Determination of constant diffusion coefficient for error function solution of diffusion equation using film-roll method

Abstract The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into...

Full description

Saved in:
Bibliographic Details
Published inTextile research journal Vol. 93; no. 21-22; pp. 4847 - 4864
Main Author Park, Geon Yong
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.11.2023
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots.
AbstractList AbstractThe error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots.
The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots.
Abstract The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots.
Author Park, Geon Yong
Author_xml – sequence: 1
  givenname: Geon Yong
  orcidid: 0000-0001-7864-0583
  surname: Park
  fullname: Park, Geon Yong
  organization: Department of Chemical & Biological Engineering, Chungwoon University Republic of Korea
BookMark eNp1kMtOwzAQRS1UJNrCB7CLxDpl_EjsLFF5SpXYwDoKzrikSuzWTiT4exwC6gIxC4_m-p5reRZkZp1FQi4prCiV8hpAQEZlxjililMJJ2ROpchTKYWakfl4n46GM7IIYQcASkk1Jx-32KPvGlv1jbOJM4l2NvSV7ZO6MWYIo6odGtPoBqNqnE_Q-3iawepvKLh2-KWPEB6GKTOOdpuYpu1S79o26bB_d_U5OTVVG_Dipy_J6_3dy_ox3Tw_PK1vNqlmuehTJgoKyCrKIdesfss157XiyJjgStfxs6LgUPMKM6ERmK5iASDXWZEVUvAluZpy994dBgx9uXODt_HJkiklKOcFyOiik0t7F4JHU-5901X-s6RQjgsu_yw4MquJCdUWj6n_A1_TTn5n
Cites_doi 10.1177/004051757804800810
10.1007/s13202-020-01058-1
10.2115/fiber.20.778
10.1177/0040517517741158
10.12772/TSE.2017.54.125
10.1021/ed061p494
10.35940/ijitee.L1008.10812S219
10.3390/polym13081317
10.1073/pnas.98.3.848
10.1016/j.fluid.2013.08.013
10.1111/j.1478-4408.1974.tb03207.x
10.1016/S0896-8446(99)00055-8
10.1021/ie000125c
10.1016/j.jcis.2014.02.031
10.1016/j.porgcoat.2017.05.004
10.1246/nikkashi1898.68.3_524
10.1177/00405175211027803
10.1177/00405175211073350
10.1021/acs.macromol.5b02144
10.1007/s12221-020-8760-z
10.1177/00405175221094046
10.1177/15280837211036214
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID AAYXX
CITATION
7SR
8FD
F28
FR3
JG9
DOI 10.1177/00405175231183170
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1746-7748
EndPage 4864
ExternalDocumentID 10_1177_00405175231183170
10.1177_00405175231183170
GroupedDBID -ET
-MK
-TM
-~X
.-4
.2G
.2L
.2N
.DC
01A
09Z
0B8
0R~
123
18M
1~K
29Q
31S
31V
31W
31X
31Y
31Z
3EH
3V.
4.4
476
54M
56W
5VS
7X2
88I
8AF
8FE
8FG
8FH
8FW
8R4
8R5
AABCJ
AABOD
AACKU
AACTG
AADIR
AADUE
AAGGD
AAHBH
AAJOX
AAJPV
AAKTJ
AAMFR
AAMGE
AANSI
AAPEO
AAQDB
AARIX
AATAA
AATBZ
AAWLO
AAYTG
ABAWP
ABCCA
ABDWY
ABEIX
ABFWQ
ABFXH
ABHKI
ABHQH
ABJCF
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUWG
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGBL
ACGFO
ACGFS
ACGOD
ACIWK
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACTQU
ACUAV
ACUFS
ACUIR
ACXKE
ADEIA
ADFRT
ADNWM
ADPEE
ADRRZ
ADTBJ
ADTOS
ADUKL
AEDFJ
AENEX
AEOBU
AEPTA
AEQLS
AESMA
AESZF
AEUHG
AEUIJ
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFRAH
AFUIA
AGDVU
AGKLV
AGNHF
AGNWV
AGWFA
AHHFK
AHWHD
AIOMO
AIZZC
AJEFB
AJUZI
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ATCPS
AUTPY
AUVAJ
AYAKG
AYPQM
AZFZN
AZQEC
B8O
B8S
B8T
B8Z
B93
B94
BBRGL
BCR
BCU
BDDNI
BDZRT
BEC
BENPR
BGLVJ
BHPHI
BKOMP
BLC
BMVBW
BPACV
BPHCQ
BYIEH
CAG
CBRKF
CCGJY
CCPQU
CEADM
CFDXU
COF
CORYS
CS3
CZ9
D1I
DD0
DD~
DE-
DG~
DH.
DO-
DOPDO
DU5
DV7
DV8
DWQXO
D~Y
E.-
EBS
EHMNL
EJD
FEDTE
FHBDP
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HCIFZ
HF~
HVGLF
HZ~
J8X
JCYGO
K.F
KB.
KC.
L6V
LPU
M0K
M2P
M2Q
M4V
M7S
N9A
O9-
OFU
P.B
P2P
PDBOC
PEA
PQQKQ
PROAC
PTHSS
Q1R
Q2X
Q7O
Q7P
Q7X
Q82
Q83
ROL
RXW
S01
S0X
SBI
SCNPE
SFB
SFC
SFK
SFT
SGA
SGP
SGU
SGV
SGX
SGZ
SHB
SHF
SHM
SJFOW
SPJ
SPK
SPP
SPV
SQCSI
SSDHQ
STM
TAE
U5U
WH7
XOL
ZE2
ZPLXX
ZPPRI
ZRKOI
~32
~KM
AAYXX
ACJER
ADVBO
AEDXQ
AEILP
AGWNL
CITATION
H13
7SR
8FD
F28
FR3
JG9
ID FETCH-LOGICAL-c264t-24910e2a1306c2db6c33d83e22438cd1184930d3ae54ce02caaaa00e3c5959743
ISSN 0040-5175
IngestDate Thu Oct 10 19:57:12 EDT 2024
Wed Oct 23 14:17:37 EDT 2024
Tue Jul 16 20:48:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21-22
Keywords finishing
color
Diffusion
sorption
printing
dyeing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c264t-24910e2a1306c2db6c33d83e22438cd1184930d3ae54ce02caaaa00e3c5959743
ORCID 0000-0001-7864-0583
PQID 2884133907
PQPubID 25116
PageCount 18
ParticipantIDs proquest_journals_2884133907
crossref_primary_10_1177_00405175231183170
sage_journals_10_1177_00405175231183170
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Princeton
PublicationTitle Textile research journal
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Sicardi, Manna, Banchero 2000; 17
Sicardi, Manna, Banchero 2000; 39
Sharma, Tewari, Arya 2017; 111
Welle 2021; 13
Jones, Leung 1974; 90
Li, Huang, Yang 2022; 92
Siebel, Scharfer, Schabel 2015; 48
Geonyong 2019; 14
Zhao, Li, Zhang 2019; 89
Geonyong 2017; 54
Li, Hu 2021; 11
Geonyong 2020; 21
Geonyong 2022; 92
Laidler 1984; 61
Geonyong, Jinwoo 1988; 25
Geonyong 2022; 93
Sekido, Iijima, Takahashi 1965; 68
Sekido, Matsui 1964; 20
Truhlar, Kohen 2001; 98
Danner 2014; 362
Zheng, Bi, Tong 2022; 51
Madan, Khan 1978; 48
Szyk-Warszyńska, Kilan, Socha 2014; 423
Geonyong 2019; 8
bibr11-00405175231183170
Geonyong P. (bibr29-00405175231183170) 2019; 8
bibr14-00405175231183170
bibr21-00405175231183170
bibr34-00405175231183170
bibr24-00405175231183170
bibr17-00405175231183170
Geonyong P (bibr27-00405175231183170) 1988; 25
bibr16-00405175231183170
bibr13-00405175231183170
bibr3-00405175231183170
bibr6-00405175231183170
bibr10-00405175231183170
bibr33-00405175231183170
bibr20-00405175231183170
bibr23-00405175231183170
Geonyong P. (bibr25-00405175231183170) 2019; 14
bibr26-00405175231183170
bibr9-00405175231183170
bibr19-00405175231183170
bibr36-00405175231183170
bibr5-00405175231183170
bibr18-00405175231183170
bibr30-00405175231183170
bibr28-00405175231183170
bibr15-00405175231183170
bibr8-00405175231183170
bibr35-00405175231183170
bibr22-00405175231183170
bibr12-00405175231183170
bibr2-00405175231183170
bibr32-00405175231183170
bibr4-00405175231183170
bibr7-00405175231183170
Geonyong P. (bibr31-00405175231183170) 2022; 93
bibr1-00405175231183170
References_xml – volume: 92
  start-page: 3733
  year: 2022
  end-page: 3749
  article-title: Study on color ink diffusion in fabrics and color reproduction of digital inkjet printing
  publication-title: Text Res J
  contributor:
    fullname: Yang
– volume: 68
  start-page: 524
  year: 1965
  end-page: 527
  article-title: Diffusion of dyes into nylon film
  publication-title: Kogyo Kagaku Zasshi
  contributor:
    fullname: Takahashi
– volume: 111
  start-page: 83
  year: 2017
  end-page: 92
  article-title: Diffusion in polymeric systems – a review on free volume theory
  publication-title: Prog Org Coat
  contributor:
    fullname: Arya
– volume: 61
  start-page: 494
  year: 1984
  end-page: 498
  article-title: The development of the Arrhenius equation
  publication-title: J Chem Educ
  contributor:
    fullname: Laidler
– volume: 8
  start-page: 37
  year: 2019
  end-page: 42
  article-title: Diffusion coefficient for sublimation diffusion of disperse dye using error function
  publication-title: Int J Innovative Technol Exploring Eng
  contributor:
    fullname: Geonyong
– volume: 362
  start-page: 19
  year: 2014
  end-page: 27
  article-title: Measuring and correlating diffusivity in polymer–solvent systems using free-volume theory
  publication-title: Fluid Phase Equilib
  contributor:
    fullname: Danner
– volume: 93
  start-page: 2113
  year: 2022
  end-page: 2125
  article-title: Application of an equation derived from the solution of diffusion equation with constant surface concentration to the film-roll method
  publication-title: Text Res J
  contributor:
    fullname: Geonyong
– volume: 14
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Diffusion coefficient calculated by complementary error function for the sublimation diffusion of disperse dye
  publication-title: J Eng Fibers Fabrics
  contributor:
    fullname: Geonyong
– volume: 48
  start-page: 481
  year: 1978
  end-page: 486
  article-title: Determination of dye on textile fibers. Part I: Disperse dye on polyethylene terephthalate
  publication-title: Text Res J
  contributor:
    fullname: Khan
– volume: 20
  start-page: 778
  year: 1964
  end-page: 783
  article-title: Studies on vat dyeing
  publication-title: Sen-i Gakkaishi
  contributor:
    fullname: Matsui
– volume: 92
  start-page: 1891
  year: 2022
  end-page: 1908
  article-title: Diffusion coefficient for diffusion of time-varying surface concentration by the film-roll method
  publication-title: Text Res J
  contributor:
    fullname: Geonyong
– volume: 90
  start-page: 286
  year: 1974
  end-page: 290
  article-title: Some fundamental aspects of transfer printing
  publication-title: J Soc Dyers Colour
  contributor:
    fullname: Leung
– volume: 98
  start-page: 848
  year: 2001
  end-page: 851
  article-title: Convex Arrhenius plots and their interpretation
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Kohen
– volume: 423
  start-page: 76
  year: 2014
  end-page: 84
  article-title: Characterization of casein and poly- -arginine multilayer films
  publication-title: J Colloid Interface Sci
  contributor:
    fullname: Socha
– volume: 21
  start-page: 538
  year: 2020
  end-page: 547
  article-title: Study on calculation of diffusion coefficient for sublimation diffusion of disperse dye using Fourier series
  publication-title: Fiber Polym
  contributor:
    fullname: Geonyong
– volume: 54
  start-page: 125
  year: 2017
  end-page: 130
  article-title: Diffusion behaviors of disperse dye to PET film from print paste using film-roll method
  publication-title: Text Sci Eng
  contributor:
    fullname: Geonyong
– volume: 11
  start-page: 735
  year: 2021
  end-page: 746
  article-title: Measurement of gas diffusion coefficient and analysis of influencing factors for Shaanxi Debao coalbed methane reservoir in China
  publication-title: J Pet Explor Prod Technol
  contributor:
    fullname: Hu
– volume: 17
  start-page: 187
  year: 2000
  end-page: 194
  article-title: Diffusion of disperse dyes in PET films during impregnation with a supercritical fluid
  publication-title: J Supercrit Fluid
  contributor:
    fullname: Banchero
– volume: 51
  start-page: 7942S
  year: 2022
  end-page: 7962S
  article-title: Solvent diffusion mechanism of PMMA/acetone coated glass fiber fabric during curing process
  publication-title: J Ind Text
  contributor:
    fullname: Tong
– volume: 13
  start-page: 1317
  year: 2021
  article-title: Diffusion coefficients and activation energies of diffusion of organic molecules in polystyrene below and above glass transition temperature
  publication-title: Polymer
  contributor:
    fullname: Welle
– volume: 89
  start-page: 162
  year: 2019
  end-page: 171
  article-title: Influence of diffusion behavior of disperse dye ink on printing accuracy for warp-knitted polyester fabrics
  publication-title: Text Res J
  contributor:
    fullname: Zhang
– volume: 48
  start-page: 8608
  year: 2015
  end-page: 8614
  article-title: Determination of concentration-dependent diffusion coefficients in polymer−solvent systems: analysis of concentration profiles measured by Raman spectroscopy during single drying experiments excluding boundary conditions and phase equilibrium
  publication-title: Macromolecules
  contributor:
    fullname: Schabel
– volume: 25
  start-page: 66
  year: 1988
  end-page: 71
  article-title: Hydrophilic graft copolymerization of nylon 6 with acrylamide(II)
  publication-title: J Kor Fiber Soc
  contributor:
    fullname: Jinwoo
– volume: 39
  start-page: 4707
  year: 2000
  end-page: 4713
  article-title: Comparison of dye diffusion in poly(ethylene terephthalate) films in the presence of a supercritical or aqueous solvent
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Banchero
– volume: 92
  start-page: 91
  year: 2022
  end-page: 102
  article-title: Diffusion coefficient calculated by time-lag using film-roll method
  publication-title: Text Res J
  contributor:
    fullname: Geonyong
– ident: bibr32-00405175231183170
  doi: 10.1177/004051757804800810
– ident: bibr15-00405175231183170
– ident: bibr36-00405175231183170
– ident: bibr9-00405175231183170
  doi: 10.1007/s13202-020-01058-1
– ident: bibr34-00405175231183170
– ident: bibr7-00405175231183170
– ident: bibr26-00405175231183170
  doi: 10.2115/fiber.20.778
– ident: bibr4-00405175231183170
  doi: 10.1177/0040517517741158
– ident: bibr22-00405175231183170
– ident: bibr28-00405175231183170
  doi: 10.12772/TSE.2017.54.125
– ident: bibr10-00405175231183170
  doi: 10.1021/ed061p494
– ident: bibr21-00405175231183170
– ident: bibr17-00405175231183170
– volume: 93
  start-page: 2113
  year: 2022
  ident: bibr31-00405175231183170
  publication-title: Text Res J
  contributor:
    fullname: Geonyong P.
– volume: 8
  start-page: 37
  year: 2019
  ident: bibr29-00405175231183170
  publication-title: Int J Innovative Technol Exploring Eng
  doi: 10.35940/ijitee.L1008.10812S219
  contributor:
    fullname: Geonyong P.
– ident: bibr14-00405175231183170
– ident: bibr33-00405175231183170
– ident: bibr12-00405175231183170
– ident: bibr19-00405175231183170
  doi: 10.3390/polym13081317
– ident: bibr35-00405175231183170
  doi: 10.1073/pnas.98.3.848
– ident: bibr6-00405175231183170
  doi: 10.1016/j.fluid.2013.08.013
– ident: bibr18-00405175231183170
  doi: 10.1111/j.1478-4408.1974.tb03207.x
– ident: bibr23-00405175231183170
  doi: 10.1016/S0896-8446(99)00055-8
– ident: bibr24-00405175231183170
  doi: 10.1021/ie000125c
– volume: 14
  start-page: 1
  year: 2019
  ident: bibr25-00405175231183170
  publication-title: J Eng Fibers Fabrics
  contributor:
    fullname: Geonyong P.
– ident: bibr2-00405175231183170
  doi: 10.1016/j.jcis.2014.02.031
– ident: bibr11-00405175231183170
– ident: bibr1-00405175231183170
  doi: 10.1016/j.porgcoat.2017.05.004
– ident: bibr13-00405175231183170
  doi: 10.1246/nikkashi1898.68.3_524
– volume: 25
  start-page: 66
  year: 1988
  ident: bibr27-00405175231183170
  publication-title: J Kor Fiber Soc
  contributor:
    fullname: Geonyong P
– ident: bibr20-00405175231183170
  doi: 10.1177/00405175211027803
– ident: bibr30-00405175231183170
  doi: 10.1177/00405175211073350
– ident: bibr5-00405175231183170
  doi: 10.1021/acs.macromol.5b02144
– ident: bibr16-00405175231183170
  doi: 10.1007/s12221-020-8760-z
– ident: bibr3-00405175231183170
  doi: 10.1177/00405175221094046
– ident: bibr8-00405175231183170
  doi: 10.1177/15280837211036214
SSID ssj0008878
Score 2.4222388
Snippet Abstract The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant...
The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant...
AbstractThe error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Publisher
StartPage 4847
SubjectTerms Diffusion coefficient
Diffusion layers
Dyes
Error functions
Polyethylene terephthalate
Regression
Sublimation
Title Determination of constant diffusion coefficient for error function solution of diffusion equation using film-roll method
URI https://journals.sagepub.com/doi/full/10.1177/00405175231183170
https://www.proquest.com/docview/2884133907
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYKHAaHabAhymDyYdIkKqMkdhLnWA1QgYGYKBKcssRxBBK00KbStL9-z7-SFAECerCqVLYjv6_Pn-33PiP0neUyzGUSEGAbJWE8koSXCSNFkcc8ilkSFepE9-Q0Glywo8vwstP504pamlX5rvj3ZF7Je6wKz8CuKkv2DZatG4UH8B3sCyVYGMpX2XjPxbI42icM26v0vScztRGmxD-0SoQWYVLy3pMJlGo605XcC6raTSX5YBTAezO9lVDe3N6RCSDGXjjdZrRD8O7gWXpWNei6135zm1atdt5HvauxnSXtJkNAbbZdvcnYih8yAXpNzJF2q8wjoW-uQNmVxpPGLALqbmQ0nas1lyFaSAU-MSnJ1ncybrQ37TwMuGFP-3h9yqz6VF0CPwWv5JvbR-b1tAf98_Rs7yD9dXh6vICWAnBF4AOX-ldnv0_q2RqcLHeRlao9e_KtRbkedzHPXZoFSSsGUNOS4Sf00a4ncN-AYxV15GgNfXDp5tM1tNJSnPyM_s5BBo9L7CCDa-vjFmQwQAZryGAHGewgo2o3lRxksIYMriGDDWS-oIuD_eHPAbGXbxABHLkisCz3PRlkwHEiERR5JCgtOJVA-SgXBYwIS6hX0EyGTEgvEBl8PE9SESZqkUrX0eJoPJIbCIsY1rm85CHLodUsyhIlIieoIuw-OIUu2nHDmt4bjZXUdzL0j23QRVtu4FML6GkacA5kjCZe3EU_lDGan55taPPlhr6i5eaPsIUWq8lMbgP_rPJvFkL_AQK_hio
link.rule.ids 315,783,787,27936,27937
linkProvider SAGE Publications
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+constant+diffusion+coefficient+for+error+function+solution+of+diffusion+equation+using+film-roll+method&rft.jtitle=Textile+research+journal&rft.au=Park+Geon+Yong&rft.date=2023-11-01&rft.pub=Sage+Publications+Ltd&rft.issn=0040-5175&rft.eissn=1746-7748&rft.volume=93&rft.issue=21-22&rft.spage=4847&rft.epage=4864&rft_id=info:doi/10.1177%2F00405175231183170&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5175&client=summon