Determination of constant diffusion coefficient for error function solution of diffusion equation using film-roll method
Abstract The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into...
Saved in:
Published in | Textile research journal Vol. 93; no. 21-22; pp. 4847 - 4864 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.11.2023
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots. |
---|---|
AbstractList | AbstractThe error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots. The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots. Abstract The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant diffusion coefficient for diffusion satisfying the infinite dye-bath condition. For the sublimation diffusion of disperse dye in paste into PET film using the film-roll method, the constant surface concentration was determined from the concentration distribution, and the diffusion coefficients of each layer were obtained by the constant surface concentration from the error function solution. When comparing the diffusion coefficients between the layers and comparing the mean diffusion coefficients for different times at a specific temperature, the constant surface concentrations determined from the quadratic regression curves for concentration–distance plots were more appropriate than those determined from the steady-state concentration distributions, which was also confirmed by the plots of concentrations obtained from the error function solution. At a specific temperature, the average of the mean diffusion coefficients obtained by the constant surface concentration of the quadratic regression curve at three specific times matched well with the constant total-amount diffusion coefficient obtained by the slope of the linear regression line for the plot of total amount against square root of time, which was confirmed by their Arrhenius plots. |
Author | Park, Geon Yong |
Author_xml | – sequence: 1 givenname: Geon Yong orcidid: 0000-0001-7864-0583 surname: Park fullname: Park, Geon Yong organization: Department of Chemical & Biological Engineering, Chungwoon University Republic of Korea |
BookMark | eNp1kMtOwzAQRS1UJNrCB7CLxDpl_EjsLFF5SpXYwDoKzrikSuzWTiT4exwC6gIxC4_m-p5reRZkZp1FQi4prCiV8hpAQEZlxjililMJJ2ROpchTKYWakfl4n46GM7IIYQcASkk1Jx-32KPvGlv1jbOJM4l2NvSV7ZO6MWYIo6odGtPoBqNqnE_Q-3iawepvKLh2-KWPEB6GKTOOdpuYpu1S79o26bB_d_U5OTVVG_Dipy_J6_3dy_ox3Tw_PK1vNqlmuehTJgoKyCrKIdesfss157XiyJjgStfxs6LgUPMKM6ERmK5iASDXWZEVUvAluZpy994dBgx9uXODt_HJkiklKOcFyOiik0t7F4JHU-5901X-s6RQjgsu_yw4MquJCdUWj6n_A1_TTn5n |
Cites_doi | 10.1177/004051757804800810 10.1007/s13202-020-01058-1 10.2115/fiber.20.778 10.1177/0040517517741158 10.12772/TSE.2017.54.125 10.1021/ed061p494 10.35940/ijitee.L1008.10812S219 10.3390/polym13081317 10.1073/pnas.98.3.848 10.1016/j.fluid.2013.08.013 10.1111/j.1478-4408.1974.tb03207.x 10.1016/S0896-8446(99)00055-8 10.1021/ie000125c 10.1016/j.jcis.2014.02.031 10.1016/j.porgcoat.2017.05.004 10.1246/nikkashi1898.68.3_524 10.1177/00405175211027803 10.1177/00405175211073350 10.1021/acs.macromol.5b02144 10.1007/s12221-020-8760-z 10.1177/00405175221094046 10.1177/15280837211036214 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | AAYXX CITATION 7SR 8FD F28 FR3 JG9 |
DOI | 10.1177/00405175231183170 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1746-7748 |
EndPage | 4864 |
ExternalDocumentID | 10_1177_00405175231183170 10.1177_00405175231183170 |
GroupedDBID | -ET -MK -TM -~X .-4 .2G .2L .2N .DC 01A 09Z 0B8 0R~ 123 18M 1~K 29Q 31S 31V 31W 31X 31Y 31Z 3EH 3V. 4.4 476 54M 56W 5VS 7X2 88I 8AF 8FE 8FG 8FH 8FW 8R4 8R5 AABCJ AABOD AACKU AACTG AADIR AADUE AAGGD AAHBH AAJOX AAJPV AAKTJ AAMFR AAMGE AANSI AAPEO AAQDB AARIX AATAA AATBZ AAWLO AAYTG ABAWP ABCCA ABDWY ABEIX ABFWQ ABFXH ABHKI ABHQH ABJCF ABJNI ABKRH ABLUO ABPNF ABQKF ABQPY ABQXT ABRHV ABUWG ABYTW ACAEP ACDXX ACFUR ACFZE ACGBL ACGFO ACGFS ACGOD ACIWK ACLZU ACOFE ACOXC ACROE ACSIQ ACTQU ACUAV ACUFS ACUIR ACXKE ADEIA ADFRT ADNWM ADPEE ADRRZ ADTBJ ADTOS ADUKL AEDFJ AENEX AEOBU AEPTA AEQLS AESMA AESZF AEUHG AEUIJ AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRA AFKRG AFMOU AFQAA AFRAH AFUIA AGDVU AGKLV AGNHF AGNWV AGWFA AHHFK AHWHD AIOMO AIZZC AJEFB AJUZI ALJHS ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ATCPS AUTPY AUVAJ AYAKG AYPQM AZFZN AZQEC B8O B8S B8T B8Z B93 B94 BBRGL BCR BCU BDDNI BDZRT BEC BENPR BGLVJ BHPHI BKOMP BLC BMVBW BPACV BPHCQ BYIEH CAG CBRKF CCGJY CCPQU CEADM CFDXU COF CORYS CS3 CZ9 D1I DD0 DD~ DE- DG~ DH. DO- DOPDO DU5 DV7 DV8 DWQXO D~Y E.- EBS EHMNL EJD FEDTE FHBDP GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION HCIFZ HF~ HVGLF HZ~ J8X JCYGO K.F KB. KC. L6V LPU M0K M2P M2Q M4V M7S N9A O9- OFU P.B P2P PDBOC PEA PQQKQ PROAC PTHSS Q1R Q2X Q7O Q7P Q7X Q82 Q83 ROL RXW S01 S0X SBI SCNPE SFB SFC SFK SFT SGA SGP SGU SGV SGX SGZ SHB SHF SHM SJFOW SPJ SPK SPP SPV SQCSI SSDHQ STM TAE U5U WH7 XOL ZE2 ZPLXX ZPPRI ZRKOI ~32 ~KM AAYXX ACJER ADVBO AEDXQ AEILP AGWNL CITATION H13 7SR 8FD F28 FR3 JG9 |
ID | FETCH-LOGICAL-c264t-24910e2a1306c2db6c33d83e22438cd1184930d3ae54ce02caaaa00e3c5959743 |
ISSN | 0040-5175 |
IngestDate | Thu Oct 10 19:57:12 EDT 2024 Wed Oct 23 14:17:37 EDT 2024 Tue Jul 16 20:48:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21-22 |
Keywords | finishing color Diffusion sorption printing dyeing |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c264t-24910e2a1306c2db6c33d83e22438cd1184930d3ae54ce02caaaa00e3c5959743 |
ORCID | 0000-0001-7864-0583 |
PQID | 2884133907 |
PQPubID | 25116 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2884133907 crossref_primary_10_1177_00405175231183170 sage_journals_10_1177_00405175231183170 |
PublicationCentury | 2000 |
PublicationDate | 20231100 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Princeton |
PublicationTitle | Textile research journal |
PublicationYear | 2023 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Sicardi, Manna, Banchero 2000; 17 Sicardi, Manna, Banchero 2000; 39 Sharma, Tewari, Arya 2017; 111 Welle 2021; 13 Jones, Leung 1974; 90 Li, Huang, Yang 2022; 92 Siebel, Scharfer, Schabel 2015; 48 Geonyong 2019; 14 Zhao, Li, Zhang 2019; 89 Geonyong 2017; 54 Li, Hu 2021; 11 Geonyong 2020; 21 Geonyong 2022; 92 Laidler 1984; 61 Geonyong, Jinwoo 1988; 25 Geonyong 2022; 93 Sekido, Iijima, Takahashi 1965; 68 Sekido, Matsui 1964; 20 Truhlar, Kohen 2001; 98 Danner 2014; 362 Zheng, Bi, Tong 2022; 51 Madan, Khan 1978; 48 Szyk-Warszyńska, Kilan, Socha 2014; 423 Geonyong 2019; 8 bibr11-00405175231183170 Geonyong P. (bibr29-00405175231183170) 2019; 8 bibr14-00405175231183170 bibr21-00405175231183170 bibr34-00405175231183170 bibr24-00405175231183170 bibr17-00405175231183170 Geonyong P (bibr27-00405175231183170) 1988; 25 bibr16-00405175231183170 bibr13-00405175231183170 bibr3-00405175231183170 bibr6-00405175231183170 bibr10-00405175231183170 bibr33-00405175231183170 bibr20-00405175231183170 bibr23-00405175231183170 Geonyong P. (bibr25-00405175231183170) 2019; 14 bibr26-00405175231183170 bibr9-00405175231183170 bibr19-00405175231183170 bibr36-00405175231183170 bibr5-00405175231183170 bibr18-00405175231183170 bibr30-00405175231183170 bibr28-00405175231183170 bibr15-00405175231183170 bibr8-00405175231183170 bibr35-00405175231183170 bibr22-00405175231183170 bibr12-00405175231183170 bibr2-00405175231183170 bibr32-00405175231183170 bibr4-00405175231183170 bibr7-00405175231183170 Geonyong P. (bibr31-00405175231183170) 2022; 93 bibr1-00405175231183170 |
References_xml | – volume: 92 start-page: 3733 year: 2022 end-page: 3749 article-title: Study on color ink diffusion in fabrics and color reproduction of digital inkjet printing publication-title: Text Res J contributor: fullname: Yang – volume: 68 start-page: 524 year: 1965 end-page: 527 article-title: Diffusion of dyes into nylon film publication-title: Kogyo Kagaku Zasshi contributor: fullname: Takahashi – volume: 111 start-page: 83 year: 2017 end-page: 92 article-title: Diffusion in polymeric systems – a review on free volume theory publication-title: Prog Org Coat contributor: fullname: Arya – volume: 61 start-page: 494 year: 1984 end-page: 498 article-title: The development of the Arrhenius equation publication-title: J Chem Educ contributor: fullname: Laidler – volume: 8 start-page: 37 year: 2019 end-page: 42 article-title: Diffusion coefficient for sublimation diffusion of disperse dye using error function publication-title: Int J Innovative Technol Exploring Eng contributor: fullname: Geonyong – volume: 362 start-page: 19 year: 2014 end-page: 27 article-title: Measuring and correlating diffusivity in polymer–solvent systems using free-volume theory publication-title: Fluid Phase Equilib contributor: fullname: Danner – volume: 93 start-page: 2113 year: 2022 end-page: 2125 article-title: Application of an equation derived from the solution of diffusion equation with constant surface concentration to the film-roll method publication-title: Text Res J contributor: fullname: Geonyong – volume: 14 start-page: 1 year: 2019 end-page: 9 article-title: Diffusion coefficient calculated by complementary error function for the sublimation diffusion of disperse dye publication-title: J Eng Fibers Fabrics contributor: fullname: Geonyong – volume: 48 start-page: 481 year: 1978 end-page: 486 article-title: Determination of dye on textile fibers. Part I: Disperse dye on polyethylene terephthalate publication-title: Text Res J contributor: fullname: Khan – volume: 20 start-page: 778 year: 1964 end-page: 783 article-title: Studies on vat dyeing publication-title: Sen-i Gakkaishi contributor: fullname: Matsui – volume: 92 start-page: 1891 year: 2022 end-page: 1908 article-title: Diffusion coefficient for diffusion of time-varying surface concentration by the film-roll method publication-title: Text Res J contributor: fullname: Geonyong – volume: 90 start-page: 286 year: 1974 end-page: 290 article-title: Some fundamental aspects of transfer printing publication-title: J Soc Dyers Colour contributor: fullname: Leung – volume: 98 start-page: 848 year: 2001 end-page: 851 article-title: Convex Arrhenius plots and their interpretation publication-title: Proc Natl Acad Sci U S A contributor: fullname: Kohen – volume: 423 start-page: 76 year: 2014 end-page: 84 article-title: Characterization of casein and poly- -arginine multilayer films publication-title: J Colloid Interface Sci contributor: fullname: Socha – volume: 21 start-page: 538 year: 2020 end-page: 547 article-title: Study on calculation of diffusion coefficient for sublimation diffusion of disperse dye using Fourier series publication-title: Fiber Polym contributor: fullname: Geonyong – volume: 54 start-page: 125 year: 2017 end-page: 130 article-title: Diffusion behaviors of disperse dye to PET film from print paste using film-roll method publication-title: Text Sci Eng contributor: fullname: Geonyong – volume: 11 start-page: 735 year: 2021 end-page: 746 article-title: Measurement of gas diffusion coefficient and analysis of influencing factors for Shaanxi Debao coalbed methane reservoir in China publication-title: J Pet Explor Prod Technol contributor: fullname: Hu – volume: 17 start-page: 187 year: 2000 end-page: 194 article-title: Diffusion of disperse dyes in PET films during impregnation with a supercritical fluid publication-title: J Supercrit Fluid contributor: fullname: Banchero – volume: 51 start-page: 7942S year: 2022 end-page: 7962S article-title: Solvent diffusion mechanism of PMMA/acetone coated glass fiber fabric during curing process publication-title: J Ind Text contributor: fullname: Tong – volume: 13 start-page: 1317 year: 2021 article-title: Diffusion coefficients and activation energies of diffusion of organic molecules in polystyrene below and above glass transition temperature publication-title: Polymer contributor: fullname: Welle – volume: 89 start-page: 162 year: 2019 end-page: 171 article-title: Influence of diffusion behavior of disperse dye ink on printing accuracy for warp-knitted polyester fabrics publication-title: Text Res J contributor: fullname: Zhang – volume: 48 start-page: 8608 year: 2015 end-page: 8614 article-title: Determination of concentration-dependent diffusion coefficients in polymer−solvent systems: analysis of concentration profiles measured by Raman spectroscopy during single drying experiments excluding boundary conditions and phase equilibrium publication-title: Macromolecules contributor: fullname: Schabel – volume: 25 start-page: 66 year: 1988 end-page: 71 article-title: Hydrophilic graft copolymerization of nylon 6 with acrylamide(II) publication-title: J Kor Fiber Soc contributor: fullname: Jinwoo – volume: 39 start-page: 4707 year: 2000 end-page: 4713 article-title: Comparison of dye diffusion in poly(ethylene terephthalate) films in the presence of a supercritical or aqueous solvent publication-title: Ind Eng Chem Res contributor: fullname: Banchero – volume: 92 start-page: 91 year: 2022 end-page: 102 article-title: Diffusion coefficient calculated by time-lag using film-roll method publication-title: Text Res J contributor: fullname: Geonyong – ident: bibr32-00405175231183170 doi: 10.1177/004051757804800810 – ident: bibr15-00405175231183170 – ident: bibr36-00405175231183170 – ident: bibr9-00405175231183170 doi: 10.1007/s13202-020-01058-1 – ident: bibr34-00405175231183170 – ident: bibr7-00405175231183170 – ident: bibr26-00405175231183170 doi: 10.2115/fiber.20.778 – ident: bibr4-00405175231183170 doi: 10.1177/0040517517741158 – ident: bibr22-00405175231183170 – ident: bibr28-00405175231183170 doi: 10.12772/TSE.2017.54.125 – ident: bibr10-00405175231183170 doi: 10.1021/ed061p494 – ident: bibr21-00405175231183170 – ident: bibr17-00405175231183170 – volume: 93 start-page: 2113 year: 2022 ident: bibr31-00405175231183170 publication-title: Text Res J contributor: fullname: Geonyong P. – volume: 8 start-page: 37 year: 2019 ident: bibr29-00405175231183170 publication-title: Int J Innovative Technol Exploring Eng doi: 10.35940/ijitee.L1008.10812S219 contributor: fullname: Geonyong P. – ident: bibr14-00405175231183170 – ident: bibr33-00405175231183170 – ident: bibr12-00405175231183170 – ident: bibr19-00405175231183170 doi: 10.3390/polym13081317 – ident: bibr35-00405175231183170 doi: 10.1073/pnas.98.3.848 – ident: bibr6-00405175231183170 doi: 10.1016/j.fluid.2013.08.013 – ident: bibr18-00405175231183170 doi: 10.1111/j.1478-4408.1974.tb03207.x – ident: bibr23-00405175231183170 doi: 10.1016/S0896-8446(99)00055-8 – ident: bibr24-00405175231183170 doi: 10.1021/ie000125c – volume: 14 start-page: 1 year: 2019 ident: bibr25-00405175231183170 publication-title: J Eng Fibers Fabrics contributor: fullname: Geonyong P. – ident: bibr2-00405175231183170 doi: 10.1016/j.jcis.2014.02.031 – ident: bibr11-00405175231183170 – ident: bibr1-00405175231183170 doi: 10.1016/j.porgcoat.2017.05.004 – ident: bibr13-00405175231183170 doi: 10.1246/nikkashi1898.68.3_524 – volume: 25 start-page: 66 year: 1988 ident: bibr27-00405175231183170 publication-title: J Kor Fiber Soc contributor: fullname: Geonyong P – ident: bibr20-00405175231183170 doi: 10.1177/00405175211027803 – ident: bibr30-00405175231183170 doi: 10.1177/00405175211073350 – ident: bibr5-00405175231183170 doi: 10.1021/acs.macromol.5b02144 – ident: bibr16-00405175231183170 doi: 10.1007/s12221-020-8760-z – ident: bibr3-00405175231183170 doi: 10.1177/00405175221094046 – ident: bibr8-00405175231183170 doi: 10.1177/15280837211036214 |
SSID | ssj0008878 |
Score | 2.4222388 |
Snippet | Abstract
The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant... The error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant... AbstractThe error function solution of the diffusion equation with the constant surface concentration was derived by the heat kernel to determine the constant... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Publisher |
StartPage | 4847 |
SubjectTerms | Diffusion coefficient Diffusion layers Dyes Error functions Polyethylene terephthalate Regression Sublimation |
Title | Determination of constant diffusion coefficient for error function solution of diffusion equation using film-roll method |
URI | https://journals.sagepub.com/doi/full/10.1177/00405175231183170 https://www.proquest.com/docview/2884133907 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYKHAaHabAhymDyYdIkKqMkdhLnWA1QgYGYKBKcssRxBBK00KbStL9-z7-SFAECerCqVLYjv6_Pn-33PiP0neUyzGUSEGAbJWE8koSXCSNFkcc8ilkSFepE9-Q0Glywo8vwstP504pamlX5rvj3ZF7Je6wKz8CuKkv2DZatG4UH8B3sCyVYGMpX2XjPxbI42icM26v0vScztRGmxD-0SoQWYVLy3pMJlGo605XcC6raTSX5YBTAezO9lVDe3N6RCSDGXjjdZrRD8O7gWXpWNei6135zm1atdt5HvauxnSXtJkNAbbZdvcnYih8yAXpNzJF2q8wjoW-uQNmVxpPGLALqbmQ0nas1lyFaSAU-MSnJ1ncybrQ37TwMuGFP-3h9yqz6VF0CPwWv5JvbR-b1tAf98_Rs7yD9dXh6vICWAnBF4AOX-ldnv0_q2RqcLHeRlao9e_KtRbkedzHPXZoFSSsGUNOS4Sf00a4ncN-AYxV15GgNfXDp5tM1tNJSnPyM_s5BBo9L7CCDa-vjFmQwQAZryGAHGewgo2o3lRxksIYMriGDDWS-oIuD_eHPAbGXbxABHLkisCz3PRlkwHEiERR5JCgtOJVA-SgXBYwIS6hX0EyGTEgvEBl8PE9SESZqkUrX0eJoPJIbCIsY1rm85CHLodUsyhIlIieoIuw-OIUu2nHDmt4bjZXUdzL0j23QRVtu4FML6GkacA5kjCZe3EU_lDGan55taPPlhr6i5eaPsIUWq8lMbgP_rPJvFkL_AQK_hio |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | SAGE Publications |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+constant+diffusion+coefficient+for+error+function+solution+of+diffusion+equation+using+film-roll+method&rft.jtitle=Textile+research+journal&rft.au=Park+Geon+Yong&rft.date=2023-11-01&rft.pub=Sage+Publications+Ltd&rft.issn=0040-5175&rft.eissn=1746-7748&rft.volume=93&rft.issue=21-22&rft.spage=4847&rft.epage=4864&rft_id=info:doi/10.1177%2F00405175231183170&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5175&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5175&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5175&client=summon |