Optical, electronic, and structural properties of different nanostructured ZnO morphologies

Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical propertie...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 137; no. 6; p. 752
Main Authors Ahmad, Ahmad A., Alsaad, Ahmad M., Aljarrah, Ihsan A., Al-Bataineh, Qais M., Telfah, Ahmad D.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 30.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical properties depend on the morphology and particle size. In particular, X-ray diffraction patterns verify that lattice constants, crystallite size, microstrain, and other related structural parameters are affected by the surface morphology and the particle size. In addition, ZnO nanoparticles have hydrophilic nature, while the other nanostructures have hydrophobic nature. For example, the value of the optical bandgap energy for ZnO nanoparticles, ZnO nanorods, ZnO nanoribbons, and ZnO nanoshuttles is 3.30, 3.33, 3.39, and 3.36 eV, respectively, which is in excellent agreement with standard ZnO thin films bandgap energy values. Furthermore, ZnO nanorods have higher electrical conductivity than other nanostructures, while ZnO nanoshuttles have the lowest electrical conductivity. The grain boundaries and the semiconducting nature influence the electrical conductivity of ZnO nanostructures. Finally, the boundaries create various potential barriers to the transportation of electrons in the medium. Graphical abstract
AbstractList Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical properties depend on the morphology and particle size. In particular, X-ray diffraction patterns verify that lattice constants, crystallite size, microstrain, and other related structural parameters are affected by the surface morphology and the particle size. In addition, ZnO nanoparticles have hydrophilic nature, while the other nanostructures have hydrophobic nature. For example, the value of the optical bandgap energy for ZnO nanoparticles, ZnO nanorods, ZnO nanoribbons, and ZnO nanoshuttles is 3.30, 3.33, 3.39, and 3.36 eV, respectively, which is in excellent agreement with standard ZnO thin films bandgap energy values. Furthermore, ZnO nanorods have higher electrical conductivity than other nanostructures, while ZnO nanoshuttles have the lowest electrical conductivity. The grain boundaries and the semiconducting nature influence the electrical conductivity of ZnO nanostructures. Finally, the boundaries create various potential barriers to the transportation of electrons in the medium.
Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical properties depend on the morphology and particle size. In particular, X-ray diffraction patterns verify that lattice constants, crystallite size, microstrain, and other related structural parameters are affected by the surface morphology and the particle size. In addition, ZnO nanoparticles have hydrophilic nature, while the other nanostructures have hydrophobic nature. For example, the value of the optical bandgap energy for ZnO nanoparticles, ZnO nanorods, ZnO nanoribbons, and ZnO nanoshuttles is 3.30, 3.33, 3.39, and 3.36 eV, respectively, which is in excellent agreement with standard ZnO thin films bandgap energy values. Furthermore, ZnO nanorods have higher electrical conductivity than other nanostructures, while ZnO nanoshuttles have the lowest electrical conductivity. The grain boundaries and the semiconducting nature influence the electrical conductivity of ZnO nanostructures. Finally, the boundaries create various potential barriers to the transportation of electrons in the medium. Graphical abstract
ArticleNumber 752
Author Alsaad, Ahmad M.
Telfah, Ahmad D.
Aljarrah, Ihsan A.
Ahmad, Ahmad A.
Al-Bataineh, Qais M.
Author_xml – sequence: 1
  givenname: Ahmad A.
  surname: Ahmad
  fullname: Ahmad, Ahmad A.
  organization: Department of Physics, Jordan University of Science and Technology
– sequence: 2
  givenname: Ahmad M.
  orcidid: 0000-0003-1721-1878
  surname: Alsaad
  fullname: Alsaad, Ahmad M.
  email: alsaad11@just.edu.jo, amalsaad@unomaha.edu
  organization: Department of Physics, Jordan University of Science and Technology
– sequence: 3
  givenname: Ihsan A.
  surname: Aljarrah
  fullname: Aljarrah, Ihsan A.
  organization: Department of Physics, Jordan University of Science and Technology
– sequence: 4
  givenname: Qais M.
  surname: Al-Bataineh
  fullname: Al-Bataineh, Qais M.
  organization: Department of Physics, Jordan University of Science and Technology, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V
– sequence: 5
  givenname: Ahmad D.
  surname: Telfah
  fullname: Telfah, Ahmad D.
  organization: Leibniz Institut für Analytische Wissenschaften-ISAS-e.V, Hamdi Mango Center for Scientific Research (HMCSR), The Jordan University
BookMark eNqNkE9PwyAYh4nRxDn3GSTxujqglJaDB7P4L1myi170QCjQ2aWDCvTgt5dZjcaLvgl5Ofwe-OU5AYfWWQPAGUYXGFO0MP22XwSc5wxliJB0OCszcgAmBHOUFZTSwx_3YzALYYvSUI4ppxPwvO5jq2Q3h6YzKnpnWzWH0moYoh9UHLzsYO9db3xsTYCugbptGuONjdBK675iRsMnu4Y75_sX17lNCp-Co0Z2wcw-9xQ83lw_LO-y1fr2fnm1yhRhNGZY04KVNaHYSEbKEmnNc2JqpJoSyZJJjFilqaoVrrBumOSVKpjOueK10UrmU3A-vpt6vg4mRLF1g7fpS0E4QazguKhS6nJMKe9C8KYRqo0yts5GL9tOYCT2SsVeqRiViqRUfCgVJPHlL7737U76t3-Q1UiGRNiN8d_9_kLfAdnAkts
CitedBy_id crossref_primary_10_1088_1674_4926_24060019
crossref_primary_10_1007_s10854_023_11174_3
crossref_primary_10_1007_s10876_024_02708_8
crossref_primary_10_1007_s00339_024_07789_w
crossref_primary_10_1140_epjp_s13360_024_05899_1
crossref_primary_10_1007_s10854_024_13500_9
crossref_primary_10_3390_en17092076
crossref_primary_10_1088_2053_1591_ad95df
crossref_primary_10_3390_ma18051146
crossref_primary_10_1016_j_optmat_2024_115948
Cites_doi 10.1016/j.matlet.2019.127127
10.1016/j.orgel.2020.105753
10.1103/PhysRev.92.1324
10.1016/j.solener.2020.12.069
10.1016/j.dib.2017.11.074
10.1016/j.optmat.2020.110768
10.1063/1.1836870
10.3390/cryst10040252
10.1016/S0921-4526(02)00594-X
10.1088/2053-1591/ab66a7
10.1016/j.apsusc.2019.143743
10.1557/s43578-021-00219-0
10.1016/j.physb.2014.05.056
10.1016/j.ijhydene.2006.02.003
10.3390/ijms21051612
10.1063/1.1949707
10.1016/j.scitotenv.2020.137771
10.1016/j.jallcom.2019.152093
10.1007/s00339-018-1875-z
10.1016/j.physb.2011.08.013
10.1016/j.snb.2021.130015
10.1016/j.spmi.2015.01.011
10.1021/acsanm.0c00639
10.3389/fphy.2020.00115
10.1016/j.ijbiomac.2019.09.217
10.3390/su13094729
10.1016/j.ijleo.2020.164641
10.1016/j.ceramint.2019.09.236
10.3390/ma13071737
10.1016/j.spmi.2015.10.044
10.1016/j.ceramint.2020.01.130
10.1016/j.materresbull.2011.12.027
10.1016/j.pquantelec.2010.04.001
10.1016/0040-6090(85)90092-6
10.1557/jmr.2012.58
10.1080/14786435608238074
10.1016/j.physb.2020.412263
10.1007/s11664-019-07303-6
10.1016/j.jpowsour.2021.229909
10.1016/j.spmi.2015.05.011
10.1021/acsami.0c05286
10.1016/j.ceramint.2020.02.232
10.1016/j.msec.2020.111432
10.1016/S1369-7021(07)70078-0
10.1016/j.physe.2020.114218
10.1016/S1369-7021(04)00287-1
10.1007/BF02745554
10.3390/photonics7040112
10.1038/s41598-020-60541-1
10.1007/s00289-020-03155-x
10.1021/jp050540o
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-022-02967-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Database
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_022_02967_2
GrantInformation_xml – fundername: Jordan University of Science and Technology
  grantid: 20210392
  funderid: http://dx.doi.org/10.13039/501100004035
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
2VQ
AAAVM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADQRH
AEBTG
AEKMD
AEZWR
AFDZB
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
EJD
FINBP
FSGXE
O9-
PHGZM
PHGZT
S1Z
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c264t-1d4567b241ea62770dd932eb0cf70a76a1068d4cbc181df6a98c56d39c9bedca3
IEDL.DBID BENPR
ISSN 2190-5444
IngestDate Fri Jul 25 23:33:27 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Tue Jul 01 02:42:28 EDT 2025
Fri Feb 21 02:46:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-1d4567b241ea62770dd932eb0cf70a76a1068d4cbc181df6a98c56d39c9bedca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1721-1878
PQID 2920659158
PQPubID 2044220
ParticipantIDs proquest_journals_2920659158
crossref_citationtrail_10_1140_epjp_s13360_022_02967_2
crossref_primary_10_1140_epjp_s13360_022_02967_2
springer_journals_10_1140_epjp_s13360_022_02967_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-30
PublicationDateYYYYMMDD 2022-06-30
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-30
  day: 30
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Munawar (CR35) 2020; 46
Alsaad, Al-Bataineh, Ahmad, Albataineh, Telfah (CR1) 2020; 211
Yan, Bao, Yue, Li, Zhou, Wu (CR22) 2020; 812
Munawar, Iqbal, Yasmeen, Mahmood, Hussain (CR33) 2020; 46
CR37
Williamson, Smallman (CR41) 1956; 1
Hassanien, Akl (CR32) 2016; 89
Zhou, Hu, Liu, Huo, Li, Yu (CR42) 2020; 83
Albiss, Abu-Dalo (CR8) 2021; 13
Ahmad, Alsaad, Al-Bataineh, Al-Naafa (CR36) 2018; 124
Wang (CR16) 2005; 86
Zhong, Zhong, Huo, Yang, Li (CR43) 2020; 146
Djurišić, Ng, Chen (CR20) 2010; 34
Munawar (CR34) 2020; 46
Alsaad (CR46) 2018; 16
Rathnasekara, Hari (CR30) 2021; 36
Ikhmayies, Ahmad-Bitar (CR51) 2013; 2
Moyen, Kim, Kim, Jang (CR7) 2020; 3
Liu, Chen (CR12) 2020; 261
Schmidt-Mende, MacManus-Driscoll (CR18) 2007; 10
CR47
Alsaad (CR39) 2020; 8
Aly, Elnaeim, Uosif, Abdel-Rahim (CR52) 2011; 406
Liu (CR44) 2002; 322
Kim (CR45) 2020; 12
Nurfani, Lailani, Kesuma, Anrokhi, Kadja, Rozana (CR24) 2021; 112
Urbach (CR48) 1953; 92
Norton, Heo (CR10) 2004; 6
Yıldırım, Durucan (CR29) 2012; 27
Parmar, Kundu, Punia, Aghamkar, Kishore (CR49) 2014; 450
Ahmad, Alsaad, Al-Bataineh, Al-Naafa (CR27) 2018; 124
Miss (CR28) 2020; 593
Naderi, Javaheri, Shahrokhi, Nia, Shahmoradi (CR14) 2020; 124
Alsaad (CR38) 2020; 13
Fan, Wang, Chang, Tseng, Lu (CR17) 2004; 85
CR15
Chen, Yin, Mei, Xiao, Wang (CR4) 2021; 499
CR11
Joseph, Gopchandran, Manoj, Koshy, Vaidyan (CR55) 1999; 22
Akl, Hassanien (CR40) 2015; 85
Jośko, Dobrzyńska, Dobrowolski, Kusiak, Terpiłowski (CR25) 2020; 721
Alsaad, Ahmad, Qattan, Al-Bataineh, Albataineh (CR21) 2020; 10
Wang (CR9) 2020; 21
Askari, Soltani, Saion, Yunus, Erfani, Dorostkar (CR53) 2015; 81
Xing, Zhang, Yan, Guo (CR54) 2006; 31
Mei, Menon, Hegde (CR6) 2020; 7
CR26
Qin, Yuan, Gao, Zhang, Meng (CR5) 2021; 341
Melsheimer, Ziegler (CR50) 1985; 129
CR23
Wang, Liu, Zhang, Zhang, He, Sun (CR31) 2019; 496
Al-Bataineh, Alsaad, Ahmad, Al-Sawalmih (CR2) 2019; 48
Khan (CR13) 2021; 118
Moulahi, Sediri, Gharbi (CR19) 2012; 47
Bhatt, Shukla, Pathak, Pandey (CR3) 2021; 215
T Munawar (2967_CR33) 2020; 46
ÖA Yıldırım (2967_CR29) 2012; 27
B Joseph (2967_CR55) 1999; 22
A Alsaad (2967_CR39) 2020; 8
I Jośko (2967_CR25) 2020; 721
2967_CR47
W Qin (2967_CR5) 2021; 341
A Ahmad (2967_CR27) 2018; 124
A Alsaad (2967_CR46) 2018; 16
A Djurišić (2967_CR20) 2010; 34
R Rathnasekara (2967_CR30) 2021; 36
S-W Wang (2967_CR9) 2020; 21
A Moulahi (2967_CR19) 2012; 47
A Alsaad (2967_CR21) 2020; 10
GS Mei (2967_CR6) 2020; 7
2967_CR11
T Munawar (2967_CR34) 2020; 46
AA Akl (2967_CR40) 2015; 85
Y Liu (2967_CR44) 2002; 322
R Zhong (2967_CR43) 2020; 146
A Ahmad (2967_CR36) 2018; 124
G Williamson (2967_CR41) 1956; 1
2967_CR15
B Albiss (2967_CR8) 2021; 13
KAA-I Miss (2967_CR28) 2020; 593
L Schmidt-Mende (2967_CR18) 2007; 10
Z Yan (2967_CR22) 2020; 812
Y Wang (2967_CR31) 2019; 496
AM Alsaad (2967_CR38) 2020; 13
K Aly (2967_CR52) 2011; 406
D Norton (2967_CR10) 2004; 6
FU Khan (2967_CR13) 2021; 118
2967_CR23
T Munawar (2967_CR35) 2020; 46
C Xing (2967_CR54) 2006; 31
E Moyen (2967_CR7) 2020; 3
X Liu (2967_CR12) 2020; 261
2967_CR26
M Askari (2967_CR53) 2015; 81
L Chen (2967_CR4) 2021; 499
QM Al-Bataineh (2967_CR2) 2019; 48
F Urbach (2967_CR48) 1953; 92
C Zhou (2967_CR42) 2020; 83
Z Fan (2967_CR17) 2004; 85
A Alsaad (2967_CR1) 2020; 211
R Parmar (2967_CR49) 2014; 450
HJ Kim (2967_CR45) 2020; 12
J Melsheimer (2967_CR50) 1985; 129
H-T Wang (2967_CR16) 2005; 86
2967_CR37
E Nurfani (2967_CR24) 2021; 112
S Bhatt (2967_CR3) 2021; 215
S Naderi (2967_CR14) 2020; 124
A Hassanien (2967_CR32) 2016; 89
SJ Ikhmayies (2967_CR51) 2013; 2
References_xml – volume: 261
  year: 2020
  ident: CR12
  article-title: Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.127127
– volume: 83
  year: 2020
  ident: CR42
  article-title: Effect of colloid aggregation characteristic on ZnO interface layer and photovoltaic performance of polymer solar cells
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2020.105753
– volume: 92
  start-page: 1324
  issue: 5
  year: 1953
  ident: CR48
  article-title: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.92.1324
– volume: 215
  start-page: 473
  year: 2021
  end-page: 481
  ident: CR3
  article-title: Evaluation of performance constraints and structural optimization of a core-shell ZnO nanorod based eco-friendly perovskite solar cell
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.12.069
– volume: 16
  start-page: 667
  year: 2018
  end-page: 684
  ident: CR46
  article-title: Crystallographic, vibrational modes and optical properties data of α-DIPAB crystal
  publication-title: Data Brief
  doi: 10.1016/j.dib.2017.11.074
– volume: 112
  year: 2021
  ident: CR24
  article-title: UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110768
– volume: 85
  start-page: 5923
  issue: 24
  year: 2004
  end-page: 5925
  ident: CR17
  article-title: ZnO nanowire field-effect transistor and oxygen sensing property
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1836870
– volume: 10
  start-page: 252
  issue: 4
  year: 2020
  ident: CR21
  article-title: Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped ZnO and group III elements (B, Al, Ga, and In)-doped ZnO thin films
  publication-title: Crystals
  doi: 10.3390/cryst10040252
– volume: 322
  start-page: 31
  issue: 1–2
  year: 2002
  end-page: 36
  ident: CR44
  article-title: Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates
  publication-title: Physica B
  doi: 10.1016/S0921-4526(02)00594-X
– volume: 7
  issue: 1
  year: 2020
  ident: CR6
  article-title: ZnO for performance enhancement of surface plasmon resonance biosensor: a review
  publication-title: Mater. Res. Exp.
  doi: 10.1088/2053-1591/ab66a7
– volume: 496
  year: 2019
  ident: CR31
  article-title: Facile fabrication of a low adhesion, stable and superhydrophobic filter paper modified with ZnO microclusters
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143743
– volume: 36
  start-page: 1937
  issue: 9
  year: 2021
  end-page: 1947
  ident: CR30
  article-title: Impedance spectroscopy of nanostructured ZnO morphologies
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-021-00219-0
– volume: 450
  start-page: 39
  year: 2014
  end-page: 44
  ident: CR49
  article-title: Iron modified structural and optical spectral properties of bismuth silicate glasses
  publication-title: Physica B
  doi: 10.1016/j.physb.2014.05.056
– volume: 31
  start-page: 2018
  issue: 14
  year: 2006
  end-page: 2024
  ident: CR54
  article-title: Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.003
– volume: 21
  start-page: 1612
  issue: 5
  year: 2020
  ident: CR9
  article-title: ZnO nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21051612
– volume: 86
  issue: 24
  year: 2005
  ident: CR16
  article-title: Hydrogen-selective sensing at room temperature with ZnO nanorods
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1949707
– volume: 721
  year: 2020
  ident: CR25
  article-title: The effect of pH and ageing on the fate of CuO and ZnO nanoparticles in soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137771
– ident: CR15
– volume: 812
  year: 2020
  ident: CR22
  article-title: Impacts of preparation conditions on photoelectric properties of the ZnO: Ge transparent conductive thin films fabricated by pulsed laser deposition
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.152093
– volume: 124
  start-page: 458
  issue: 6
  year: 2018
  ident: CR36
  article-title: Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1875-z
– volume: 406
  start-page: 4227
  issue: 22
  year: 2011
  end-page: 4232
  ident: CR52
  article-title: Optical properties of Ge–As–Te thin films
  publication-title: Physica B
  doi: 10.1016/j.physb.2011.08.013
– volume: 341
  year: 2021
  ident: CR5
  article-title: Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130015
– volume: 124
  start-page: 1
  issue: 6
  year: 2018
  end-page: 13
  ident: CR27
  article-title: Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1875-z
– ident: CR11
– volume: 81
  start-page: 193
  year: 2015
  end-page: 201
  ident: CR53
  article-title: Structural and optical properties of PVP-capped nanocrystalline ZnxCd1− xS solid solutions
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.01.011
– volume: 3
  start-page: 5203
  issue: 6
  year: 2020
  end-page: 5211
  ident: CR7
  article-title: ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00639
– volume: 8
  start-page: 115
  year: 2020
  ident: CR39
  article-title: Measurement and ab initio investigation of structural, electronic, optical, and mechanical properties of sputtered aluminum nitride thin films
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00115
– volume: 146
  start-page: 939
  year: 2020
  end-page: 945
  ident: CR43
  article-title: Preparation of biocompatible nano-ZnO/chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.09.217
– volume: 13
  start-page: 4729
  issue: 9
  year: 2021
  ident: CR8
  article-title: Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers
  publication-title: Sustainability
  doi: 10.3390/su13094729
– volume: 211
  year: 2020
  ident: CR1
  article-title: Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164641
– volume: 46
  start-page: 2421
  issue: 2
  year: 2020
  end-page: 2437
  ident: CR33
  article-title: Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.236
– ident: CR26
– volume: 13
  start-page: 1737
  issue: 7
  year: 2020
  ident: CR38
  article-title: Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) Co-doped ZnO thin films
  publication-title: Materials
  doi: 10.3390/ma13071737
– volume: 89
  start-page: 153
  year: 2016
  end-page: 169
  ident: CR32
  article-title: Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.10.044
– ident: CR47
– ident: CR37
– volume: 46
  start-page: 11101
  issue: 8
  year: 2020
  end-page: 11114
  ident: CR34
  article-title: Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.01.130
– volume: 2
  start-page: 221
  issue: 3
  year: 2013
  end-page: 227
  ident: CR51
  article-title: A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: in thin films
  publication-title: J. Market. Res.
– volume: 47
  start-page: 667
  issue: 3
  year: 2012
  end-page: 671
  ident: CR19
  article-title: Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2011.12.027
– volume: 34
  start-page: 191
  issue: 4
  year: 2010
  end-page: 259
  ident: CR20
  article-title: ZnO nanostructures for optoelectronics: material properties and device applications
  publication-title: Prog. Quantum Electron.
  doi: 10.1016/j.pquantelec.2010.04.001
– volume: 129
  start-page: 35
  issue: 1–2
  year: 1985
  end-page: 47
  ident: CR50
  article-title: Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(85)90092-6
– ident: CR23
– volume: 27
  start-page: 1452
  issue: 11
  year: 2012
  end-page: 1461
  ident: CR29
  article-title: Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2012.58
– volume: 1
  start-page: 34
  issue: 1
  year: 1956
  end-page: 46
  ident: CR41
  article-title: III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum
  publication-title: Phil. Mag.
  doi: 10.1080/14786435608238074
– volume: 593
  year: 2020
  ident: CR28
  article-title: Optical properties of hydrophobic ZnO nanostructure based on antireflective coatings of ZnO/TiO2/SiO2 thin films
  publication-title: Physica B
  doi: 10.1016/j.physb.2020.412263
– volume: 48
  start-page: 5028
  issue: 8
  year: 2019
  end-page: 5038
  ident: CR2
  article-title: Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07303-6
– volume: 499
  year: 2021
  ident: CR4
  article-title: Enhanced photoelectric performance of inverted CsPbI2Br perovskite solar cells with zwitterion modified ZnO cathode interlayer
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229909
– volume: 85
  start-page: 67
  year: 2015
  end-page: 81
  ident: CR40
  article-title: Microstructure and crystal imperfections of nanosized CdSxSe1− x thermally evaporated thin films
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.05.011
– volume: 12
  start-page: 30750
  issue: 27
  year: 2020
  end-page: 30760
  ident: CR45
  article-title: Fabrication of nanocomposites complexed with gold nanoparticles on polyaniline and application to their nerve regeneration
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.0c05286
– volume: 46
  start-page: 14369
  issue: 10
  year: 2020
  end-page: 14383
  ident: CR35
  article-title: Zn0. 9Ce0. 05M0. 05O (M= Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.232
– volume: 118
  year: 2021
  ident: CR13
  article-title: An Astragalus membranaceus based eco-friendly biomimetic synthesis approach of ZnO nanoflowers with an excellent antibacterial, antioxidant and electrochemical sensing effect
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2020.111432
– volume: 10
  start-page: 40
  issue: 5
  year: 2007
  end-page: 48
  ident: CR18
  article-title: ZnO–nanostructures, defects, and devices
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70078-0
– volume: 124
  year: 2020
  ident: CR14
  article-title: Optical properties of zigzag and armchair ZnO nanoribbons
  publication-title: Physica E
  doi: 10.1016/j.physe.2020.114218
– volume: 6
  start-page: 34
  year: 2004
  ident: CR10
  article-title: MP lviii, K. Ip, SJ Pearton, MF Chishoim, T. Steiner," ZnO: growth, doping and processing
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(04)00287-1
– volume: 22
  start-page: 921
  issue: 5
  year: 1999
  end-page: 926
  ident: CR55
  article-title: Optical and electrical properties of zinc oxide films prepared by spray pyrolysis
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02745554
– volume: 124
  year: 2020
  ident: 2967_CR14
  publication-title: Physica E
  doi: 10.1016/j.physe.2020.114218
– volume: 85
  start-page: 67
  year: 2015
  ident: 2967_CR40
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.05.011
– ident: 2967_CR47
– volume: 10
  start-page: 252
  issue: 4
  year: 2020
  ident: 2967_CR21
  publication-title: Crystals
  doi: 10.3390/cryst10040252
– volume: 13
  start-page: 1737
  issue: 7
  year: 2020
  ident: 2967_CR38
  publication-title: Materials
  doi: 10.3390/ma13071737
– volume: 36
  start-page: 1937
  issue: 9
  year: 2021
  ident: 2967_CR30
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-021-00219-0
– volume: 812
  year: 2020
  ident: 2967_CR22
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.152093
– volume: 8
  start-page: 115
  year: 2020
  ident: 2967_CR39
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00115
– ident: 2967_CR37
  doi: 10.3390/photonics7040112
– ident: 2967_CR11
  doi: 10.1038/s41598-020-60541-1
– volume: 406
  start-page: 4227
  issue: 22
  year: 2011
  ident: 2967_CR52
  publication-title: Physica B
  doi: 10.1016/j.physb.2011.08.013
– volume: 215
  start-page: 473
  year: 2021
  ident: 2967_CR3
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.12.069
– volume: 499
  year: 2021
  ident: 2967_CR4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229909
– volume: 21
  start-page: 1612
  issue: 5
  year: 2020
  ident: 2967_CR9
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21051612
– volume: 12
  start-page: 30750
  issue: 27
  year: 2020
  ident: 2967_CR45
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.0c05286
– ident: 2967_CR15
– volume: 48
  start-page: 5028
  issue: 8
  year: 2019
  ident: 2967_CR2
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07303-6
– volume: 46
  start-page: 11101
  issue: 8
  year: 2020
  ident: 2967_CR34
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.01.130
– volume: 31
  start-page: 2018
  issue: 14
  year: 2006
  ident: 2967_CR54
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.003
– volume: 85
  start-page: 5923
  issue: 24
  year: 2004
  ident: 2967_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1836870
– volume: 83
  year: 2020
  ident: 2967_CR42
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2020.105753
– ident: 2967_CR23
  doi: 10.1007/s00289-020-03155-x
– volume: 450
  start-page: 39
  year: 2014
  ident: 2967_CR49
  publication-title: Physica B
  doi: 10.1016/j.physb.2014.05.056
– volume: 341
  year: 2021
  ident: 2967_CR5
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130015
– volume: 27
  start-page: 1452
  issue: 11
  year: 2012
  ident: 2967_CR29
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2012.58
– volume: 89
  start-page: 153
  year: 2016
  ident: 2967_CR32
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.10.044
– volume: 46
  start-page: 14369
  issue: 10
  year: 2020
  ident: 2967_CR35
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.232
– volume: 1
  start-page: 34
  issue: 1
  year: 1956
  ident: 2967_CR41
  publication-title: Phil. Mag.
  doi: 10.1080/14786435608238074
– volume: 496
  year: 2019
  ident: 2967_CR31
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143743
– volume: 118
  year: 2021
  ident: 2967_CR13
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2020.111432
– volume: 16
  start-page: 667
  year: 2018
  ident: 2967_CR46
  publication-title: Data Brief
  doi: 10.1016/j.dib.2017.11.074
– volume: 721
  year: 2020
  ident: 2967_CR25
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137771
– volume: 112
  year: 2021
  ident: 2967_CR24
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110768
– volume: 46
  start-page: 2421
  issue: 2
  year: 2020
  ident: 2967_CR33
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.236
– volume: 146
  start-page: 939
  year: 2020
  ident: 2967_CR43
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.09.217
– volume: 261
  year: 2020
  ident: 2967_CR12
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.127127
– volume: 47
  start-page: 667
  issue: 3
  year: 2012
  ident: 2967_CR19
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2011.12.027
– volume: 211
  year: 2020
  ident: 2967_CR1
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164641
– volume: 86
  issue: 24
  year: 2005
  ident: 2967_CR16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1949707
– volume: 81
  start-page: 193
  year: 2015
  ident: 2967_CR53
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.01.011
– volume: 129
  start-page: 35
  issue: 1–2
  year: 1985
  ident: 2967_CR50
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(85)90092-6
– volume: 322
  start-page: 31
  issue: 1–2
  year: 2002
  ident: 2967_CR44
  publication-title: Physica B
  doi: 10.1016/S0921-4526(02)00594-X
– volume: 6
  start-page: 34
  year: 2004
  ident: 2967_CR10
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(04)00287-1
– volume: 593
  year: 2020
  ident: 2967_CR28
  publication-title: Physica B
  doi: 10.1016/j.physb.2020.412263
– volume: 3
  start-page: 5203
  issue: 6
  year: 2020
  ident: 2967_CR7
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00639
– volume: 2
  start-page: 221
  issue: 3
  year: 2013
  ident: 2967_CR51
  publication-title: J. Market. Res.
– volume: 22
  start-page: 921
  issue: 5
  year: 1999
  ident: 2967_CR55
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02745554
– volume: 92
  start-page: 1324
  issue: 5
  year: 1953
  ident: 2967_CR48
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.92.1324
– volume: 34
  start-page: 191
  issue: 4
  year: 2010
  ident: 2967_CR20
  publication-title: Prog. Quantum Electron.
  doi: 10.1016/j.pquantelec.2010.04.001
– volume: 7
  issue: 1
  year: 2020
  ident: 2967_CR6
  publication-title: Mater. Res. Exp.
  doi: 10.1088/2053-1591/ab66a7
– ident: 2967_CR26
  doi: 10.1021/jp050540o
– volume: 10
  start-page: 40
  issue: 5
  year: 2007
  ident: 2967_CR18
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70078-0
– volume: 13
  start-page: 4729
  issue: 9
  year: 2021
  ident: 2967_CR8
  publication-title: Sustainability
  doi: 10.3390/su13094729
– volume: 124
  start-page: 458
  issue: 6
  year: 2018
  ident: 2967_CR36
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1875-z
– volume: 124
  start-page: 1
  issue: 6
  year: 2018
  ident: 2967_CR27
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1875-z
SSID ssj0000491494
Score 2.3361428
Snippet Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 752
SubjectTerms Applied and Technical Physics
Atomic
Boundaries
Chemical composition
Complex Systems
Condensed Matter Physics
Contact angle
Crystallites
Diffraction patterns
Electrical properties
Electrical resistivity
Energy gap
Energy value
Ethanol
Grain boundaries
Lattice parameters
Mathematical and Computational Physics
Microstrain
Molecular
Molecular weight
Morphology
Nanoparticles
Nanoribbons
Nanorods
Nanostructure
Nanowires
Nitrates
Optical and Plasma Physics
Optical properties
Particle size
Phase transitions
Photovoltaic cells
Physics
Physics and Astronomy
Potential barriers
Regular Article
Scanning electron microscopy
Sensors
Temperature
Theoretical
Thin films
Wettability
X-ray diffraction
Zinc oxide
Zinc oxides
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEbyIT6xW2YPHhm4eu8kei1iKoL1YKHpY9nkQTYLp_8fZTdKqBwuek8lhZnbmm53JfAjdUq4IdTKLJLcpFCiWRyqVLvJEOZw5l0nrO7qPT2y2yB6WdPmd6stPu_ctyRCp2322ZGzrt3rcQEnFSORH0EnC4YxD9N2jvoAHV14kk_X1CgBfwP5ZN9H1h_zPfLQBmb_6oiHdTI_QYYcT8aQ17DHaseUJ2g_zmro5Ra_zOlxCj_CGx2aEZWlwuxDWL9PAtb9o__QbU3HlcE-FssKlLKv-NWvwSznHHxXoO8RB25yhxfT--W4WdTwJkQY4s4piAygoV5CLrWRJnhNjAJVZRbTLicyZhLKvMJlWGtK5cUzyQlNmUq65skbL9BztllVpLxBWqXW-E2sKqjJAWorbPHaaQxUGLpeqAWK9toTuloh7Lot30f7gTIRXs2jVLEDNIqhZJANE1oJ1u0dju8iwN4foDlYjPLkWozymxQDFvYk2j7d88vIfMlfoIAn-4mcEh2gXzGOvAYis1E1wuS-H5Nj6
  priority: 102
  providerName: Springer Nature
Title Optical, electronic, and structural properties of different nanostructured ZnO morphologies
URI https://link.springer.com/article/10.1140/epjp/s13360-022-02967-2
https://www.proquest.com/docview/2920659158
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07b9swED7ENgp0KfJE3bgGh4wRLOtBiVNhF3aCFHWCIAacZiD4HIJWUiv_f_QoUTaSIZk0UORwPN1999B9ABcpk2FqRRIIZmIMUAwLZCxs4IhyGLU2EcZVdH-u6PU6udmkG59wq31bZWcTG0OtS-Vy5BPHqkRTNk3zb9XfwLFGueqqp9DowQBNcI7B12C-WN3d77IsiH8xBEh8YxcGExNTPVeTGiMzGgaukz2MGJqK6KVb2mPNV-XRxussD-GTh4tk1t7vERyY4hg-NG2bqj6Bp9uqyUVfkj2dzSURhSbtXFg3U4NULt_-zw1OJaUlHSPKlhSiKLvXjCa_ilvyp0SxN-bQ1KewXi4evl8Hni4hUIhqtsFUIxjKJLpkI2iUZaHWCM6MDJXNQpFRgdFfrhMlFXp1balguUqpjpli0mgl4jPoF2VhPgORsbGuIKvzVCYIuCQz2dQqhsEYal4sh0A7aXHlZ4k7SovfvP3POeROzLwVM0cx80bMPBpCuNtYteM03t8y6q6D---r5nttGMK0u6L98jtHfnn7yHP4GDWq4boCR9DHmzBfEXps5Rh6-fJqDIPZcj5fuefV44_F2Gsdrq6j2X9dq95w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RECoXBKUVKVD2UG6x4vix9h4QQtAQIIFLIkXtYbvPQ1Vst45U8af4jcz6kYgeyImzvXOYmZ33zgfwNWbSj62IPMFMiAmKYZ4MhfUcUA6j1kbCuI7u-I4Op9HNLJ6twVP7FsaNVbY2sTLUOleuRt5zqEo0Zv04PSv-eA41ynVXWwiNWi1uzeM_TNnK0-tLlO9JEAy-TS6GXoMq4Cl0_nOvrzFmSCR6LiNokCS-1hjDGOkrm_gioQKTpFRHSip0ftpSwVIVUx0yxaTRSoRI9x1sRGHI3I1KB1eLmg5G25hwRM0YGaYuPVP8Knol5oHU99zcvB8wNEzBSye4jGz_a8ZWPm6wA9tNcErOa23ahTWTfYDNakhUlXvw476oKt9dsgTP6RKRaVJvoXUbPEjhqvt_3ZpWklvS4q_MSSayvP3NaPI9uycPOQq5Mr6m_AjTN2HjJ1jP8szsA5Ghsa79q9NYRhjeSWaSvlUMUz_U81B2gLbc4qrZXO4ANH7z-lW1zx2bec1mjmzmFZt50AF_cbCol3esPnLYioM3t7nkS93rQL8V0fLzCpKfXyd5DO-Hk_GIj67vbg9gK6jUxM0jHsI6SsUcYdAzl18qTSPw861V-xmhhBX8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqIhAL4ikKBTwwNqrzcuKxglbl1TJQqYLB8nNAkEY0_1-c82gFA5WYk_Nwd_Z95zt_h9B1zCSJrYg8wUwICYphngyF9dygHEatjYRxFd2nCR3Povt5PG-hYfMWpux2b0qS1ZsGx9KUFf1c25rblvRN_p73l5BeUeK5dnQSMNjvcBJvwZnsO-eeBYPVVQuAYMgDorq76w_5n7FpDTh_1UjL0DPaR3s1ZsSDysgHqGWyQ7Rd9m6q5RF6m-blhXQPr2fa9LDINK7IYR2xBs7dpfuXY0_FC4ubsSgFzkS2aH4zGr9mU_y5AN2XZ6JZHqPZaPhyM_bqmQmeAmhTeL4GRJRIiMtG0CBJiNaA0IwkyiZEJFRACpjqSEkFoV1bKliqYqpDppg0WonwBLWzRWZOEZahsa4qq9NYRoC6JDOJbxWDjAzcL5QdRBttcVUTiru5Fh-8euxMuFMzr9TMQc28VDMPOoisBPOKU2OzSLcxB6832ZK7QVs0Zn6cdpDfmGj9ecOSZ_-QuUI7z7cj_ng3eThHu0HpOq51sIvaYClzAfikkJel930DhfngKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical%2C+electronic%2C+and+structural+properties+of+different+nanostructured+ZnO+morphologies&rft.jtitle=European+physical+journal+plus&rft.au=Ahmad%2C+Ahmad+A&rft.au=Alsaad%2C+Ahmad+M&rft.au=Aljarrah%2C+Ihsan+A&rft.au=Al-Bataineh%2C+Qais+M&rft.date=2022-06-30&rft.pub=Springer+Nature+B.V&rft.eissn=2190-5444&rft.volume=137&rft.issue=6&rft.spage=752&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-022-02967-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon