Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser

In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimat...

Full description

Saved in:
Bibliographic Details
Published inIET renewable power generation Vol. 12; no. 1; pp. 9 - 17
Main Author El-Fergany, Attia A
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 08.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimated results. A novel application of grasshopper optimisation algorithm (GOA) is engaged to minimise the SSE subjects to set of inequality constraints. Three study cases of typical commercial PEMFCs stacks are demonstrated and verified under various steady-state operating scenarios. Necessary subsequent comparisons to new results by others found in updated state-of-the-art are made. Sensitivity analysis of defined parameters is carried out. It is found that the PEMFC model is susceptible to the deviations of optimised parameters as the errors are substantially disturbed which signifies the value of the GOA-based method. In addition, performance measures to indicate the robustness of the GOA-based methodology are pointed out. At this moment, dynamic model of the stack is addressed and incorporated to demonstrate its dynamic response. Detailed MATLAB/SIMULINK simulation model is implemented to study the PEMFC dynamic performance. The simulated test cases emphasise the viability and effectivity of the GOA-based procedure in steady-state and dynamic simulations.
AbstractList In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimated results. A novel application of grasshopper optimisation algorithm (GOA) is engaged to minimise the SSE subjects to set of inequality constraints. Three study cases of typical commercial PEMFCs stacks are demonstrated and verified under various steady‐state operating scenarios. Necessary subsequent comparisons to new results by others found in updated state‐of‐the‐art are made. Sensitivity analysis of defined parameters is carried out. It is found that the PEMFC model is susceptible to the deviations of optimised parameters as the errors are substantially disturbed which signifies the value of the GOA‐based method. In addition, performance measures to indicate the robustness of the GOA‐based methodology are pointed out. At this moment, dynamic model of the stack is addressed and incorporated to demonstrate its dynamic response. Detailed MATLAB/SIMULINK simulation model is implemented to study the PEMFC dynamic performance. The simulated test cases emphasise the viability and effectivity of the GOA‐based procedure in steady‐state and dynamic simulations.
Author El-Fergany, Attia A
Author_xml – sequence: 1
  givenname: Attia A
  surname: El-Fergany
  fullname: El-Fergany, Attia A
  email: el_fergany@ieee.org
  organization: Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
BookMark eNqFkE1OwzAQRi1UJNrCAdj5Aim2k9gNO6jaglQJhGAdOc44dcmfbFfQ2-NQxIJFWc0nzbwZzZugUdu1gNA1JTNKkuzGgI9sX80YoWJGWMzO0JiKlEU0YcnoN1N-gSbO7QhJMzLnY1Qua1DeGiVrrLbSSuXBGie96VrcadzbzocEn6HZVoAbaAorW8B6D4GAunbYeane8d6ZtsKVlc5tu74Hi7vem8Y4sJfoXMvawdVPnaK31fJ18RBtntaPi7tNpBhP0ognXOlYxbxkRZmlHFKqQBSEllmR6RS0BkphzlQiRca1LEVcxkICFCA4T-bxFNHjXmU75yzovLemkfaQU5IPmvKgKQ-a8kFTPmgKjPjDKOO_3_dWmvokeXskP0wNh_9P5S_Pa3a_IkTEaYCjIzyM7bq9bYOYE8e-AMzXlcU
CitedBy_id crossref_primary_10_3390_electronics10222834
crossref_primary_10_1038_s41598_024_70886_6
crossref_primary_10_3390_en11082099
crossref_primary_10_1002_er_4809
crossref_primary_10_1002_jnm_2802
crossref_primary_10_1016_j_fuel_2023_127586
crossref_primary_10_1007_s00202_020_01103_6
crossref_primary_10_1016_j_envpol_2022_120203
crossref_primary_10_1016_j_egyr_2020_03_010
crossref_primary_10_1016_j_energy_2022_125530
crossref_primary_10_1016_j_epsr_2018_07_023
crossref_primary_10_3389_fenrg_2022_964042
crossref_primary_10_1016_j_engappai_2021_104193
crossref_primary_10_1016_j_enconman_2024_118371
crossref_primary_10_1016_j_energy_2018_10_038
crossref_primary_10_1002_adts_202100183
crossref_primary_10_1016_j_enconman_2024_119231
crossref_primary_10_1016_j_renene_2019_08_046
crossref_primary_10_1016_j_measurement_2024_115302
crossref_primary_10_1016_j_applthermaleng_2024_122447
crossref_primary_10_1016_j_energy_2024_130601
crossref_primary_10_3390_en12101884
crossref_primary_10_1038_s41598_024_80073_2
crossref_primary_10_1007_s00500_020_05431_4
crossref_primary_10_1016_j_apm_2018_07_044
crossref_primary_10_1038_s41598_025_92818_8
crossref_primary_10_1515_ijeeps_2023_0025
crossref_primary_10_3390_pr9081416
crossref_primary_10_1016_j_energy_2021_120592
crossref_primary_10_3390_membranes11120953
crossref_primary_10_3390_su15086676
crossref_primary_10_1016_j_ijhydene_2023_12_008
crossref_primary_10_1016_j_scs_2021_103419
crossref_primary_10_1016_j_egyr_2024_08_015
crossref_primary_10_1080_15567036_2021_1903619
crossref_primary_10_1016_j_energy_2021_119836
crossref_primary_10_1007_s11581_024_05999_z
crossref_primary_10_1002_2050_7038_12674
crossref_primary_10_1007_s00500_022_07520_y
crossref_primary_10_1016_j_egyr_2021_09_145
crossref_primary_10_1016_j_ijhydene_2020_06_256
crossref_primary_10_3389_fenrg_2023_1148323
crossref_primary_10_1016_j_apenergy_2024_123297
crossref_primary_10_1016_j_eswa_2022_118642
crossref_primary_10_1007_s40095_022_00483_8
crossref_primary_10_1016_j_enconman_2020_113777
crossref_primary_10_1007_s41939_025_00814_2
crossref_primary_10_1016_j_egyr_2020_05_006
crossref_primary_10_1038_s41598_024_81160_0
crossref_primary_10_1016_j_enconman_2022_115521
crossref_primary_10_3390_technologies12090156
crossref_primary_10_1155_2024_7616065
crossref_primary_10_1049_rpg2_12156
crossref_primary_10_1002_er_7576
crossref_primary_10_1016_j_cma_2023_116200
crossref_primary_10_3390_electronics14010035
crossref_primary_10_1016_j_asoc_2021_107935
crossref_primary_10_1016_j_ijhydene_2024_05_068
crossref_primary_10_1016_j_asej_2021_04_014
crossref_primary_10_1016_j_measurement_2025_116917
crossref_primary_10_1007_s11581_025_06200_9
crossref_primary_10_1007_s12665_022_10269_0
crossref_primary_10_1016_j_ijhydene_2022_07_251
crossref_primary_10_1002_er_6750
crossref_primary_10_1016_j_energy_2021_120772
crossref_primary_10_1016_j_ijhydene_2023_07_027
crossref_primary_10_1016_j_renene_2021_04_148
crossref_primary_10_1109_ACCESS_2020_2993762
crossref_primary_10_1016_j_asej_2024_103026
crossref_primary_10_1080_15623599_2021_1927363
crossref_primary_10_1016_j_energy_2023_130130
crossref_primary_10_1038_s41598_023_49667_0
crossref_primary_10_1016_j_ijhydene_2024_08_048
crossref_primary_10_1016_j_renene_2024_121772
crossref_primary_10_1016_j_renene_2020_12_131
crossref_primary_10_1007_s00521_021_05821_1
crossref_primary_10_1007_s41939_024_00410_w
crossref_primary_10_1016_j_enconman_2020_112501
crossref_primary_10_1080_01430750_2020_1842240
crossref_primary_10_1002_er_6065
crossref_primary_10_1016_j_energy_2022_123830
crossref_primary_10_1016_j_energy_2021_121096
crossref_primary_10_1016_j_eswa_2020_113282
crossref_primary_10_1109_ACCESS_2021_3067597
crossref_primary_10_1016_j_enconman_2021_114099
crossref_primary_10_1002_er_6987
crossref_primary_10_1007_s11581_024_05963_x
crossref_primary_10_1080_15567036_2020_1769230
crossref_primary_10_1109_ACCESS_2024_3453594
crossref_primary_10_1016_j_enconman_2025_119655
crossref_primary_10_17341_gazimmfd_449685
crossref_primary_10_1016_j_asoc_2023_110091
crossref_primary_10_1109_ACCESS_2023_3236023
crossref_primary_10_1016_j_energy_2022_126165
crossref_primary_10_1109_ACCESS_2020_3007602
crossref_primary_10_1016_j_asej_2022_101749
crossref_primary_10_1109_ACCESS_2019_2961811
crossref_primary_10_3390_app11052052
crossref_primary_10_1038_s41598_023_35581_y
crossref_primary_10_1016_j_egyr_2024_07_063
crossref_primary_10_1016_j_ijhydene_2021_01_076
crossref_primary_10_3390_en14030619
crossref_primary_10_1016_j_ijhydene_2020_01_219
crossref_primary_10_1016_j_ijhydene_2021_03_105
crossref_primary_10_3390_su15054625
crossref_primary_10_1002_er_5244
crossref_primary_10_1007_s00521_020_05333_4
crossref_primary_10_1109_ACCESS_2020_2973351
crossref_primary_10_1016_j_heliyon_2024_e36678
crossref_primary_10_1080_00207217_2021_1966660
crossref_primary_10_1155_2020_4873501
crossref_primary_10_1016_j_fuel_2022_127080
crossref_primary_10_1016_j_enconman_2019_112197
crossref_primary_10_1016_j_ijleo_2021_167979
crossref_primary_10_1016_j_energy_2024_130235
crossref_primary_10_1038_s41598_025_93162_7
crossref_primary_10_3390_electronics11121808
crossref_primary_10_1016_j_egyr_2024_05_057
crossref_primary_10_1016_j_jclepro_2020_121660
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_primary_10_1016_j_aej_2023_07_039
crossref_primary_10_1016_j_ijhydene_2019_09_178
crossref_primary_10_1109_ACCESS_2020_3021754
crossref_primary_10_1002_er_6282
crossref_primary_10_1007_s11831_022_09721_y
crossref_primary_10_1016_j_ijhydene_2020_11_119
crossref_primary_10_1016_j_enconman_2020_113341
crossref_primary_10_1002_er_4424
crossref_primary_10_1016_j_knosys_2023_111134
crossref_primary_10_3389_fenrg_2024_1384649
crossref_primary_10_1016_j_egyr_2019_11_013
crossref_primary_10_3390_en14217115
crossref_primary_10_1016_j_energy_2019_06_152
crossref_primary_10_1049_rpg2_12359
crossref_primary_10_1016_j_egyr_2020_04_013
crossref_primary_10_1016_j_energy_2019_02_106
crossref_primary_10_37394_23203_2023_18_13
crossref_primary_10_3390_su12198127
crossref_primary_10_1016_j_cma_2024_116781
crossref_primary_10_3390_en13236426
crossref_primary_10_1016_j_trpro_2025_03_086
crossref_primary_10_1007_s42979_023_01957_0
crossref_primary_10_1016_j_rineng_2024_103369
crossref_primary_10_1016_j_asoc_2023_110791
crossref_primary_10_1002_fuce_201900155
crossref_primary_10_1109_ACCESS_2021_3077616
crossref_primary_10_1038_s41598_025_92528_1
crossref_primary_10_1016_j_ces_2020_116100
crossref_primary_10_1016_j_egyr_2020_06_002
crossref_primary_10_1080_01430750_2025_2469531
crossref_primary_10_1016_j_ijhydene_2020_12_203
crossref_primary_10_3390_en17122917
Cites_doi 10.1149/1.2085971
10.1016/j.energy.2009.12.010
10.1109/TIE.2010.2060456
10.1016/j.advengsoft.2017.01.004
10.1016/j.apenergy.2010.09.030
10.1109/TIA.2003.814548
10.1016/j.electacta.2006.07.011
10.1016/j.seta.2015.09.001
10.1016/j.renene.2017.04.036
10.1016/j.ijepes.2010.08.032
10.1016/j.jpowsour.2016.09.131
10.1016/j.jpowsour.2008.04.071
10.1016/j.ijhydene.2016.07.056
10.1016/j.ijhydene.2014.07.081
10.1002/er.1787
10.1016/j.ijhydene.2013.12.110
10.1016/j.energy.2015.06.081
10.1016/S0378-7753(99)00484-X
10.1016/j.asej.2013.05.001
10.1109/4235.585893
10.1504/IJPELEC.2012.052427
10.1016/j.energy.2012.01.039
10.1016/j.ijepes.2010.12.036
10.1016/j.energy.2013.07.005
10.1016/j.energy.2015.03.117
10.1109/TIE.2004.834972
10.1109/TMAG.2013.2283889
10.1007/978-3-642-04898-2_420
10.1016/j.ijhydene.2013.01.058
10.1016/j.enconman.2014.06.026
10.1016/j.rser.2014.01.012
10.1016/j.ijhydene.2010.07.129
10.1016/j.energy.2014.01.075
10.1109/TEC.2010.2049267
10.1109/TIE.2011.2172173
10.1016/j.ijhydene.2012.04.157
ContentType Journal Article
Copyright The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-rpg.2017.0232
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1752-1424
EndPage 17
ExternalDocumentID 10_1049_iet_rpg_2017_0232
RPG2BF00735
Genre article
GroupedDBID 0R
24P
29I
5GY
6IK
AAJGR
ACGFS
ACIWK
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BFFAM
BPEOZ
CS3
DU5
HZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIE
RNS
RUI
UNR
.DC
0R~
1OC
4.4
7XC
8FE
8FG
8FH
AAHHS
AAHJG
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IEP
IGS
ITC
L6V
M7S
MCNEO
OK1
P62
PATMY
PTHSS
PYCSY
ROL
S0W
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
ID FETCH-LOGICAL-c2645-646cf3c36d2bd956e51ce7b01d9b9f5effe11e82c4a796fad73d37aeebe766483
IEDL.DBID IDLOA
ISSN 1752-1416
1752-1424
IngestDate Tue Jul 01 05:14:43 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Wed Jan 22 16:31:34 EST 2025
Tue Jan 05 21:45:57 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords optimisation
PEMFC
SSE
proton exchange membrane fuel cells
sensitivity analysis
sum of square error
MATLAB-SIMULINK simulation model
grasshopper optimisation algorithm
electrical characterisation
proton exchange membrane fuel cell stack
GOA-based method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2645-646cf3c36d2bd956e51ce7b01d9b9f5effe11e82c4a796fad73d37aeebe766483
PageCount 9
ParticipantIDs iet_journals_10_1049_iet_rpg_2017_0232
crossref_primary_10_1049_iet_rpg_2017_0232
wiley_primary_10_1049_iet_rpg_2017_0232_RPG2BF00735
crossref_citationtrail_10_1049_iet_rpg_2017_0232
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-08
PublicationDateYYYYMMDD 2018-01-08
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-08
  day: 08
PublicationDecade 2010
PublicationTitle IET renewable power generation
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Niu, Q.; Zhang, L.; Li, K. (C30) 2014; 86
Saremi, S.; Mirjalili, S.; Lewis, A. (C34) 2017; 105
Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. (C35) 1991; 138
Abd El-Monem, A.A.; Azmy, A.M.; Mahmoud, S.A. (C40) 2014; 5
Dhirde, A.M.; Dale, N.V.; Salehfar, H. (C10) 2010; 25
Zhu, Q.; Wang, N.; Zhang, L. (C17) 2014; 39
Niu, Q.; Zhang, H.; Li, K. (C27) 2014; 39
Dai, C.; Chen, W.; Cheng, Z. (C29) 2011; 33
Li, Q.; Chen, W.; Wang, Y. (C19) 2011; 58
Xue, X.D.; Cheng, K.W.E.; Sutanto, D. (C15) 2006; 52
Askarzadeh, A.; Rezazadeh, A. (C26) 2012; 59
Ohenoja, M.; Leiviska, K. (C18) 2010; 35
Úbeda, D.; Pinar, F.J.; Canizares, P. (C3) 2012; 37
Taleb, M.A.; Béthouxb, O.B.; Godoy, E. (C12) 2017; 42
Gong, W.; Cai, Z. (C21) 2013; 59
Guarnieri, M.; Negro, E.; Noto, V. (C1) 2016; 332
Alotto, P.; Guarnieri, M. (C31) 2014; 50
Sun, Z.; Wang, N.; Bi, Y. (C22) 2015; 90
Wolpert, D.H.; Macready, W.G. (C33) 1997; 1
Askarzadeh, A.; Rezazadeh, A. (C20) 2011; 35
Alireza, A.; Alireza, R. (C25) 2011; 33
Sharaf, O.Z.; Orhan, M.F. (C6) 2014; 32
Motapon, S.N.; Tremblay, O.; Dessaint, L.-A. (C2) 2012; 4
Ali, M.; El-Hameed, M.A.; Farahat, M.A. (C32) 2017; 111
Corrêa, J.M.; Farret, F.A.; Gomes, J.R. (C14) 2003; 39
Abdollahzadeh, M.; Pascoa, J.; Ranjbar, A. (C8) 2014; 68
Danzer, M.A.; Hofer, E.P. (C9) 2008; 183
Chakraborty, U.K.; Abbott, T.E.; Das, S.K. (C23) 2012; 40
Correa, J.M.; Farret, F.A.; Canha, L.N. (C5) 2004; 51
Wang, Y.; Chen, K.S.; Mishler, J. (C7) 2011; 88
Sharifi Asl, S.M.S.; Rowshanzamir, S.; Eikani, M.H. (C13) 2010; 35
Mann, R.F.; Amphlett, J.C.; Hooper, M.A.I (C4) 2000; 86
Priya, K.; Babu, T.S.; Balasubramanian, K. (C16) 2015; 12
Gong, W.; Yan, X.; Liu, X. (C24) 2015; 86
Zhang, W.; Wang, N.; Yang, S. (C28) 2013; 38
2015; 12
2017; 42
2006; 52
2010; 35
2011
2000; 86
2011; 33
2014; 68
2003; 39
2011; 35
1997; 1
2012; 37
2011; 58
2012; 59
2017; 111
1991; 138
2008; 183
2014; 86
2013; 59
2014; 5
2004; 51
2010; 25
2013; 38
2015; 86
2016; 332
2011; 88
11 July 2008
2014; 39
2015; 90
2012; 4
2014; 50
2017; 105
2014; 32
2012; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Primucci M. (e_1_2_7_12_1) 2008
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 68
  start-page: 478
  year: 2014
  end-page: 494
  ident: C8
  article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling
  publication-title: Energy
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: C34
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 37
  start-page: 11308
  issue: 15
  year: 2012
  end-page: 11320
  ident: C3
  article-title: An easy parameter estimation procedure for modeling a HT-PEMFC
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 1136
  issue: 4
  year: 2003
  end-page: 1142
  ident: C14
  article-title: Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications
  publication-title: IEEE Trans. Ind. Appl.
– volume: 33
  start-page: 933
  issue: 4
  year: 2011
  end-page: 938
  ident: C25
  article-title: Artificial immune system-based parameter extraction of proton exchange membrane fuel cell
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  ident: C33
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 86
  start-page: 139
  year: 2015
  end-page: 151
  ident: C24
  article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution
  publication-title: Energy
– volume: 86
  start-page: 173
  issue: 12
  year: 2000
  end-page: 180
  ident: C4
  article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell
  publication-title: J. Power Sources
– volume: 332
  start-page: 249
  year: 2016
  end-page: 264
  ident: C1
  article-title: A selective hybrid stochastic strategy for fuel-cell multi-parameter identification
  publication-title: J. Power Sources
– volume: 35
  start-page: 12618
  issue: 22
  year: 2010
  end-page: 12625
  ident: C18
  article-title: Validation of genetic algorithm results in a fuel cell model
  publication-title: Int. J. Hydrogen Energy
– volume: 59
  start-page: 356
  year: 2013
  end-page: 364
  ident: C21
  article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution
  publication-title: Energy
– volume: 38
  start-page: 5796
  issue: 14
  year: 2013
  end-page: 5806
  ident: C28
  article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 51
  start-page: 1103
  issue: 5
  year: 2004
  end-page: 1112
  ident: C5
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans. Ind. Electron.
– volume: 59
  start-page: 3473
  issue: 9
  year: 2012
  end-page: 3480
  ident: C26
  article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model
  publication-title: IEEE Trans. Ind. Electron.
– volume: 183
  start-page: 55
  issue: 1
  year: 2008
  end-page: 61
  ident: C9
  article-title: Electrochemical parameter identification – an efficient method for fuel cell impedance characterization
  publication-title: J. Power Sources
– volume: 12
  start-page: 46
  year: 2015
  end-page: 52
  ident: C16
  article-title: A novel approach for fuel cell parameter estimation using simple genetic algorithm
  publication-title: Sustain. Energy Technol. Assess.
– volume: 40
  start-page: 387
  issue: 1
  year: 2012
  end-page: 399
  ident: C23
  article-title: PEM fuel cell modeling using differential evolution
  publication-title: Energy
– volume: 42
  start-page: 1499
  year: 2017
  end-page: 1509
  ident: C12
  article-title: Identification of a PEMFC fractional order model
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 505
  issue: 6
  year: 2012
  end-page: 522
  ident: C2
  article-title: Development of a generic fuel cell model: application to a fuel cell vehicle simulation
  publication-title: Int. J. Power Electron.
– volume: 90
  start-page: 1334
  year: 2015
  end-page: 1341
  ident: C22
  article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
  publication-title: Energy
– volume: 5
  start-page: 75
  year: 2014
  end-page: 84
  ident: C40
  article-title: Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications
  publication-title: Ain Shams Eng. J.
– volume: 52
  start-page: 1135
  issue: 3
  year: 2006
  end-page: 1144
  ident: C15
  article-title: Unified mathematical modelling of steadystate and dynamic voltage-current characteristics for PEM fuel cells
  publication-title: J. Electrochim. Acta
– volume: 138
  start-page: 2334
  issue: 8
  year: 1991
  end-page: 2342
  ident: C35
  article-title: Polymer electrolyte fuel cell model
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 1258
  issue: 14
  year: 2011
  end-page: 1265
  ident: C20
  article-title: Optimization of PEMFC model parameters with a modified particle swarm optimization
  publication-title: Int. J. Energy Res.
– volume: 111
  start-page: 455
  year: 2017
  end-page: 462
  ident: C32
  article-title: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
  publication-title: Renew. Energy
– volume: 86
  start-page: 1173
  year: 2014
  end-page: 1185
  ident: C30
  article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cell
  publication-title: Energy Convers. Manage.
– volume: 39
  start-page: 17779
  issue: 31
  year: 2014
  end-page: 177790
  ident: C17
  article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 50
  start-page: 701
  issue: 2
  year: 2014
  end-page: 704
  ident: C31
  article-title: Stochastic methods for parameter estimation of multi-physics models of fuel cells
  publication-title: IEEE Trans. Magn.
– volume: 35
  start-page: 1633
  issue: 4
  year: 2010
  end-page: 1646
  ident: C13
  article-title: Modelling and simulation of the steady-state and dynamic behavior of a PEM fuel cell
  publication-title: Energy
– volume: 88
  start-page: 981
  issue: 4
  year: 2011
  end-page: 1007
  ident: C7
  article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research
  publication-title: Appl. Energy
– volume: 33
  start-page: 369
  issue: 3
  year: 2011
  end-page: 376
  ident: C29
  article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC)
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 25
  start-page: 778
  issue: 3
  year: 2010
  end-page: 786
  ident: C10
  article-title: Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy
  publication-title: IEEE Trans. Energy Convers.
– volume: 58
  start-page: 2410
  issue: 6
  year: 2011
  end-page: 2419
  ident: C19
  article-title: Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization
  publication-title: IEEE Trans. Ind. Electron.
– volume: 39
  start-page: 3837
  issue: 8
  year: 2014
  end-page: 3854
  ident: C27
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int. J. Hydrogen Energy
– volume: 32
  start-page: 810
  year: 2014
  end-page: 853
  ident: C6
  article-title: An overview of fuel cell technology: fundamentals and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 25
  start-page: 778
  issue: 3
  year: 2010
  end-page: 786
  article-title: Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy
  publication-title: IEEE Trans. Energy Convers.
– year: 2011
– volume: 183
  start-page: 55
  issue: 1
  year: 2008
  end-page: 61
  article-title: Electrochemical parameter identification – an efficient method for fuel cell impedance characterization
  publication-title: J. Power Sources
– volume: 33
  start-page: 369
  issue: 3
  year: 2011
  end-page: 376
  article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC)
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 86
  start-page: 139
  year: 2015
  end-page: 151
  article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution
  publication-title: Energy
– volume: 39
  start-page: 1136
  issue: 4
  year: 2003
  end-page: 1142
  article-title: Simulation of fuel‐cell stacks using a computer‐controlled power rectifier with the purposes of actual high‐power injection applications
  publication-title: IEEE Trans. Ind. Appl.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 42
  start-page: 1499
  year: 2017
  end-page: 1509
  article-title: Identification of a PEMFC fractional order model
  publication-title: Int. J. Hydrogen Energy
– volume: 88
  start-page: 981
  issue: 4
  year: 2011
  end-page: 1007
  article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research
  publication-title: Appl. Energy
– volume: 35
  start-page: 1258
  issue: 14
  year: 2011
  end-page: 1265
  article-title: Optimization of PEMFC model parameters with a modified particle swarm optimization
  publication-title: Int. J. Energy Res.
– volume: 90
  start-page: 1334
  year: 2015
  end-page: 1341
  article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
  publication-title: Energy
– volume: 5
  start-page: 75
  year: 2014
  end-page: 84
  article-title: Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications
  publication-title: Ain Shams Eng. J.
– volume: 4
  start-page: 505
  issue: 6
  year: 2012
  end-page: 522
  article-title: Development of a generic fuel cell model: application to a fuel cell vehicle simulation
  publication-title: Int. J. Power Electron.
– volume: 52
  start-page: 1135
  issue: 3
  year: 2006
  end-page: 1144
  article-title: Unified mathematical modelling of steadystate and dynamic voltage‐current characteristics for PEM fuel cells
  publication-title: J. Electrochim. Acta
– start-page: 1
  year: 11 July 2008
  end-page: 26
– volume: 33
  start-page: 933
  issue: 4
  year: 2011
  end-page: 938
  article-title: Artificial immune system‐based parameter extraction of proton exchange membrane fuel cell
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 50
  start-page: 701
  issue: 2
  year: 2014
  end-page: 704
  article-title: Stochastic methods for parameter estimation of multi‐physics models of fuel cells
  publication-title: IEEE Trans. Magn.
– volume: 138
  start-page: 2334
  issue: 8
  year: 1991
  end-page: 2342
  article-title: Polymer electrolyte fuel cell model
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 1633
  issue: 4
  year: 2010
  end-page: 1646
  article-title: Modelling and simulation of the steady‐state and dynamic behavior of a PEM fuel cell
  publication-title: Energy
– volume: 37
  start-page: 11308
  issue: 15
  year: 2012
  end-page: 11320
  article-title: An easy parameter estimation procedure for modeling a HT‐PEMFC
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 17779
  issue: 31
  year: 2014
  end-page: 177790
  article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 58
  start-page: 2410
  issue: 6
  year: 2011
  end-page: 2419
  article-title: Parameter identification for PEM fuel‐cell mechanism model based on effective informed adaptive particle swarm optimization
  publication-title: IEEE Trans. Ind. Electron.
– volume: 40
  start-page: 387
  issue: 1
  year: 2012
  end-page: 399
  article-title: PEM fuel cell modeling using differential evolution
  publication-title: Energy
– volume: 59
  start-page: 3473
  issue: 9
  year: 2012
  end-page: 3480
  article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model
  publication-title: IEEE Trans. Ind. Electron.
– volume: 35
  start-page: 12618
  issue: 22
  year: 2010
  end-page: 12625
  article-title: Validation of genetic algorithm results in a fuel cell model
  publication-title: Int. J. Hydrogen Energy
– volume: 59
  start-page: 356
  year: 2013
  end-page: 364
  article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking‐based differential evolution
  publication-title: Energy
– volume: 39
  start-page: 3837
  issue: 8
  year: 2014
  end-page: 3854
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 5796
  issue: 14
  year: 2013
  end-page: 5806
  article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 332
  start-page: 249
  year: 2016
  end-page: 264
  article-title: A selective hybrid stochastic strategy for fuel‐cell multi‐parameter identification
  publication-title: J. Power Sources
– volume: 12
  start-page: 46
  year: 2015
  end-page: 52
  article-title: A novel approach for fuel cell parameter estimation using simple genetic algorithm
  publication-title: Sustain. Energy Technol. Assess.
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 68
  start-page: 478
  year: 2014
  end-page: 494
  article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two‐dimensional modeling
  publication-title: Energy
– volume: 86
  start-page: 173
  issue: 12
  year: 2000
  end-page: 180
  article-title: Development and application of a generalised steady‐state electrochemical model for a PEM fuel cell
  publication-title: J. Power Sources
– volume: 86
  start-page: 1173
  year: 2014
  end-page: 1185
  article-title: A biogeography‐based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cell
  publication-title: Energy Convers. Manage.
– volume: 51
  start-page: 1103
  issue: 5
  year: 2004
  end-page: 1112
  article-title: An electrochemical‐based fuel‐cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans. Ind. Electron.
– volume: 111
  start-page: 455
  year: 2017
  end-page: 462
  article-title: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
  publication-title: Renew. Energy
– volume: 32
  start-page: 810
  year: 2014
  end-page: 853
  article-title: An overview of fuel cell technology: fundamentals and applications
  publication-title: Renew. Sustain. Energy Rev.
– ident: e_1_2_7_37_1
– ident: e_1_2_7_36_1
  doi: 10.1149/1.2085971
– ident: e_1_2_7_14_1
  doi: 10.1016/j.energy.2009.12.010
– ident: e_1_2_7_20_1
  doi: 10.1109/TIE.2010.2060456
– ident: e_1_2_7_35_1
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: e_1_2_7_8_1
  doi: 10.1016/j.apenergy.2010.09.030
– ident: e_1_2_7_15_1
  doi: 10.1109/TIA.2003.814548
– ident: e_1_2_7_16_1
  doi: 10.1016/j.electacta.2006.07.011
– ident: e_1_2_7_17_1
  doi: 10.1016/j.seta.2015.09.001
– ident: e_1_2_7_33_1
  doi: 10.1016/j.renene.2017.04.036
– ident: e_1_2_7_40_1
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ijepes.2010.08.032
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jpowsour.2016.09.131
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jpowsour.2008.04.071
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ijhydene.2016.07.056
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ijhydene.2014.07.081
– ident: e_1_2_7_21_1
  doi: 10.1002/er.1787
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ijhydene.2013.12.110
– ident: e_1_2_7_23_1
  doi: 10.1016/j.energy.2015.06.081
– ident: e_1_2_7_5_1
  doi: 10.1016/S0378-7753(99)00484-X
– ident: e_1_2_7_41_1
  doi: 10.1016/j.asej.2013.05.001
– ident: e_1_2_7_34_1
  doi: 10.1109/4235.585893
– ident: e_1_2_7_3_1
  doi: 10.1504/IJPELEC.2012.052427
– ident: e_1_2_7_24_1
  doi: 10.1016/j.energy.2012.01.039
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ijepes.2010.12.036
– ident: e_1_2_7_22_1
  doi: 10.1016/j.energy.2013.07.005
– ident: e_1_2_7_25_1
  doi: 10.1016/j.energy.2015.03.117
– ident: e_1_2_7_6_1
  doi: 10.1109/TIE.2004.834972
– ident: e_1_2_7_38_1
– ident: e_1_2_7_32_1
  doi: 10.1109/TMAG.2013.2283889
– ident: e_1_2_7_39_1
  doi: 10.1007/978-3-642-04898-2_420
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ijhydene.2013.01.058
– ident: e_1_2_7_31_1
  doi: 10.1016/j.enconman.2014.06.026
– start-page: 1
  volume-title: 1st Iberian Symp. on Hydrogen, Fuel Cells and Advanced Batteries
  year: 2008
  ident: e_1_2_7_12_1
– ident: e_1_2_7_7_1
  doi: 10.1016/j.rser.2014.01.012
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ijhydene.2010.07.129
– ident: e_1_2_7_9_1
  doi: 10.1016/j.energy.2014.01.075
– ident: e_1_2_7_11_1
  doi: 10.1109/TEC.2010.2049267
– ident: e_1_2_7_27_1
  doi: 10.1109/TIE.2011.2172173
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ijhydene.2012.04.157
SSID ssj0059086
Score 2.5397007
Snippet In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms electrical characterisation
GOA‐based method
grasshopper optimisation algorithm
MATLAB‐SIMULINK simulation model
optimisation
PEMFC
proton exchange membrane fuel cell stack
proton exchange membrane fuel cells
Research Article
sensitivity analysis
SSE
sum of square error
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XvQgPrG-yEE8CKv7yG6ao5bW4kGKWOht2WwmVexj6QP8-c5k22oRFLwt2SSwM8nMt8nMN4xdBkYrgvH4W6K0J6zRnvaN8dAV6EBYwGXjAmSfknZXPPbiXoU1lrkwJT_E6sCNdoaz17TBM11WIUFQi0p8g5k3KfoUnSVv0POgHd6kFFsi0A9FZ2mOqaa3SzGScehRWtfqalPd_phizTlt4Ot1yOp8TmuX7SzAIr8rtbvHKjDaZ9vfKAQPmGm6OjYkap5_kS87efOx5cTDgE_wUWb48iEM8aNHwO0ccAQMBlOOADF_5xQB3-f9CaLp13FRwISP0ZwMqVbzIeu2mi-NtreonODlCHBiLxFJbqM8SkyoDf4BQRzkILUfGKWVjSlUJAigHuYikyqxmZGRiWQGqFGZJKIeHbHqaDyCY8Z9KyJLNXoUEdUYUApiITOJSAGElEGN-UuRpfmCVpyqWwxSd70tVIpiTFHKKUk5JSnX2PVqSFFyavzW-YraFjtr-lvHyKnq7ynT585DeN-iS8r45F-jTtkWttfdUUz9jFVnkzmcIziZ6Qu3-D4BuCre5Q
  priority: 102
  providerName: Wiley-Blackwell
Title Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser
URI http://digital-library.theiet.org/content/journals/10.1049/iet-rpg.2017.0232
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-rpg.2017.0232
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uvuiDeMXryIP4IMStbdosj142L4gMcbC3sjQnU9zaMR348z2n7ZyCTN9KmwT6JZzzJTnnfIwde9ZoovG4LdFGSGeNMA1rBboC40kHuGzyANmH6KYr73phb54ebV8GpJUhZidudFoOReYBhW6jHa6XGBeCJMhv69hATMYDCtNSZ-iC0CAv-0p5ssqWb6_uaYtVWGaS986zjVToCw-ZyNct5y-D_PBTFfz8k73m7qe9ztZK3sjPi4neYEuQbrLVb9UEt5ht5ZI2hDpP5nWYc-h55jiVZMAn-CiSffkIRvj7KXA3BewBw-EbR66YvHIKhh_wwQSJ9XM2HsOEZ2hZRiTbvM267dbT5Y0oRRREglwnFJGMEhckQWR9Y3EzBKGXgDINz2qjXUhRI54HTT-RfaUj17cqsIHqA06uiiLZDHZYNc1S2GW84WTgSK5HU80aC1pDKFVfIWkAiYDvscYMsjgpK4yT0MUwzm-6pY4RxhhRjgnlmFDeY6dfXcZFeY1FjU_o3WwBLGoY5FP195DxY-fav2jTfWW4_9_hD9gKPjfzg5jmIau-T6ZwhNTk3dRYxZedWrnuPgHtnOGn
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4ine5IA4IBXWNm2aI4-NAWNCiEm7VUvjDMReGkPi52On3WBCAolb1SaR6sT2l8T-zNiRb7QiGI_bEqU9YY32dMkYD12B9oUFXDYuQLYeVxvithk1Z9jVOBcm54eYHLiRZjh7TQpOB9L5hlMQSeYLjLzhoE3hWfIUXQ8a4nkRB5LUMxAPY3tMRb1djpGMAo_yuiZ3m-rsxxBT3mkWP09jVud0KitsuUCL_Dyf3lU2A701tvSNQ3CdmbIrZEOy5tkX-7ITOO9bTkQM-AQfeYov70IX_7oH3L4D9oBO540jQsxeOYXAt3l7iHD6uT8YwJD30Z50qVjzBmtUyk-XVa8oneBliHAiLxZxZsMsjE2gDW6BIPIzkLrkG6WVjShWxPchCTLRkiq2LSNDE8oW4JTKOBZJuMnmev0ebDFesiK0VKRHEVONAaUgErIlESqAkNLfZqWxyNKs4BWn8had1N1vC5WiGFOUckpSTknK2-xk0mWQk2r81viY3hWq9fZbw9BN1d9Dpo8P18FFhW4po51_9TpkC9Wn-1pau6nf7bJFbJO4c5lkj82Nhu-wj0hlpA_cQvwEyOjiUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQfQgPrE-cxAPwmq3m900R62tT4qIFfGyNJtJFftY-gB_vjPZbVUEBW_L7iSwk2TmSzLzDWMHvtGKYDxuS5T2hDXa0yVjPHQF2hcWcNq4ANlGdNkU10_h0wyrTnJhMn6I6YEbrQxnr2mBp8Zm-01BHJmvMPIGaZuis-Qxeh60w3PElodTe-70sfncnBhkqurtkoxkWPYosWt6ualOfnTyzT3N4ufvoNV5nfoyW8rhIj_NxneFzUBvlS1-IRFcY6bmKtmQsnnySb_sNM77lhMTAz7Be5bjy7vQxd_uAbdjwBbQ6Qw5QsTkjVMMfJu3B4inX_ppCgPeR4PSpWrN66xZrz1UL728doKXIMQJvUhEiQ2SIDJlbXAPBKGfgNQl3yitbEjBIr4PlXIiWlJFtmVkYALZAhxTGUWiEmywQq_fg03GS1YElqr0KKKqMaAUhEK2JGIFEFL6RVaaqCxOcmJxqm_Rid0Ft1AxqjFGLcek5Zi0XGRH0yZpxqrxm_AhvcvX1vA3wcAN1d9dxvd3F-WzOl1Thlv_arXP5u_O6_HtVeNmmy2gSMWdy1R2WGE0GMMuIpWR3stn4gfVxeNJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+characterisation+of+proton+exchange+membrane+fuel+cells+stack+using+grasshopper+optimiser&rft.jtitle=IET+renewable+power+generation&rft.au=El-Fergany%2C+Attia+A&rft.date=2018-01-08&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=12&rft.issue=1&rft.spage=9&rft.epage=17&rft_id=info:doi/10.1049%2Fiet-rpg.2017.0232&rft.externalDocID=10_1049_iet_rpg_2017_0232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon