grained locations. Besides, we also provide Mean Opinion Score (MOS) values of all compressed video sequences. Experimental results show the effectiveness of FPEA database on both VCAR and compressed Video Quality Assessment (VQA). We envision that FPEA database will benefit the future development of VCAR, VQA and perception-aware video encoders. The FPEA database has been made publicly available. |
Author | Yang, Jing Wang, Mingxing Zhao, Tiesong Zhang, Keke Lin, Liqun |
Author_xml | – sequence: 1 givenname: Liqun orcidid: 0000-0002-5900-4175 surname: Lin fullname: Lin, Liqun email: lin_liqun@fzu.edu.cn organization: Fujian Key Laboratory for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Mingxing orcidid: 0009-0003-3748-3763 surname: Wang fullname: Wang, Mingxing email: 221127191@fzu.edu.cn organization: Fujian Key Laboratory for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Jing surname: Yang fullname: Yang, Jing email: 201127079@fzu.edu.cn organization: Fujian Key Laboratory for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 4 givenname: Keke orcidid: 0000-0002-9789-6151 surname: Zhang fullname: Zhang, Keke email: 201110007@fzu.edu.cn organization: Fujian Key Laboratory for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, China – sequence: 5 givenname: Tiesong orcidid: 0000-0002-7497-8883 surname: Zhao fullname: Zhao, Tiesong email: t.zhao@fzu.edu.cn organization: Fujian Key Laboratory for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, China |
BookMark | eNp9kE1LAzEQhoNUsK3ePXjIH9g6ySabxltt6we0CFJ7XbLZCUbb3ZIExX_vLvUgHjzNMLzPMPOMyKBpGyTkksGEMdDXm_V6woGLSS6YkEKfkCHTgmUASg26XnLINGdwRkYxvgF0IVBDst20nybUdOmctx6bRLe-xpbO2_0hYIy-begsJO-MTXSBCW3qR6ap6TPu2w-zu6EzeouNfd2b8E4XJpmI6ZycOrOLePFTx-TlbrmZP2Srp_vH-WyVWV6IlBUKmbVW8ZzlEnBaQyUdMCeZ66ZOTEErUXGprSwcskqomleocqEZ5xrrfEyK414b2hgDutL6ZPoTUzB-VzIoeztlZ6fs7ZQ_djoQ_oCH4LsPvv5Dro6IR8RfcTkVOZ_m3-TGcek |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3542824 |
Cites_doi | 10.1109/TCSVT.2022.3227039 10.1109/WACV48630.2021.00164 10.1007/s11760-019-01543-z 10.3390/s21196429 10.1109/ACSSC.2003.1292216 10.1109/ICCV.2015.73 10.1109/VCIP49819.2020.9301847 10.1109/TBC.2022.3208426 10.1109/TMM.2022.3214775 10.1109/ICPR.2010.579 10.1109/TIP.2015.2502725 10.1109/TIP.2018.2889276 10.1109/LSP.2023.3283541 10.1109/TCSVT.2020.2980571 10.1145/3581783.3612500 10.1109/TBC.2022.3165473 10.1109/CVPR.2019.00950 10.1109/CVPRW53098.2021.00030 10.1117/1.JEI.23.1.013016 10.1145/3343031.3351028 10.1109/TMM.2019.2895280 10.1109/TCSVT.2021.3088505 10.1016/j.cviu.2007.09.014 10.1109/TMM.2018.2817070 10.1109/TIP.2017.2662206 10.1109/CVPR52688.2022.00588 10.1109/TIP.2019.2923051 10.1109/TPAMI.2019.2944806 10.1145/3474085.3475710 10.1109/CVPRW56347.2022.00129 10.1109/ICME.2017.8019333 10.1007/s11042-020-09907-1 10.1109/CVPR.2019.01031 10.1109/CVPR.2018.00652 10.1007/978-3-030-27202-9_14 10.1117/12.2043128 10.1109/TIP.2003.819861 10.1109/ISCAS48785.2022.9937741 10.1109/TIP.2010.2042111 10.1145/3474085.3475477 10.1609/aaai.v37i3.25458 10.1109/TCSVT.2012.2221191 10.1609/aaai.v34i07.6697 10.1109/TCSVT.2024.3369073 10.1109/CVPR52688.2022.00578 10.1007/978-3-030-58517-4_17 10.1109/TIP.2018.2815841 10.1109/TMM.2023.3338087 10.1109/PCS48520.2019.8954503 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TMM.2024.3414549 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 10827 |
ExternalDocumentID | 10_1109_TMM_2024_3414549 10584328 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62171134 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation and Technology Innovation Joint Fund Project of Fujian Province grantid: 2023J01395; 2023Y9346 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c264t-67e1ccc7231350e8d0b5f01f51fcc7f480974b259c56fe1b47d2be73491229ed3 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Tue Jul 01 01:54:44 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Wed Aug 27 03:04:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c264t-67e1ccc7231350e8d0b5f01f51fcc7f480974b259c56fe1b47d2be73491229ed3 |
ORCID | 0000-0002-5900-4175 0009-0003-3748-3763 0000-0002-7497-8883 0000-0002-9789-6151 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10584328 crossref_citationtrail_10_1109_TMM_2024_3414549 crossref_primary_10_1109_TMM_2024_3414549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref47 ref42 ref44 ref43 (ref49) 1999 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Jianyu (ref40) 2019 ref35 Blu (ref36) 2018 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 (ref50) 2012 Moorthy (ref34) 2012 Shiqi (ref41) 2019 Bossen (ref48) 2013 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 Chen (ref27) 2022 Liu (ref10) 2023 |
References_xml | – ident: ref47 doi: 10.1109/TCSVT.2022.3227039 – ident: ref9 doi: 10.1109/WACV48630.2021.00164 – start-page: 68420 volume-title: Proc. 37th Conf. Neural Inf. Process. Syst. Datasets Benchmarks Track year: 2023 ident: ref10 article-title: Bitstream-corrupted video recovery: A novel benchmark dataset and method – ident: ref28 doi: 10.1007/s11760-019-01543-z – ident: ref30 doi: 10.3390/s21196429 – ident: ref55 doi: 10.1109/ACSSC.2003.1292216 – year: 1999 ident: ref49 article-title: Methodology for the subjective assessment of video quality in multimedia applications – ident: ref24 doi: 10.1109/ICCV.2015.73 – ident: ref3 doi: 10.1109/VCIP49819.2020.9301847 – ident: ref17 doi: 10.1109/TBC.2022.3208426 – ident: ref19 doi: 10.1109/TMM.2022.3214775 – ident: ref53 doi: 10.1109/ICPR.2010.579 – ident: ref57 doi: 10.1109/TIP.2015.2502725 – ident: ref46 doi: 10.1109/TIP.2018.2889276 – ident: ref32 doi: 10.1109/LSP.2023.3283541 – ident: ref5 doi: 10.1109/TCSVT.2020.2980571 – ident: ref44 doi: 10.1145/3581783.3612500 – ident: ref31 doi: 10.1109/TBC.2022.3165473 – ident: ref52 doi: 10.1109/CVPR.2019.00950 – ident: ref13 doi: 10.1109/CVPRW53098.2021.00030 – ident: ref35 doi: 10.1117/1.JEI.23.1.013016 – ident: ref58 doi: 10.1145/3343031.3351028 – ident: ref20 doi: 10.1109/TMM.2019.2895280 – start-page: 1 volume-title: Proc. Joint Collaborative Team Video Coding Meeting year: 2013 ident: ref48 article-title: HM 10 common test conditions and software reference configurations – ident: ref59 doi: 10.1109/TCSVT.2021.3088505 – year: 2012 ident: ref50 article-title: Methodology for the subjective assessment of the quality of television pictures – ident: ref51 doi: 10.1016/j.cviu.2007.09.014 – year: 2018 ident: ref36 article-title: IVP video quality database – start-page: 652 volume-title: Proc. IEEE ICC Workshop Realizing Adv. Video Optimized Wireless Netw. year: 2012 ident: ref34 article-title: Mobile video quality assessment database – ident: ref38 doi: 10.1109/TMM.2018.2817070 – ident: ref25 doi: 10.1109/TIP.2017.2662206 – ident: ref21 doi: 10.1109/CVPR52688.2022.00588 – ident: ref29 doi: 10.1109/TIP.2019.2923051 – ident: ref14 doi: 10.1109/TPAMI.2019.2944806 – ident: ref16 doi: 10.1145/3474085.3475710 – ident: ref23 doi: 10.1109/CVPRW56347.2022.00129 – ident: ref56 doi: 10.1109/ICME.2017.8019333 – ident: ref11 doi: 10.1007/s11042-020-09907-1 – ident: ref1 doi: 10.1109/CVPR.2019.01031 – ident: ref42 doi: 10.1109/CVPR.2018.00652 – start-page: 1 volume-title: Proc. 11th Int. Conf. Wireless Commun. Signal Process. year: 2019 ident: ref41 article-title: HEVC compression artifact reduction with generative adversarial networks – start-page: 25478 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2022 ident: ref27 article-title: Cross aggregation transformer for image restoration – ident: ref37 doi: 10.1007/978-3-030-27202-9_14 – ident: ref45 doi: 10.1117/12.2043128 – ident: ref54 doi: 10.1109/TIP.2003.819861 – ident: ref15 doi: 10.1109/ISCAS48785.2022.9937741 – ident: ref33 doi: 10.1109/TIP.2010.2042111 – ident: ref7 doi: 10.1145/3474085.3475477 – start-page: 1174 volume-title: Proc. IEEE Int. Conf. Multimedia Expo year: 2019 ident: ref40 article-title: A video post-filter deblocking method based on temporal boosting residual networks – ident: ref22 doi: 10.1609/aaai.v37i3.25458 – ident: ref2 doi: 10.1109/TCSVT.2012.2221191 – ident: ref12 doi: 10.1609/aaai.v34i07.6697 – ident: ref43 doi: 10.1109/TCSVT.2024.3369073 – ident: ref8 doi: 10.1109/CVPR52688.2022.00578 – ident: ref6 doi: 10.1109/CVPR52688.2022.00578 – ident: ref26 doi: 10.1007/978-3-030-58517-4_17 – ident: ref39 doi: 10.1109/TIP.2018.2815841 – ident: ref18 doi: 10.1109/TMM.2023.3338087 – ident: ref4 doi: 10.1109/PCS48520.2019.8954503 |
SSID | ssj0014507 |
Score | 2.4182184 |
Snippet | Video compression leads to compression artifacts, among which Perceivable Encoding Artifacts (PEAs) degrade user perception. Most of existing state-of-the-art... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 10816 |
SubjectTerms | Distortion Encoding Image coding Perceivable encoding artifact Quality assessment Video compression video compression artifact removal video quality assessment |
Title | Toward Efficient Video Compression Artifact Detection and Removal: A Benchmark Dataset |
URI | https://ieeexplore.ieee.org/document/10584328 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx5EESN-pQcvHjb20W3UGwqEmMDBAOG2bO1rNMhmyLj41_vaDbOYaLwtTds1eW1_79f3Rchd4gMq_RBZYeKHFlORY3HpupYKFcJNHwFY6KeB6SycLNjzKlhVweomFgYAjPMZ2PrT2PJlLnb6qQxPOMKl7_UbpIHMrQzW-jYZsMDERiMe4e-QyOxtkg7vzadTZIIes_HKZoFOm1nDoFpRFYMp4xaZ7VdTupKs7V2R2uLzR6LGfy_3hBxX2iUdlNvhlBxA1iatfeUGWh3kNjmqpSE8I8u58Z2lI5NOAuekyzcJOdXjSjfZzEypgyDoEArjvZXRJJP0BTY57tUHOqCPOPXrJtmu6TApEBuLDlmMR_OniVXVW7AEqkWFFUbgCiEiVPn8wIG-dNJAOa4KXIWtivUdJB8p8iURhArclEXSSyHyGXc9j4P0z0kzyzO4INQXDk8VR7LEE-YmPJEp3vAeC6UUXKqwS3p7CcSiSkaua2K8x4aUODxGmcVaZnElsy65_x7xUSbi-KNvR0uj1q8UxOUv7VfkUA8vX1auSbPY7uAGdY0ivTV77Asecs7w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN-KNBxaGlDhxkpqNR6vyaAdUEFuU2GeBSlNUpQu_nrOTogoJxBZZ9sXSnf3d-V4Ap1mIpPRj4sVZGHvCJL4nNeeeiQ3BTZMAWNmngW4v7jyJu5fopU5Wd7kwiOiCz7BhP50vX4_UxD6V0QknuAyD5jwsEvBHvErX-nYaiMhlRxMi0Q_JlJl6JX153u92yRYMRIMubRHZwpkzKDTTVsWhSnsNetP9VMEkg8akzBvq80epxn9veB1Wa_2SXVYCsQFzWGzC2rR3A6uP8iaszBQi3ILnvoueZS1XUIJosuc3jSNm11WBsoUjadMg2A2WLn6rYFmh2SMORyStF-ySXRHp12E2HrCbrCR0LLfhqd3qX3e8uuOCp0gxKr04Qa6USkjpCyMfm9rPI-NzE3FDo0Y0fTI_crKYVBQb5LlIdJBjEgrJg0CiDndgoRgVuAssVL7MjSRzSWaCZzLTOd3xgYi1VlKbeA_OpxxIVV2O3HbFeE-dWeLLlHiWWp6lNc_24Ox7xUdViuOPuduWGzPzKkbs_zJ-Akudfvchfbjt3R_AsiVVvbMcwkI5nuARaR5lfuzk7QsWPdI5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Efficient+Video+Compression+Artifact+Detection+and+Removal%3A+A+Benchmark+Dataset&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Lin%2C+Liqun&rft.au=Wang%2C+Mingxing&rft.au=Yang%2C+Jing&rft.au=Zhang%2C+Keke&rft.date=2024&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=26&rft.spage=10816&rft.epage=10827&rft_id=info:doi/10.1109%2FTMM.2024.3414549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2024_3414549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |