Optical, electronic, and structural properties of different nanostructured ZnO morphologies
Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical propertie...
Saved in:
Published in | European physical journal plus Vol. 137; no. 6; p. 752 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
30.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical properties depend on the morphology and particle size. In particular, X-ray diffraction patterns verify that lattice constants, crystallite size, microstrain, and other related structural parameters are affected by the surface morphology and the particle size. In addition, ZnO nanoparticles have hydrophilic nature, while the other nanostructures have hydrophobic nature. For example, the value of the optical bandgap energy for ZnO nanoparticles, ZnO nanorods, ZnO nanoribbons, and ZnO nanoshuttles is 3.30, 3.33, 3.39, and 3.36 eV, respectively, which is in excellent agreement with standard ZnO thin films bandgap energy values. Furthermore, ZnO nanorods have higher electrical conductivity than other nanostructures, while ZnO nanoshuttles have the lowest electrical conductivity. The grain boundaries and the semiconducting nature influence the electrical conductivity of ZnO nanostructures. Finally, the boundaries create various potential barriers to the transportation of electrons in the medium.
Graphical abstract |
---|---|
AbstractList | Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical properties depend on the morphology and particle size. In particular, X-ray diffraction patterns verify that lattice constants, crystallite size, microstrain, and other related structural parameters are affected by the surface morphology and the particle size. In addition, ZnO nanoparticles have hydrophilic nature, while the other nanostructures have hydrophobic nature. For example, the value of the optical bandgap energy for ZnO nanoparticles, ZnO nanorods, ZnO nanoribbons, and ZnO nanoshuttles is 3.30, 3.33, 3.39, and 3.36 eV, respectively, which is in excellent agreement with standard ZnO thin films bandgap energy values. Furthermore, ZnO nanorods have higher electrical conductivity than other nanostructures, while ZnO nanoshuttles have the lowest electrical conductivity. The grain boundaries and the semiconducting nature influence the electrical conductivity of ZnO nanostructures. Finally, the boundaries create various potential barriers to the transportation of electrons in the medium. Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical compositions, and the conditions of the process. Different ZnO nanostructures' structural, wettability, optical, and electrical properties depend on the morphology and particle size. In particular, X-ray diffraction patterns verify that lattice constants, crystallite size, microstrain, and other related structural parameters are affected by the surface morphology and the particle size. In addition, ZnO nanoparticles have hydrophilic nature, while the other nanostructures have hydrophobic nature. For example, the value of the optical bandgap energy for ZnO nanoparticles, ZnO nanorods, ZnO nanoribbons, and ZnO nanoshuttles is 3.30, 3.33, 3.39, and 3.36 eV, respectively, which is in excellent agreement with standard ZnO thin films bandgap energy values. Furthermore, ZnO nanorods have higher electrical conductivity than other nanostructures, while ZnO nanoshuttles have the lowest electrical conductivity. The grain boundaries and the semiconducting nature influence the electrical conductivity of ZnO nanostructures. Finally, the boundaries create various potential barriers to the transportation of electrons in the medium. Graphical abstract |
ArticleNumber | 752 |
Author | Alsaad, Ahmad M. Telfah, Ahmad D. Aljarrah, Ihsan A. Ahmad, Ahmad A. Al-Bataineh, Qais M. |
Author_xml | – sequence: 1 givenname: Ahmad A. surname: Ahmad fullname: Ahmad, Ahmad A. organization: Department of Physics, Jordan University of Science and Technology – sequence: 2 givenname: Ahmad M. orcidid: 0000-0003-1721-1878 surname: Alsaad fullname: Alsaad, Ahmad M. email: alsaad11@just.edu.jo, amalsaad@unomaha.edu organization: Department of Physics, Jordan University of Science and Technology – sequence: 3 givenname: Ihsan A. surname: Aljarrah fullname: Aljarrah, Ihsan A. organization: Department of Physics, Jordan University of Science and Technology – sequence: 4 givenname: Qais M. surname: Al-Bataineh fullname: Al-Bataineh, Qais M. organization: Department of Physics, Jordan University of Science and Technology, Leibniz Institut für Analytische Wissenschaften-ISAS-e.V – sequence: 5 givenname: Ahmad D. surname: Telfah fullname: Telfah, Ahmad D. organization: Leibniz Institut für Analytische Wissenschaften-ISAS-e.V, Hamdi Mango Center for Scientific Research (HMCSR), The Jordan University |
BookMark | eNqNkE9PwyAYh4nRxDn3GSTxujqglJaDB7P4L1myi170QCjQ2aWDCvTgt5dZjcaLvgl5Ofwe-OU5AYfWWQPAGUYXGFO0MP22XwSc5wxliJB0OCszcgAmBHOUFZTSwx_3YzALYYvSUI4ppxPwvO5jq2Q3h6YzKnpnWzWH0moYoh9UHLzsYO9db3xsTYCugbptGuONjdBK675iRsMnu4Y75_sX17lNCp-Co0Z2wcw-9xQ83lw_LO-y1fr2fnm1yhRhNGZY04KVNaHYSEbKEmnNc2JqpJoSyZJJjFilqaoVrrBumOSVKpjOueK10UrmU3A-vpt6vg4mRLF1g7fpS0E4QazguKhS6nJMKe9C8KYRqo0yts5GL9tOYCT2SsVeqRiViqRUfCgVJPHlL7737U76t3-Q1UiGRNiN8d_9_kLfAdnAkts |
CitedBy_id | crossref_primary_10_1088_1674_4926_24060019 crossref_primary_10_1007_s10854_023_11174_3 crossref_primary_10_1007_s10876_024_02708_8 crossref_primary_10_1007_s00339_024_07789_w crossref_primary_10_1140_epjp_s13360_024_05899_1 crossref_primary_10_1007_s10854_024_13500_9 crossref_primary_10_3390_en17092076 crossref_primary_10_1088_2053_1591_ad95df crossref_primary_10_3390_ma18051146 crossref_primary_10_1016_j_optmat_2024_115948 |
Cites_doi | 10.1016/j.matlet.2019.127127 10.1016/j.orgel.2020.105753 10.1103/PhysRev.92.1324 10.1016/j.solener.2020.12.069 10.1016/j.dib.2017.11.074 10.1016/j.optmat.2020.110768 10.1063/1.1836870 10.3390/cryst10040252 10.1016/S0921-4526(02)00594-X 10.1088/2053-1591/ab66a7 10.1016/j.apsusc.2019.143743 10.1557/s43578-021-00219-0 10.1016/j.physb.2014.05.056 10.1016/j.ijhydene.2006.02.003 10.3390/ijms21051612 10.1063/1.1949707 10.1016/j.scitotenv.2020.137771 10.1016/j.jallcom.2019.152093 10.1007/s00339-018-1875-z 10.1016/j.physb.2011.08.013 10.1016/j.snb.2021.130015 10.1016/j.spmi.2015.01.011 10.1021/acsanm.0c00639 10.3389/fphy.2020.00115 10.1016/j.ijbiomac.2019.09.217 10.3390/su13094729 10.1016/j.ijleo.2020.164641 10.1016/j.ceramint.2019.09.236 10.3390/ma13071737 10.1016/j.spmi.2015.10.044 10.1016/j.ceramint.2020.01.130 10.1016/j.materresbull.2011.12.027 10.1016/j.pquantelec.2010.04.001 10.1016/0040-6090(85)90092-6 10.1557/jmr.2012.58 10.1080/14786435608238074 10.1016/j.physb.2020.412263 10.1007/s11664-019-07303-6 10.1016/j.jpowsour.2021.229909 10.1016/j.spmi.2015.05.011 10.1021/acsami.0c05286 10.1016/j.ceramint.2020.02.232 10.1016/j.msec.2020.111432 10.1016/S1369-7021(07)70078-0 10.1016/j.physe.2020.114218 10.1016/S1369-7021(04)00287-1 10.1007/BF02745554 10.3390/photonics7040112 10.1038/s41598-020-60541-1 10.1007/s00289-020-03155-x 10.1021/jp050540o |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/s13360-022-02967-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Database ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_022_02967_2 |
GrantInformation_xml | – fundername: Jordan University of Science and Technology grantid: 20210392 funderid: http://dx.doi.org/10.13039/501100004035 |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 2VQ AAAVM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADQRH AEBTG AEKMD AEZWR AFDZB AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION EJD FINBP FSGXE O9- PHGZM PHGZT S1Z 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c264t-1d4567b241ea62770dd932eb0cf70a76a1068d4cbc181df6a98c56d39c9bedca3 |
IEDL.DBID | BENPR |
ISSN | 2190-5444 |
IngestDate | Fri Jul 25 23:33:27 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Tue Jul 01 02:42:28 EDT 2025 Fri Feb 21 02:46:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c264t-1d4567b241ea62770dd932eb0cf70a76a1068d4cbc181df6a98c56d39c9bedca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1721-1878 |
PQID | 2920659158 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2920659158 crossref_citationtrail_10_1140_epjp_s13360_022_02967_2 crossref_primary_10_1140_epjp_s13360_022_02967_2 springer_journals_10_1140_epjp_s13360_022_02967_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-30 |
PublicationDateYYYYMMDD | 2022-06-30 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Munawar (CR35) 2020; 46 Alsaad, Al-Bataineh, Ahmad, Albataineh, Telfah (CR1) 2020; 211 Yan, Bao, Yue, Li, Zhou, Wu (CR22) 2020; 812 Munawar, Iqbal, Yasmeen, Mahmood, Hussain (CR33) 2020; 46 CR37 Williamson, Smallman (CR41) 1956; 1 Hassanien, Akl (CR32) 2016; 89 Zhou, Hu, Liu, Huo, Li, Yu (CR42) 2020; 83 Albiss, Abu-Dalo (CR8) 2021; 13 Ahmad, Alsaad, Al-Bataineh, Al-Naafa (CR36) 2018; 124 Wang (CR16) 2005; 86 Zhong, Zhong, Huo, Yang, Li (CR43) 2020; 146 Djurišić, Ng, Chen (CR20) 2010; 34 Munawar (CR34) 2020; 46 Alsaad (CR46) 2018; 16 Rathnasekara, Hari (CR30) 2021; 36 Ikhmayies, Ahmad-Bitar (CR51) 2013; 2 Moyen, Kim, Kim, Jang (CR7) 2020; 3 Liu, Chen (CR12) 2020; 261 Schmidt-Mende, MacManus-Driscoll (CR18) 2007; 10 CR47 Alsaad (CR39) 2020; 8 Aly, Elnaeim, Uosif, Abdel-Rahim (CR52) 2011; 406 Liu (CR44) 2002; 322 Kim (CR45) 2020; 12 Nurfani, Lailani, Kesuma, Anrokhi, Kadja, Rozana (CR24) 2021; 112 Urbach (CR48) 1953; 92 Norton, Heo (CR10) 2004; 6 Yıldırım, Durucan (CR29) 2012; 27 Parmar, Kundu, Punia, Aghamkar, Kishore (CR49) 2014; 450 Ahmad, Alsaad, Al-Bataineh, Al-Naafa (CR27) 2018; 124 Miss (CR28) 2020; 593 Naderi, Javaheri, Shahrokhi, Nia, Shahmoradi (CR14) 2020; 124 Alsaad (CR38) 2020; 13 Fan, Wang, Chang, Tseng, Lu (CR17) 2004; 85 CR15 Chen, Yin, Mei, Xiao, Wang (CR4) 2021; 499 CR11 Joseph, Gopchandran, Manoj, Koshy, Vaidyan (CR55) 1999; 22 Akl, Hassanien (CR40) 2015; 85 Jośko, Dobrzyńska, Dobrowolski, Kusiak, Terpiłowski (CR25) 2020; 721 Alsaad, Ahmad, Qattan, Al-Bataineh, Albataineh (CR21) 2020; 10 Wang (CR9) 2020; 21 Askari, Soltani, Saion, Yunus, Erfani, Dorostkar (CR53) 2015; 81 Xing, Zhang, Yan, Guo (CR54) 2006; 31 Mei, Menon, Hegde (CR6) 2020; 7 CR26 Qin, Yuan, Gao, Zhang, Meng (CR5) 2021; 341 Melsheimer, Ziegler (CR50) 1985; 129 CR23 Wang, Liu, Zhang, Zhang, He, Sun (CR31) 2019; 496 Al-Bataineh, Alsaad, Ahmad, Al-Sawalmih (CR2) 2019; 48 Khan (CR13) 2021; 118 Moulahi, Sediri, Gharbi (CR19) 2012; 47 Bhatt, Shukla, Pathak, Pandey (CR3) 2021; 215 T Munawar (2967_CR33) 2020; 46 ÖA Yıldırım (2967_CR29) 2012; 27 B Joseph (2967_CR55) 1999; 22 A Alsaad (2967_CR39) 2020; 8 I Jośko (2967_CR25) 2020; 721 2967_CR47 W Qin (2967_CR5) 2021; 341 A Ahmad (2967_CR27) 2018; 124 A Alsaad (2967_CR46) 2018; 16 A Djurišić (2967_CR20) 2010; 34 R Rathnasekara (2967_CR30) 2021; 36 S-W Wang (2967_CR9) 2020; 21 A Moulahi (2967_CR19) 2012; 47 A Alsaad (2967_CR21) 2020; 10 GS Mei (2967_CR6) 2020; 7 2967_CR11 T Munawar (2967_CR34) 2020; 46 AA Akl (2967_CR40) 2015; 85 Y Liu (2967_CR44) 2002; 322 R Zhong (2967_CR43) 2020; 146 A Ahmad (2967_CR36) 2018; 124 G Williamson (2967_CR41) 1956; 1 2967_CR15 B Albiss (2967_CR8) 2021; 13 KAA-I Miss (2967_CR28) 2020; 593 L Schmidt-Mende (2967_CR18) 2007; 10 Z Yan (2967_CR22) 2020; 812 Y Wang (2967_CR31) 2019; 496 AM Alsaad (2967_CR38) 2020; 13 K Aly (2967_CR52) 2011; 406 D Norton (2967_CR10) 2004; 6 FU Khan (2967_CR13) 2021; 118 2967_CR23 T Munawar (2967_CR35) 2020; 46 C Xing (2967_CR54) 2006; 31 E Moyen (2967_CR7) 2020; 3 X Liu (2967_CR12) 2020; 261 2967_CR26 M Askari (2967_CR53) 2015; 81 L Chen (2967_CR4) 2021; 499 QM Al-Bataineh (2967_CR2) 2019; 48 F Urbach (2967_CR48) 1953; 92 C Zhou (2967_CR42) 2020; 83 Z Fan (2967_CR17) 2004; 85 A Alsaad (2967_CR1) 2020; 211 R Parmar (2967_CR49) 2014; 450 HJ Kim (2967_CR45) 2020; 12 J Melsheimer (2967_CR50) 1985; 129 H-T Wang (2967_CR16) 2005; 86 2967_CR37 E Nurfani (2967_CR24) 2021; 112 S Bhatt (2967_CR3) 2021; 215 S Naderi (2967_CR14) 2020; 124 A Hassanien (2967_CR32) 2016; 89 SJ Ikhmayies (2967_CR51) 2013; 2 |
References_xml | – volume: 261 year: 2020 ident: CR12 article-title: Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127127 – volume: 83 year: 2020 ident: CR42 article-title: Effect of colloid aggregation characteristic on ZnO interface layer and photovoltaic performance of polymer solar cells publication-title: Org. Electron. doi: 10.1016/j.orgel.2020.105753 – volume: 92 start-page: 1324 issue: 5 year: 1953 ident: CR48 article-title: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.1324 – volume: 215 start-page: 473 year: 2021 end-page: 481 ident: CR3 article-title: Evaluation of performance constraints and structural optimization of a core-shell ZnO nanorod based eco-friendly perovskite solar cell publication-title: Sol. Energy doi: 10.1016/j.solener.2020.12.069 – volume: 16 start-page: 667 year: 2018 end-page: 684 ident: CR46 article-title: Crystallographic, vibrational modes and optical properties data of α-DIPAB crystal publication-title: Data Brief doi: 10.1016/j.dib.2017.11.074 – volume: 112 year: 2021 ident: CR24 article-title: UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110768 – volume: 85 start-page: 5923 issue: 24 year: 2004 end-page: 5925 ident: CR17 article-title: ZnO nanowire field-effect transistor and oxygen sensing property publication-title: Appl. Phys. Lett. doi: 10.1063/1.1836870 – volume: 10 start-page: 252 issue: 4 year: 2020 ident: CR21 article-title: Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped ZnO and group III elements (B, Al, Ga, and In)-doped ZnO thin films publication-title: Crystals doi: 10.3390/cryst10040252 – volume: 322 start-page: 31 issue: 1–2 year: 2002 end-page: 36 ident: CR44 article-title: Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates publication-title: Physica B doi: 10.1016/S0921-4526(02)00594-X – volume: 7 issue: 1 year: 2020 ident: CR6 article-title: ZnO for performance enhancement of surface plasmon resonance biosensor: a review publication-title: Mater. Res. Exp. doi: 10.1088/2053-1591/ab66a7 – volume: 496 year: 2019 ident: CR31 article-title: Facile fabrication of a low adhesion, stable and superhydrophobic filter paper modified with ZnO microclusters publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143743 – volume: 36 start-page: 1937 issue: 9 year: 2021 end-page: 1947 ident: CR30 article-title: Impedance spectroscopy of nanostructured ZnO morphologies publication-title: J. Mater. Res. doi: 10.1557/s43578-021-00219-0 – volume: 450 start-page: 39 year: 2014 end-page: 44 ident: CR49 article-title: Iron modified structural and optical spectral properties of bismuth silicate glasses publication-title: Physica B doi: 10.1016/j.physb.2014.05.056 – volume: 31 start-page: 2018 issue: 14 year: 2006 end-page: 2024 ident: CR54 article-title: Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.02.003 – volume: 21 start-page: 1612 issue: 5 year: 2020 ident: CR9 article-title: ZnO nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21051612 – volume: 86 issue: 24 year: 2005 ident: CR16 article-title: Hydrogen-selective sensing at room temperature with ZnO nanorods publication-title: Appl. Phys. Lett. doi: 10.1063/1.1949707 – volume: 721 year: 2020 ident: CR25 article-title: The effect of pH and ageing on the fate of CuO and ZnO nanoparticles in soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137771 – ident: CR15 – volume: 812 year: 2020 ident: CR22 article-title: Impacts of preparation conditions on photoelectric properties of the ZnO: Ge transparent conductive thin films fabricated by pulsed laser deposition publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.152093 – volume: 124 start-page: 458 issue: 6 year: 2018 ident: CR36 article-title: Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1875-z – volume: 406 start-page: 4227 issue: 22 year: 2011 end-page: 4232 ident: CR52 article-title: Optical properties of Ge–As–Te thin films publication-title: Physica B doi: 10.1016/j.physb.2011.08.013 – volume: 341 year: 2021 ident: CR5 article-title: Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130015 – volume: 124 start-page: 1 issue: 6 year: 2018 end-page: 13 ident: CR27 article-title: Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1875-z – ident: CR11 – volume: 81 start-page: 193 year: 2015 end-page: 201 ident: CR53 article-title: Structural and optical properties of PVP-capped nanocrystalline ZnxCd1− xS solid solutions publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.01.011 – volume: 3 start-page: 5203 issue: 6 year: 2020 end-page: 5211 ident: CR7 article-title: ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00639 – volume: 8 start-page: 115 year: 2020 ident: CR39 article-title: Measurement and ab initio investigation of structural, electronic, optical, and mechanical properties of sputtered aluminum nitride thin films publication-title: Front. Phys. doi: 10.3389/fphy.2020.00115 – volume: 146 start-page: 939 year: 2020 end-page: 945 ident: CR43 article-title: Preparation of biocompatible nano-ZnO/chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.09.217 – volume: 13 start-page: 4729 issue: 9 year: 2021 ident: CR8 article-title: Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers publication-title: Sustainability doi: 10.3390/su13094729 – volume: 211 year: 2020 ident: CR1 article-title: Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra publication-title: Optik doi: 10.1016/j.ijleo.2020.164641 – volume: 46 start-page: 2421 issue: 2 year: 2020 end-page: 2437 ident: CR33 article-title: Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.236 – ident: CR26 – volume: 13 start-page: 1737 issue: 7 year: 2020 ident: CR38 article-title: Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) Co-doped ZnO thin films publication-title: Materials doi: 10.3390/ma13071737 – volume: 89 start-page: 153 year: 2016 end-page: 169 ident: CR32 article-title: Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.10.044 – ident: CR47 – ident: CR37 – volume: 46 start-page: 11101 issue: 8 year: 2020 end-page: 11114 ident: CR34 article-title: Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.01.130 – volume: 2 start-page: 221 issue: 3 year: 2013 end-page: 227 ident: CR51 article-title: A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: in thin films publication-title: J. Market. Res. – volume: 47 start-page: 667 issue: 3 year: 2012 end-page: 671 ident: CR19 article-title: Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2011.12.027 – volume: 34 start-page: 191 issue: 4 year: 2010 end-page: 259 ident: CR20 article-title: ZnO nanostructures for optoelectronics: material properties and device applications publication-title: Prog. Quantum Electron. doi: 10.1016/j.pquantelec.2010.04.001 – volume: 129 start-page: 35 issue: 1–2 year: 1985 end-page: 47 ident: CR50 article-title: Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide publication-title: Thin Solid Films doi: 10.1016/0040-6090(85)90092-6 – ident: CR23 – volume: 27 start-page: 1452 issue: 11 year: 2012 end-page: 1461 ident: CR29 article-title: Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles publication-title: J. Mater. Res. doi: 10.1557/jmr.2012.58 – volume: 1 start-page: 34 issue: 1 year: 1956 end-page: 46 ident: CR41 article-title: III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum publication-title: Phil. Mag. doi: 10.1080/14786435608238074 – volume: 593 year: 2020 ident: CR28 article-title: Optical properties of hydrophobic ZnO nanostructure based on antireflective coatings of ZnO/TiO2/SiO2 thin films publication-title: Physica B doi: 10.1016/j.physb.2020.412263 – volume: 48 start-page: 5028 issue: 8 year: 2019 end-page: 5038 ident: CR2 article-title: Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07303-6 – volume: 499 year: 2021 ident: CR4 article-title: Enhanced photoelectric performance of inverted CsPbI2Br perovskite solar cells with zwitterion modified ZnO cathode interlayer publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229909 – volume: 85 start-page: 67 year: 2015 end-page: 81 ident: CR40 article-title: Microstructure and crystal imperfections of nanosized CdSxSe1− x thermally evaporated thin films publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.05.011 – volume: 12 start-page: 30750 issue: 27 year: 2020 end-page: 30760 ident: CR45 article-title: Fabrication of nanocomposites complexed with gold nanoparticles on polyaniline and application to their nerve regeneration publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.0c05286 – volume: 46 start-page: 14369 issue: 10 year: 2020 end-page: 14383 ident: CR35 article-title: Zn0. 9Ce0. 05M0. 05O (M= Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.232 – volume: 118 year: 2021 ident: CR13 article-title: An Astragalus membranaceus based eco-friendly biomimetic synthesis approach of ZnO nanoflowers with an excellent antibacterial, antioxidant and electrochemical sensing effect publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2020.111432 – volume: 10 start-page: 40 issue: 5 year: 2007 end-page: 48 ident: CR18 article-title: ZnO–nanostructures, defects, and devices publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70078-0 – volume: 124 year: 2020 ident: CR14 article-title: Optical properties of zigzag and armchair ZnO nanoribbons publication-title: Physica E doi: 10.1016/j.physe.2020.114218 – volume: 6 start-page: 34 year: 2004 ident: CR10 article-title: MP lviii, K. Ip, SJ Pearton, MF Chishoim, T. Steiner," ZnO: growth, doping and processing publication-title: Mater. Today doi: 10.1016/S1369-7021(04)00287-1 – volume: 22 start-page: 921 issue: 5 year: 1999 end-page: 926 ident: CR55 article-title: Optical and electrical properties of zinc oxide films prepared by spray pyrolysis publication-title: Bull. Mater. Sci. doi: 10.1007/BF02745554 – volume: 124 year: 2020 ident: 2967_CR14 publication-title: Physica E doi: 10.1016/j.physe.2020.114218 – volume: 85 start-page: 67 year: 2015 ident: 2967_CR40 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.05.011 – ident: 2967_CR47 – volume: 10 start-page: 252 issue: 4 year: 2020 ident: 2967_CR21 publication-title: Crystals doi: 10.3390/cryst10040252 – volume: 13 start-page: 1737 issue: 7 year: 2020 ident: 2967_CR38 publication-title: Materials doi: 10.3390/ma13071737 – volume: 36 start-page: 1937 issue: 9 year: 2021 ident: 2967_CR30 publication-title: J. Mater. Res. doi: 10.1557/s43578-021-00219-0 – volume: 812 year: 2020 ident: 2967_CR22 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.152093 – volume: 8 start-page: 115 year: 2020 ident: 2967_CR39 publication-title: Front. Phys. doi: 10.3389/fphy.2020.00115 – ident: 2967_CR37 doi: 10.3390/photonics7040112 – ident: 2967_CR11 doi: 10.1038/s41598-020-60541-1 – volume: 406 start-page: 4227 issue: 22 year: 2011 ident: 2967_CR52 publication-title: Physica B doi: 10.1016/j.physb.2011.08.013 – volume: 215 start-page: 473 year: 2021 ident: 2967_CR3 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.12.069 – volume: 499 year: 2021 ident: 2967_CR4 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229909 – volume: 21 start-page: 1612 issue: 5 year: 2020 ident: 2967_CR9 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21051612 – volume: 12 start-page: 30750 issue: 27 year: 2020 ident: 2967_CR45 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.0c05286 – ident: 2967_CR15 – volume: 48 start-page: 5028 issue: 8 year: 2019 ident: 2967_CR2 publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07303-6 – volume: 46 start-page: 11101 issue: 8 year: 2020 ident: 2967_CR34 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.01.130 – volume: 31 start-page: 2018 issue: 14 year: 2006 ident: 2967_CR54 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.02.003 – volume: 85 start-page: 5923 issue: 24 year: 2004 ident: 2967_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1836870 – volume: 83 year: 2020 ident: 2967_CR42 publication-title: Org. Electron. doi: 10.1016/j.orgel.2020.105753 – ident: 2967_CR23 doi: 10.1007/s00289-020-03155-x – volume: 450 start-page: 39 year: 2014 ident: 2967_CR49 publication-title: Physica B doi: 10.1016/j.physb.2014.05.056 – volume: 341 year: 2021 ident: 2967_CR5 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130015 – volume: 27 start-page: 1452 issue: 11 year: 2012 ident: 2967_CR29 publication-title: J. Mater. Res. doi: 10.1557/jmr.2012.58 – volume: 89 start-page: 153 year: 2016 ident: 2967_CR32 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.10.044 – volume: 46 start-page: 14369 issue: 10 year: 2020 ident: 2967_CR35 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.232 – volume: 1 start-page: 34 issue: 1 year: 1956 ident: 2967_CR41 publication-title: Phil. Mag. doi: 10.1080/14786435608238074 – volume: 496 year: 2019 ident: 2967_CR31 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143743 – volume: 118 year: 2021 ident: 2967_CR13 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2020.111432 – volume: 16 start-page: 667 year: 2018 ident: 2967_CR46 publication-title: Data Brief doi: 10.1016/j.dib.2017.11.074 – volume: 721 year: 2020 ident: 2967_CR25 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137771 – volume: 112 year: 2021 ident: 2967_CR24 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110768 – volume: 46 start-page: 2421 issue: 2 year: 2020 ident: 2967_CR33 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.236 – volume: 146 start-page: 939 year: 2020 ident: 2967_CR43 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.09.217 – volume: 261 year: 2020 ident: 2967_CR12 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127127 – volume: 47 start-page: 667 issue: 3 year: 2012 ident: 2967_CR19 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2011.12.027 – volume: 211 year: 2020 ident: 2967_CR1 publication-title: Optik doi: 10.1016/j.ijleo.2020.164641 – volume: 86 issue: 24 year: 2005 ident: 2967_CR16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1949707 – volume: 81 start-page: 193 year: 2015 ident: 2967_CR53 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.01.011 – volume: 129 start-page: 35 issue: 1–2 year: 1985 ident: 2967_CR50 publication-title: Thin Solid Films doi: 10.1016/0040-6090(85)90092-6 – volume: 322 start-page: 31 issue: 1–2 year: 2002 ident: 2967_CR44 publication-title: Physica B doi: 10.1016/S0921-4526(02)00594-X – volume: 6 start-page: 34 year: 2004 ident: 2967_CR10 publication-title: Mater. Today doi: 10.1016/S1369-7021(04)00287-1 – volume: 593 year: 2020 ident: 2967_CR28 publication-title: Physica B doi: 10.1016/j.physb.2020.412263 – volume: 3 start-page: 5203 issue: 6 year: 2020 ident: 2967_CR7 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00639 – volume: 2 start-page: 221 issue: 3 year: 2013 ident: 2967_CR51 publication-title: J. Market. Res. – volume: 22 start-page: 921 issue: 5 year: 1999 ident: 2967_CR55 publication-title: Bull. Mater. Sci. doi: 10.1007/BF02745554 – volume: 92 start-page: 1324 issue: 5 year: 1953 ident: 2967_CR48 publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.1324 – volume: 34 start-page: 191 issue: 4 year: 2010 ident: 2967_CR20 publication-title: Prog. Quantum Electron. doi: 10.1016/j.pquantelec.2010.04.001 – volume: 7 issue: 1 year: 2020 ident: 2967_CR6 publication-title: Mater. Res. Exp. doi: 10.1088/2053-1591/ab66a7 – ident: 2967_CR26 doi: 10.1021/jp050540o – volume: 10 start-page: 40 issue: 5 year: 2007 ident: 2967_CR18 publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70078-0 – volume: 13 start-page: 4729 issue: 9 year: 2021 ident: 2967_CR8 publication-title: Sustainability doi: 10.3390/su13094729 – volume: 124 start-page: 458 issue: 6 year: 2018 ident: 2967_CR36 publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1875-z – volume: 124 start-page: 1 issue: 6 year: 2018 ident: 2967_CR27 publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1875-z |
SSID | ssj0000491494 |
Score | 2.3361428 |
Snippet | Four different ZnO nanostructures, namely nanoparticles, nanorods, nanoribbons, and nanoshuttles, were synthesized by controlling the pH levels, the chemical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 752 |
SubjectTerms | Applied and Technical Physics Atomic Boundaries Chemical composition Complex Systems Condensed Matter Physics Contact angle Crystallites Diffraction patterns Electrical properties Electrical resistivity Energy gap Energy value Ethanol Grain boundaries Lattice parameters Mathematical and Computational Physics Microstrain Molecular Molecular weight Morphology Nanoparticles Nanoribbons Nanorods Nanostructure Nanowires Nitrates Optical and Plasma Physics Optical properties Particle size Phase transitions Photovoltaic cells Physics Physics and Astronomy Potential barriers Regular Article Scanning electron microscopy Sensors Temperature Theoretical Thin films Wettability X-ray diffraction Zinc oxide Zinc oxides |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEbyIT6xW2YPHhm4eu8kei1iKoL1YKHpY9nkQTYLp_8fZTdKqBwuek8lhZnbmm53JfAjdUq4IdTKLJLcpFCiWRyqVLvJEOZw5l0nrO7qPT2y2yB6WdPmd6stPu_ctyRCp2322ZGzrt3rcQEnFSORH0EnC4YxD9N2jvoAHV14kk_X1CgBfwP5ZN9H1h_zPfLQBmb_6oiHdTI_QYYcT8aQ17DHaseUJ2g_zmro5Ra_zOlxCj_CGx2aEZWlwuxDWL9PAtb9o__QbU3HlcE-FssKlLKv-NWvwSznHHxXoO8RB25yhxfT--W4WdTwJkQY4s4piAygoV5CLrWRJnhNjAJVZRbTLicyZhLKvMJlWGtK5cUzyQlNmUq65skbL9BztllVpLxBWqXW-E2sKqjJAWorbPHaaQxUGLpeqAWK9toTuloh7Lot30f7gTIRXs2jVLEDNIqhZJANE1oJ1u0dju8iwN4foDlYjPLkWozymxQDFvYk2j7d88vIfMlfoIAn-4mcEh2gXzGOvAYis1E1wuS-H5Nj6 priority: 102 providerName: Springer Nature |
Title | Optical, electronic, and structural properties of different nanostructured ZnO morphologies |
URI | https://link.springer.com/article/10.1140/epjp/s13360-022-02967-2 https://www.proquest.com/docview/2920659158 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07b9swED7ENgp0KfJE3bgGh4wRLOtBiVNhF3aCFHWCIAacZiD4HIJWUiv_f_QoUTaSIZk0UORwPN1999B9ABcpk2FqRRIIZmIMUAwLZCxs4IhyGLU2EcZVdH-u6PU6udmkG59wq31bZWcTG0OtS-Vy5BPHqkRTNk3zb9XfwLFGueqqp9DowQBNcI7B12C-WN3d77IsiH8xBEh8YxcGExNTPVeTGiMzGgaukz2MGJqK6KVb2mPNV-XRxussD-GTh4tk1t7vERyY4hg-NG2bqj6Bp9uqyUVfkj2dzSURhSbtXFg3U4NULt_-zw1OJaUlHSPKlhSiKLvXjCa_ilvyp0SxN-bQ1KewXi4evl8Hni4hUIhqtsFUIxjKJLpkI2iUZaHWCM6MDJXNQpFRgdFfrhMlFXp1balguUqpjpli0mgl4jPoF2VhPgORsbGuIKvzVCYIuCQz2dQqhsEYal4sh0A7aXHlZ4k7SovfvP3POeROzLwVM0cx80bMPBpCuNtYteM03t8y6q6D---r5nttGMK0u6L98jtHfnn7yHP4GDWq4boCR9DHmzBfEXps5Rh6-fJqDIPZcj5fuefV44_F2Gsdrq6j2X9dq95w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RECoXBKUVKVD2UG6x4vix9h4QQtAQIIFLIkXtYbvPQ1Vst45U8af4jcz6kYgeyImzvXOYmZ33zgfwNWbSj62IPMFMiAmKYZ4MhfUcUA6j1kbCuI7u-I4Op9HNLJ6twVP7FsaNVbY2sTLUOleuRt5zqEo0Zv04PSv-eA41ynVXWwiNWi1uzeM_TNnK0-tLlO9JEAy-TS6GXoMq4Cl0_nOvrzFmSCR6LiNokCS-1hjDGOkrm_gioQKTpFRHSip0ftpSwVIVUx0yxaTRSoRI9x1sRGHI3I1KB1eLmg5G25hwRM0YGaYuPVP8Knol5oHU99zcvB8wNEzBSye4jGz_a8ZWPm6wA9tNcErOa23ahTWTfYDNakhUlXvw476oKt9dsgTP6RKRaVJvoXUbPEjhqvt_3ZpWklvS4q_MSSayvP3NaPI9uycPOQq5Mr6m_AjTN2HjJ1jP8szsA5Ghsa79q9NYRhjeSWaSvlUMUz_U81B2gLbc4qrZXO4ANH7z-lW1zx2bec1mjmzmFZt50AF_cbCol3esPnLYioM3t7nkS93rQL8V0fLzCpKfXyd5DO-Hk_GIj67vbg9gK6jUxM0jHsI6SsUcYdAzl18qTSPw861V-xmhhBX8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqIhAL4ikKBTwwNqrzcuKxglbl1TJQqYLB8nNAkEY0_1-c82gFA5WYk_Nwd_Z95zt_h9B1zCSJrYg8wUwICYphngyF9dygHEatjYRxFd2nCR3Povt5PG-hYfMWpux2b0qS1ZsGx9KUFf1c25rblvRN_p73l5BeUeK5dnQSMNjvcBJvwZnsO-eeBYPVVQuAYMgDorq76w_5n7FpDTh_1UjL0DPaR3s1ZsSDysgHqGWyQ7Rd9m6q5RF6m-blhXQPr2fa9LDINK7IYR2xBs7dpfuXY0_FC4ubsSgFzkS2aH4zGr9mU_y5AN2XZ6JZHqPZaPhyM_bqmQmeAmhTeL4GRJRIiMtG0CBJiNaA0IwkyiZEJFRACpjqSEkFoV1bKliqYqpDppg0WonwBLWzRWZOEZahsa4qq9NYRoC6JDOJbxWDjAzcL5QdRBttcVUTiru5Fh-8euxMuFMzr9TMQc28VDMPOoisBPOKU2OzSLcxB6832ZK7QVs0Zn6cdpDfmGj9ecOSZ_-QuUI7z7cj_ng3eThHu0HpOq51sIvaYClzAfikkJel930DhfngKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical%2C+electronic%2C+and+structural+properties+of+different+nanostructured+ZnO+morphologies&rft.jtitle=European+physical+journal+plus&rft.au=Ahmad%2C+Ahmad+A&rft.au=Alsaad%2C+Ahmad+M&rft.au=Aljarrah%2C+Ihsan+A&rft.au=Al-Bataineh%2C+Qais+M&rft.date=2022-06-30&rft.pub=Springer+Nature+B.V&rft.eissn=2190-5444&rft.volume=137&rft.issue=6&rft.spage=752&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-022-02967-2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |