Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser
In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimat...
Saved in:
Published in | IET renewable power generation Vol. 12; no. 1; pp. 9 - 17 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
08.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimated results. A novel application of grasshopper optimisation algorithm (GOA) is engaged to minimise the SSE subjects to set of inequality constraints. Three study cases of typical commercial PEMFCs stacks are demonstrated and verified under various steady-state operating scenarios. Necessary subsequent comparisons to new results by others found in updated state-of-the-art are made. Sensitivity analysis of defined parameters is carried out. It is found that the PEMFC model is susceptible to the deviations of optimised parameters as the errors are substantially disturbed which signifies the value of the GOA-based method. In addition, performance measures to indicate the robustness of the GOA-based methodology are pointed out. At this moment, dynamic model of the stack is addressed and incorporated to demonstrate its dynamic response. Detailed MATLAB/SIMULINK simulation model is implemented to study the PEMFC dynamic performance. The simulated test cases emphasise the viability and effectivity of the GOA-based procedure in steady-state and dynamic simulations. |
---|---|
AbstractList | In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimated results. A novel application of grasshopper optimisation algorithm (GOA) is engaged to minimise the SSE subjects to set of inequality constraints. Three study cases of typical commercial PEMFCs stacks are demonstrated and verified under various steady‐state operating scenarios. Necessary subsequent comparisons to new results by others found in updated state‐of‐the‐art are made. Sensitivity analysis of defined parameters is carried out. It is found that the PEMFC model is susceptible to the deviations of optimised parameters as the errors are substantially disturbed which signifies the value of the GOA‐based method. In addition, performance measures to indicate the robustness of the GOA‐based methodology are pointed out. At this moment, dynamic model of the stack is addressed and incorporated to demonstrate its dynamic response. Detailed MATLAB/SIMULINK simulation model is implemented to study the PEMFC dynamic performance. The simulated test cases emphasise the viability and effectivity of the GOA‐based procedure in steady‐state and dynamic simulations. |
Author | El-Fergany, Attia A |
Author_xml | – sequence: 1 givenname: Attia A surname: El-Fergany fullname: El-Fergany, Attia A email: el_fergany@ieee.org organization: Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt |
BookMark | eNqFkE1OwzAQRi1UJNrCAdj5Aim2k9gNO6jaglQJhGAdOc44dcmfbFfQ2-NQxIJFWc0nzbwZzZugUdu1gNA1JTNKkuzGgI9sX80YoWJGWMzO0JiKlEU0YcnoN1N-gSbO7QhJMzLnY1Qua1DeGiVrrLbSSuXBGie96VrcadzbzocEn6HZVoAbaAorW8B6D4GAunbYeane8d6ZtsKVlc5tu74Hi7vem8Y4sJfoXMvawdVPnaK31fJ18RBtntaPi7tNpBhP0ognXOlYxbxkRZmlHFKqQBSEllmR6RS0BkphzlQiRca1LEVcxkICFCA4T-bxFNHjXmU75yzovLemkfaQU5IPmvKgKQ-a8kFTPmgKjPjDKOO_3_dWmvokeXskP0wNh_9P5S_Pa3a_IkTEaYCjIzyM7bq9bYOYE8e-AMzXlcU |
CitedBy_id | crossref_primary_10_3390_electronics10222834 crossref_primary_10_1038_s41598_024_70886_6 crossref_primary_10_3390_en11082099 crossref_primary_10_1002_er_4809 crossref_primary_10_1002_jnm_2802 crossref_primary_10_1016_j_fuel_2023_127586 crossref_primary_10_1007_s00202_020_01103_6 crossref_primary_10_1016_j_envpol_2022_120203 crossref_primary_10_1016_j_egyr_2020_03_010 crossref_primary_10_1016_j_energy_2022_125530 crossref_primary_10_1016_j_epsr_2018_07_023 crossref_primary_10_3389_fenrg_2022_964042 crossref_primary_10_1016_j_engappai_2021_104193 crossref_primary_10_1016_j_enconman_2024_118371 crossref_primary_10_1016_j_energy_2018_10_038 crossref_primary_10_1002_adts_202100183 crossref_primary_10_1016_j_enconman_2024_119231 crossref_primary_10_1016_j_renene_2019_08_046 crossref_primary_10_1016_j_measurement_2024_115302 crossref_primary_10_1016_j_applthermaleng_2024_122447 crossref_primary_10_1016_j_energy_2024_130601 crossref_primary_10_3390_en12101884 crossref_primary_10_1038_s41598_024_80073_2 crossref_primary_10_1007_s00500_020_05431_4 crossref_primary_10_1016_j_apm_2018_07_044 crossref_primary_10_1038_s41598_025_92818_8 crossref_primary_10_1515_ijeeps_2023_0025 crossref_primary_10_3390_pr9081416 crossref_primary_10_1016_j_energy_2021_120592 crossref_primary_10_3390_membranes11120953 crossref_primary_10_3390_su15086676 crossref_primary_10_1016_j_ijhydene_2023_12_008 crossref_primary_10_1016_j_scs_2021_103419 crossref_primary_10_1016_j_egyr_2024_08_015 crossref_primary_10_1080_15567036_2021_1903619 crossref_primary_10_1016_j_energy_2021_119836 crossref_primary_10_1007_s11581_024_05999_z crossref_primary_10_1002_2050_7038_12674 crossref_primary_10_1007_s00500_022_07520_y crossref_primary_10_1016_j_egyr_2021_09_145 crossref_primary_10_1016_j_ijhydene_2020_06_256 crossref_primary_10_3389_fenrg_2023_1148323 crossref_primary_10_1016_j_apenergy_2024_123297 crossref_primary_10_1016_j_eswa_2022_118642 crossref_primary_10_1007_s40095_022_00483_8 crossref_primary_10_1016_j_enconman_2020_113777 crossref_primary_10_1007_s41939_025_00814_2 crossref_primary_10_1016_j_egyr_2020_05_006 crossref_primary_10_1038_s41598_024_81160_0 crossref_primary_10_1016_j_enconman_2022_115521 crossref_primary_10_3390_technologies12090156 crossref_primary_10_1155_2024_7616065 crossref_primary_10_1049_rpg2_12156 crossref_primary_10_1002_er_7576 crossref_primary_10_1016_j_cma_2023_116200 crossref_primary_10_3390_electronics14010035 crossref_primary_10_1016_j_asoc_2021_107935 crossref_primary_10_1016_j_ijhydene_2024_05_068 crossref_primary_10_1016_j_asej_2021_04_014 crossref_primary_10_1016_j_measurement_2025_116917 crossref_primary_10_1007_s11581_025_06200_9 crossref_primary_10_1007_s12665_022_10269_0 crossref_primary_10_1016_j_ijhydene_2022_07_251 crossref_primary_10_1002_er_6750 crossref_primary_10_1016_j_energy_2021_120772 crossref_primary_10_1016_j_ijhydene_2023_07_027 crossref_primary_10_1016_j_renene_2021_04_148 crossref_primary_10_1109_ACCESS_2020_2993762 crossref_primary_10_1016_j_asej_2024_103026 crossref_primary_10_1080_15623599_2021_1927363 crossref_primary_10_1016_j_energy_2023_130130 crossref_primary_10_1038_s41598_023_49667_0 crossref_primary_10_1016_j_ijhydene_2024_08_048 crossref_primary_10_1016_j_renene_2024_121772 crossref_primary_10_1016_j_renene_2020_12_131 crossref_primary_10_1007_s00521_021_05821_1 crossref_primary_10_1007_s41939_024_00410_w crossref_primary_10_1016_j_enconman_2020_112501 crossref_primary_10_1080_01430750_2020_1842240 crossref_primary_10_1002_er_6065 crossref_primary_10_1016_j_energy_2022_123830 crossref_primary_10_1016_j_energy_2021_121096 crossref_primary_10_1016_j_eswa_2020_113282 crossref_primary_10_1109_ACCESS_2021_3067597 crossref_primary_10_1016_j_enconman_2021_114099 crossref_primary_10_1002_er_6987 crossref_primary_10_1007_s11581_024_05963_x crossref_primary_10_1080_15567036_2020_1769230 crossref_primary_10_1109_ACCESS_2024_3453594 crossref_primary_10_1016_j_enconman_2025_119655 crossref_primary_10_17341_gazimmfd_449685 crossref_primary_10_1016_j_asoc_2023_110091 crossref_primary_10_1109_ACCESS_2023_3236023 crossref_primary_10_1016_j_energy_2022_126165 crossref_primary_10_1109_ACCESS_2020_3007602 crossref_primary_10_1016_j_asej_2022_101749 crossref_primary_10_1109_ACCESS_2019_2961811 crossref_primary_10_3390_app11052052 crossref_primary_10_1038_s41598_023_35581_y crossref_primary_10_1016_j_egyr_2024_07_063 crossref_primary_10_1016_j_ijhydene_2021_01_076 crossref_primary_10_3390_en14030619 crossref_primary_10_1016_j_ijhydene_2020_01_219 crossref_primary_10_1016_j_ijhydene_2021_03_105 crossref_primary_10_3390_su15054625 crossref_primary_10_1002_er_5244 crossref_primary_10_1007_s00521_020_05333_4 crossref_primary_10_1109_ACCESS_2020_2973351 crossref_primary_10_1016_j_heliyon_2024_e36678 crossref_primary_10_1080_00207217_2021_1966660 crossref_primary_10_1155_2020_4873501 crossref_primary_10_1016_j_fuel_2022_127080 crossref_primary_10_1016_j_enconman_2019_112197 crossref_primary_10_1016_j_ijleo_2021_167979 crossref_primary_10_1016_j_energy_2024_130235 crossref_primary_10_1038_s41598_025_93162_7 crossref_primary_10_3390_electronics11121808 crossref_primary_10_1016_j_egyr_2024_05_057 crossref_primary_10_1016_j_jclepro_2020_121660 crossref_primary_10_1016_j_apenergy_2019_03_097 crossref_primary_10_1016_j_aej_2023_07_039 crossref_primary_10_1016_j_ijhydene_2019_09_178 crossref_primary_10_1109_ACCESS_2020_3021754 crossref_primary_10_1002_er_6282 crossref_primary_10_1007_s11831_022_09721_y crossref_primary_10_1016_j_ijhydene_2020_11_119 crossref_primary_10_1016_j_enconman_2020_113341 crossref_primary_10_1002_er_4424 crossref_primary_10_1016_j_knosys_2023_111134 crossref_primary_10_3389_fenrg_2024_1384649 crossref_primary_10_1016_j_egyr_2019_11_013 crossref_primary_10_3390_en14217115 crossref_primary_10_1016_j_energy_2019_06_152 crossref_primary_10_1049_rpg2_12359 crossref_primary_10_1016_j_egyr_2020_04_013 crossref_primary_10_1016_j_energy_2019_02_106 crossref_primary_10_37394_23203_2023_18_13 crossref_primary_10_3390_su12198127 crossref_primary_10_1016_j_cma_2024_116781 crossref_primary_10_3390_en13236426 crossref_primary_10_1016_j_trpro_2025_03_086 crossref_primary_10_1007_s42979_023_01957_0 crossref_primary_10_1016_j_rineng_2024_103369 crossref_primary_10_1016_j_asoc_2023_110791 crossref_primary_10_1002_fuce_201900155 crossref_primary_10_1109_ACCESS_2021_3077616 crossref_primary_10_1038_s41598_025_92528_1 crossref_primary_10_1016_j_ces_2020_116100 crossref_primary_10_1016_j_egyr_2020_06_002 crossref_primary_10_1080_01430750_2025_2469531 crossref_primary_10_1016_j_ijhydene_2020_12_203 crossref_primary_10_3390_en17122917 |
Cites_doi | 10.1149/1.2085971 10.1016/j.energy.2009.12.010 10.1109/TIE.2010.2060456 10.1016/j.advengsoft.2017.01.004 10.1016/j.apenergy.2010.09.030 10.1109/TIA.2003.814548 10.1016/j.electacta.2006.07.011 10.1016/j.seta.2015.09.001 10.1016/j.renene.2017.04.036 10.1016/j.ijepes.2010.08.032 10.1016/j.jpowsour.2016.09.131 10.1016/j.jpowsour.2008.04.071 10.1016/j.ijhydene.2016.07.056 10.1016/j.ijhydene.2014.07.081 10.1002/er.1787 10.1016/j.ijhydene.2013.12.110 10.1016/j.energy.2015.06.081 10.1016/S0378-7753(99)00484-X 10.1016/j.asej.2013.05.001 10.1109/4235.585893 10.1504/IJPELEC.2012.052427 10.1016/j.energy.2012.01.039 10.1016/j.ijepes.2010.12.036 10.1016/j.energy.2013.07.005 10.1016/j.energy.2015.03.117 10.1109/TIE.2004.834972 10.1109/TMAG.2013.2283889 10.1007/978-3-642-04898-2_420 10.1016/j.ijhydene.2013.01.058 10.1016/j.enconman.2014.06.026 10.1016/j.rser.2014.01.012 10.1016/j.ijhydene.2010.07.129 10.1016/j.energy.2014.01.075 10.1109/TEC.2010.2049267 10.1109/TIE.2011.2172173 10.1016/j.ijhydene.2012.04.157 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-rpg.2017.0232 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1752-1424 |
EndPage | 17 |
ExternalDocumentID | 10_1049_iet_rpg_2017_0232 RPG2BF00735 |
Genre | article |
GroupedDBID | 0R 24P 29I 5GY 6IK AAJGR ACGFS ACIWK AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BFFAM BPEOZ CS3 DU5 HZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIE RNS RUI UNR .DC 0R~ 1OC 4.4 7XC 8FE 8FG 8FH AAHHS AAHJG ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALUQN ARAPS ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IEP IGS ITC L6V M7S MCNEO OK1 P62 PATMY PTHSS PYCSY ROL S0W AAYXX CITATION IDLOA PHGZM PHGZT |
ID | FETCH-LOGICAL-c2645-646cf3c36d2bd956e51ce7b01d9b9f5effe11e82c4a796fad73d37aeebe766483 |
IEDL.DBID | IDLOA |
ISSN | 1752-1416 1752-1424 |
IngestDate | Tue Jul 01 05:14:43 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 Wed Jan 22 16:31:34 EST 2025 Tue Jan 05 21:45:57 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | optimisation PEMFC SSE proton exchange membrane fuel cells sensitivity analysis sum of square error MATLAB-SIMULINK simulation model grasshopper optimisation algorithm electrical characterisation proton exchange membrane fuel cell stack GOA-based method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2645-646cf3c36d2bd956e51ce7b01d9b9f5effe11e82c4a796fad73d37aeebe766483 |
PageCount | 9 |
ParticipantIDs | iet_journals_10_1049_iet_rpg_2017_0232 crossref_primary_10_1049_iet_rpg_2017_0232 wiley_primary_10_1049_iet_rpg_2017_0232_RPG2BF00735 crossref_citationtrail_10_1049_iet_rpg_2017_0232 |
ProviderPackageCode | RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-08 |
PublicationDateYYYYMMDD | 2018-01-08 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-08 day: 08 |
PublicationDecade | 2010 |
PublicationTitle | IET renewable power generation |
PublicationYear | 2018 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Niu, Q.; Zhang, L.; Li, K. (C30) 2014; 86 Saremi, S.; Mirjalili, S.; Lewis, A. (C34) 2017; 105 Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. (C35) 1991; 138 Abd El-Monem, A.A.; Azmy, A.M.; Mahmoud, S.A. (C40) 2014; 5 Dhirde, A.M.; Dale, N.V.; Salehfar, H. (C10) 2010; 25 Zhu, Q.; Wang, N.; Zhang, L. (C17) 2014; 39 Niu, Q.; Zhang, H.; Li, K. (C27) 2014; 39 Dai, C.; Chen, W.; Cheng, Z. (C29) 2011; 33 Li, Q.; Chen, W.; Wang, Y. (C19) 2011; 58 Xue, X.D.; Cheng, K.W.E.; Sutanto, D. (C15) 2006; 52 Askarzadeh, A.; Rezazadeh, A. (C26) 2012; 59 Ohenoja, M.; Leiviska, K. (C18) 2010; 35 Úbeda, D.; Pinar, F.J.; Canizares, P. (C3) 2012; 37 Taleb, M.A.; Béthouxb, O.B.; Godoy, E. (C12) 2017; 42 Gong, W.; Cai, Z. (C21) 2013; 59 Guarnieri, M.; Negro, E.; Noto, V. (C1) 2016; 332 Alotto, P.; Guarnieri, M. (C31) 2014; 50 Sun, Z.; Wang, N.; Bi, Y. (C22) 2015; 90 Wolpert, D.H.; Macready, W.G. (C33) 1997; 1 Askarzadeh, A.; Rezazadeh, A. (C20) 2011; 35 Alireza, A.; Alireza, R. (C25) 2011; 33 Sharaf, O.Z.; Orhan, M.F. (C6) 2014; 32 Motapon, S.N.; Tremblay, O.; Dessaint, L.-A. (C2) 2012; 4 Ali, M.; El-Hameed, M.A.; Farahat, M.A. (C32) 2017; 111 Corrêa, J.M.; Farret, F.A.; Gomes, J.R. (C14) 2003; 39 Abdollahzadeh, M.; Pascoa, J.; Ranjbar, A. (C8) 2014; 68 Danzer, M.A.; Hofer, E.P. (C9) 2008; 183 Chakraborty, U.K.; Abbott, T.E.; Das, S.K. (C23) 2012; 40 Correa, J.M.; Farret, F.A.; Canha, L.N. (C5) 2004; 51 Wang, Y.; Chen, K.S.; Mishler, J. (C7) 2011; 88 Sharifi Asl, S.M.S.; Rowshanzamir, S.; Eikani, M.H. (C13) 2010; 35 Mann, R.F.; Amphlett, J.C.; Hooper, M.A.I (C4) 2000; 86 Priya, K.; Babu, T.S.; Balasubramanian, K. (C16) 2015; 12 Gong, W.; Yan, X.; Liu, X. (C24) 2015; 86 Zhang, W.; Wang, N.; Yang, S. (C28) 2013; 38 2015; 12 2017; 42 2006; 52 2010; 35 2011 2000; 86 2011; 33 2014; 68 2003; 39 2011; 35 1997; 1 2012; 37 2011; 58 2012; 59 2017; 111 1991; 138 2008; 183 2014; 86 2013; 59 2014; 5 2004; 51 2010; 25 2013; 38 2015; 86 2016; 332 2011; 88 11 July 2008 2014; 39 2015; 90 2012; 4 2014; 50 2017; 105 2014; 32 2012; 40 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Primucci M. (e_1_2_7_12_1) 2008 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 68 start-page: 478 year: 2014 end-page: 494 ident: C8 article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling publication-title: Energy – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: C34 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv. Eng. Softw. – volume: 37 start-page: 11308 issue: 15 year: 2012 end-page: 11320 ident: C3 article-title: An easy parameter estimation procedure for modeling a HT-PEMFC publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 1136 issue: 4 year: 2003 end-page: 1142 ident: C14 article-title: Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications publication-title: IEEE Trans. Ind. Appl. – volume: 33 start-page: 933 issue: 4 year: 2011 end-page: 938 ident: C25 article-title: Artificial immune system-based parameter extraction of proton exchange membrane fuel cell publication-title: Int. J. Electr. Power Energy Syst. – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: C33 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 86 start-page: 139 year: 2015 end-page: 151 ident: C24 article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution publication-title: Energy – volume: 86 start-page: 173 issue: 12 year: 2000 end-page: 180 ident: C4 article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell publication-title: J. Power Sources – volume: 332 start-page: 249 year: 2016 end-page: 264 ident: C1 article-title: A selective hybrid stochastic strategy for fuel-cell multi-parameter identification publication-title: J. Power Sources – volume: 35 start-page: 12618 issue: 22 year: 2010 end-page: 12625 ident: C18 article-title: Validation of genetic algorithm results in a fuel cell model publication-title: Int. J. Hydrogen Energy – volume: 59 start-page: 356 year: 2013 end-page: 364 ident: C21 article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution publication-title: Energy – volume: 38 start-page: 5796 issue: 14 year: 2013 end-page: 5806 ident: C28 article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell publication-title: Int. J. Hydrogen Energy – volume: 51 start-page: 1103 issue: 5 year: 2004 end-page: 1112 ident: C5 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans. Ind. Electron. – volume: 59 start-page: 3473 issue: 9 year: 2012 end-page: 3480 ident: C26 article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model publication-title: IEEE Trans. Ind. Electron. – volume: 183 start-page: 55 issue: 1 year: 2008 end-page: 61 ident: C9 article-title: Electrochemical parameter identification – an efficient method for fuel cell impedance characterization publication-title: J. Power Sources – volume: 12 start-page: 46 year: 2015 end-page: 52 ident: C16 article-title: A novel approach for fuel cell parameter estimation using simple genetic algorithm publication-title: Sustain. Energy Technol. Assess. – volume: 40 start-page: 387 issue: 1 year: 2012 end-page: 399 ident: C23 article-title: PEM fuel cell modeling using differential evolution publication-title: Energy – volume: 42 start-page: 1499 year: 2017 end-page: 1509 ident: C12 article-title: Identification of a PEMFC fractional order model publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 505 issue: 6 year: 2012 end-page: 522 ident: C2 article-title: Development of a generic fuel cell model: application to a fuel cell vehicle simulation publication-title: Int. J. Power Electron. – volume: 90 start-page: 1334 year: 2015 end-page: 1341 ident: C22 article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm publication-title: Energy – volume: 5 start-page: 75 year: 2014 end-page: 84 ident: C40 article-title: Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications publication-title: Ain Shams Eng. J. – volume: 52 start-page: 1135 issue: 3 year: 2006 end-page: 1144 ident: C15 article-title: Unified mathematical modelling of steadystate and dynamic voltage-current characteristics for PEM fuel cells publication-title: J. Electrochim. Acta – volume: 138 start-page: 2334 issue: 8 year: 1991 end-page: 2342 ident: C35 article-title: Polymer electrolyte fuel cell model publication-title: J. Electrochem. Soc. – volume: 35 start-page: 1258 issue: 14 year: 2011 end-page: 1265 ident: C20 article-title: Optimization of PEMFC model parameters with a modified particle swarm optimization publication-title: Int. J. Energy Res. – volume: 111 start-page: 455 year: 2017 end-page: 462 ident: C32 article-title: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer publication-title: Renew. Energy – volume: 86 start-page: 1173 year: 2014 end-page: 1185 ident: C30 article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cell publication-title: Energy Convers. Manage. – volume: 39 start-page: 17779 issue: 31 year: 2014 end-page: 177790 ident: C17 article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells publication-title: Int. J. Hydrogen Energy – volume: 50 start-page: 701 issue: 2 year: 2014 end-page: 704 ident: C31 article-title: Stochastic methods for parameter estimation of multi-physics models of fuel cells publication-title: IEEE Trans. Magn. – volume: 35 start-page: 1633 issue: 4 year: 2010 end-page: 1646 ident: C13 article-title: Modelling and simulation of the steady-state and dynamic behavior of a PEM fuel cell publication-title: Energy – volume: 88 start-page: 981 issue: 4 year: 2011 end-page: 1007 ident: C7 article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research publication-title: Appl. Energy – volume: 33 start-page: 369 issue: 3 year: 2011 end-page: 376 ident: C29 article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) publication-title: Int. J. Electr. Power Energy Syst. – volume: 25 start-page: 778 issue: 3 year: 2010 end-page: 786 ident: C10 article-title: Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy publication-title: IEEE Trans. Energy Convers. – volume: 58 start-page: 2410 issue: 6 year: 2011 end-page: 2419 ident: C19 article-title: Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization publication-title: IEEE Trans. Ind. Electron. – volume: 39 start-page: 3837 issue: 8 year: 2014 end-page: 3854 ident: C27 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int. J. Hydrogen Energy – volume: 32 start-page: 810 year: 2014 end-page: 853 ident: C6 article-title: An overview of fuel cell technology: fundamentals and applications publication-title: Renew. Sustain. Energy Rev. – volume: 25 start-page: 778 issue: 3 year: 2010 end-page: 786 article-title: Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy publication-title: IEEE Trans. Energy Convers. – year: 2011 – volume: 183 start-page: 55 issue: 1 year: 2008 end-page: 61 article-title: Electrochemical parameter identification – an efficient method for fuel cell impedance characterization publication-title: J. Power Sources – volume: 33 start-page: 369 issue: 3 year: 2011 end-page: 376 article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) publication-title: Int. J. Electr. Power Energy Syst. – volume: 86 start-page: 139 year: 2015 end-page: 151 article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution publication-title: Energy – volume: 39 start-page: 1136 issue: 4 year: 2003 end-page: 1142 article-title: Simulation of fuel‐cell stacks using a computer‐controlled power rectifier with the purposes of actual high‐power injection applications publication-title: IEEE Trans. Ind. Appl. – volume: 105 start-page: 30 year: 2017 end-page: 47 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv. Eng. Softw. – volume: 42 start-page: 1499 year: 2017 end-page: 1509 article-title: Identification of a PEMFC fractional order model publication-title: Int. J. Hydrogen Energy – volume: 88 start-page: 981 issue: 4 year: 2011 end-page: 1007 article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research publication-title: Appl. Energy – volume: 35 start-page: 1258 issue: 14 year: 2011 end-page: 1265 article-title: Optimization of PEMFC model parameters with a modified particle swarm optimization publication-title: Int. J. Energy Res. – volume: 90 start-page: 1334 year: 2015 end-page: 1341 article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm publication-title: Energy – volume: 5 start-page: 75 year: 2014 end-page: 84 article-title: Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications publication-title: Ain Shams Eng. J. – volume: 4 start-page: 505 issue: 6 year: 2012 end-page: 522 article-title: Development of a generic fuel cell model: application to a fuel cell vehicle simulation publication-title: Int. J. Power Electron. – volume: 52 start-page: 1135 issue: 3 year: 2006 end-page: 1144 article-title: Unified mathematical modelling of steadystate and dynamic voltage‐current characteristics for PEM fuel cells publication-title: J. Electrochim. Acta – start-page: 1 year: 11 July 2008 end-page: 26 – volume: 33 start-page: 933 issue: 4 year: 2011 end-page: 938 article-title: Artificial immune system‐based parameter extraction of proton exchange membrane fuel cell publication-title: Int. J. Electr. Power Energy Syst. – volume: 50 start-page: 701 issue: 2 year: 2014 end-page: 704 article-title: Stochastic methods for parameter estimation of multi‐physics models of fuel cells publication-title: IEEE Trans. Magn. – volume: 138 start-page: 2334 issue: 8 year: 1991 end-page: 2342 article-title: Polymer electrolyte fuel cell model publication-title: J. Electrochem. Soc. – volume: 35 start-page: 1633 issue: 4 year: 2010 end-page: 1646 article-title: Modelling and simulation of the steady‐state and dynamic behavior of a PEM fuel cell publication-title: Energy – volume: 37 start-page: 11308 issue: 15 year: 2012 end-page: 11320 article-title: An easy parameter estimation procedure for modeling a HT‐PEMFC publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 17779 issue: 31 year: 2014 end-page: 177790 article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells publication-title: Int. J. Hydrogen Energy – volume: 58 start-page: 2410 issue: 6 year: 2011 end-page: 2419 article-title: Parameter identification for PEM fuel‐cell mechanism model based on effective informed adaptive particle swarm optimization publication-title: IEEE Trans. Ind. Electron. – volume: 40 start-page: 387 issue: 1 year: 2012 end-page: 399 article-title: PEM fuel cell modeling using differential evolution publication-title: Energy – volume: 59 start-page: 3473 issue: 9 year: 2012 end-page: 3480 article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model publication-title: IEEE Trans. Ind. Electron. – volume: 35 start-page: 12618 issue: 22 year: 2010 end-page: 12625 article-title: Validation of genetic algorithm results in a fuel cell model publication-title: Int. J. Hydrogen Energy – volume: 59 start-page: 356 year: 2013 end-page: 364 article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking‐based differential evolution publication-title: Energy – volume: 39 start-page: 3837 issue: 8 year: 2014 end-page: 3854 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 5796 issue: 14 year: 2013 end-page: 5806 article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell publication-title: Int. J. Hydrogen Energy – volume: 332 start-page: 249 year: 2016 end-page: 264 article-title: A selective hybrid stochastic strategy for fuel‐cell multi‐parameter identification publication-title: J. Power Sources – volume: 12 start-page: 46 year: 2015 end-page: 52 article-title: A novel approach for fuel cell parameter estimation using simple genetic algorithm publication-title: Sustain. Energy Technol. Assess. – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 68 start-page: 478 year: 2014 end-page: 494 article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two‐dimensional modeling publication-title: Energy – volume: 86 start-page: 173 issue: 12 year: 2000 end-page: 180 article-title: Development and application of a generalised steady‐state electrochemical model for a PEM fuel cell publication-title: J. Power Sources – volume: 86 start-page: 1173 year: 2014 end-page: 1185 article-title: A biogeography‐based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cell publication-title: Energy Convers. Manage. – volume: 51 start-page: 1103 issue: 5 year: 2004 end-page: 1112 article-title: An electrochemical‐based fuel‐cell model suitable for electrical engineering automation approach publication-title: IEEE Trans. Ind. Electron. – volume: 111 start-page: 455 year: 2017 end-page: 462 article-title: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer publication-title: Renew. Energy – volume: 32 start-page: 810 year: 2014 end-page: 853 article-title: An overview of fuel cell technology: fundamentals and applications publication-title: Renew. Sustain. Energy Rev. – ident: e_1_2_7_37_1 – ident: e_1_2_7_36_1 doi: 10.1149/1.2085971 – ident: e_1_2_7_14_1 doi: 10.1016/j.energy.2009.12.010 – ident: e_1_2_7_20_1 doi: 10.1109/TIE.2010.2060456 – ident: e_1_2_7_35_1 doi: 10.1016/j.advengsoft.2017.01.004 – ident: e_1_2_7_8_1 doi: 10.1016/j.apenergy.2010.09.030 – ident: e_1_2_7_15_1 doi: 10.1109/TIA.2003.814548 – ident: e_1_2_7_16_1 doi: 10.1016/j.electacta.2006.07.011 – ident: e_1_2_7_17_1 doi: 10.1016/j.seta.2015.09.001 – ident: e_1_2_7_33_1 doi: 10.1016/j.renene.2017.04.036 – ident: e_1_2_7_40_1 – ident: e_1_2_7_30_1 doi: 10.1016/j.ijepes.2010.08.032 – ident: e_1_2_7_2_1 doi: 10.1016/j.jpowsour.2016.09.131 – ident: e_1_2_7_10_1 doi: 10.1016/j.jpowsour.2008.04.071 – ident: e_1_2_7_13_1 doi: 10.1016/j.ijhydene.2016.07.056 – ident: e_1_2_7_18_1 doi: 10.1016/j.ijhydene.2014.07.081 – ident: e_1_2_7_21_1 doi: 10.1002/er.1787 – ident: e_1_2_7_28_1 doi: 10.1016/j.ijhydene.2013.12.110 – ident: e_1_2_7_23_1 doi: 10.1016/j.energy.2015.06.081 – ident: e_1_2_7_5_1 doi: 10.1016/S0378-7753(99)00484-X – ident: e_1_2_7_41_1 doi: 10.1016/j.asej.2013.05.001 – ident: e_1_2_7_34_1 doi: 10.1109/4235.585893 – ident: e_1_2_7_3_1 doi: 10.1504/IJPELEC.2012.052427 – ident: e_1_2_7_24_1 doi: 10.1016/j.energy.2012.01.039 – ident: e_1_2_7_26_1 doi: 10.1016/j.ijepes.2010.12.036 – ident: e_1_2_7_22_1 doi: 10.1016/j.energy.2013.07.005 – ident: e_1_2_7_25_1 doi: 10.1016/j.energy.2015.03.117 – ident: e_1_2_7_6_1 doi: 10.1109/TIE.2004.834972 – ident: e_1_2_7_38_1 – ident: e_1_2_7_32_1 doi: 10.1109/TMAG.2013.2283889 – ident: e_1_2_7_39_1 doi: 10.1007/978-3-642-04898-2_420 – ident: e_1_2_7_29_1 doi: 10.1016/j.ijhydene.2013.01.058 – ident: e_1_2_7_31_1 doi: 10.1016/j.enconman.2014.06.026 – start-page: 1 volume-title: 1st Iberian Symp. on Hydrogen, Fuel Cells and Advanced Batteries year: 2008 ident: e_1_2_7_12_1 – ident: e_1_2_7_7_1 doi: 10.1016/j.rser.2014.01.012 – ident: e_1_2_7_19_1 doi: 10.1016/j.ijhydene.2010.07.129 – ident: e_1_2_7_9_1 doi: 10.1016/j.energy.2014.01.075 – ident: e_1_2_7_11_1 doi: 10.1109/TEC.2010.2049267 – ident: e_1_2_7_27_1 doi: 10.1109/TIE.2011.2172173 – ident: e_1_2_7_4_1 doi: 10.1016/j.ijhydene.2012.04.157 |
SSID | ssj0059086 |
Score | 2.5397007 |
Snippet | In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 9 |
SubjectTerms | electrical characterisation GOA‐based method grasshopper optimisation algorithm MATLAB‐SIMULINK simulation model optimisation PEMFC proton exchange membrane fuel cell stack proton exchange membrane fuel cells Research Article sensitivity analysis SSE sum of square error |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XvQgPrG-yEE8CKv7yG6ao5bW4kGKWOht2WwmVexj6QP8-c5k22oRFLwt2SSwM8nMt8nMN4xdBkYrgvH4W6K0J6zRnvaN8dAV6EBYwGXjAmSfknZXPPbiXoU1lrkwJT_E6sCNdoaz17TBM11WIUFQi0p8g5k3KfoUnSVv0POgHd6kFFsi0A9FZ2mOqaa3SzGScehRWtfqalPd_phizTlt4Ot1yOp8TmuX7SzAIr8rtbvHKjDaZ9vfKAQPmGm6OjYkap5_kS87efOx5cTDgE_wUWb48iEM8aNHwO0ccAQMBlOOADF_5xQB3-f9CaLp13FRwISP0ZwMqVbzIeu2mi-NtreonODlCHBiLxFJbqM8SkyoDf4BQRzkILUfGKWVjSlUJAigHuYikyqxmZGRiWQGqFGZJKIeHbHqaDyCY8Z9KyJLNXoUEdUYUApiITOJSAGElEGN-UuRpfmCVpyqWwxSd70tVIpiTFHKKUk5JSnX2PVqSFFyavzW-YraFjtr-lvHyKnq7ynT585DeN-iS8r45F-jTtkWttfdUUz9jFVnkzmcIziZ6Qu3-D4BuCre5Q priority: 102 providerName: Wiley-Blackwell |
Title | Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-rpg.2017.0232 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-rpg.2017.0232 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uvuiDeMXryIP4IMStbdosj142L4gMcbC3sjQnU9zaMR348z2n7ZyCTN9KmwT6JZzzJTnnfIwde9ZoovG4LdFGSGeNMA1rBboC40kHuGzyANmH6KYr73phb54ebV8GpJUhZidudFoOReYBhW6jHa6XGBeCJMhv69hATMYDCtNSZ-iC0CAv-0p5ssqWb6_uaYtVWGaS986zjVToCw-ZyNct5y-D_PBTFfz8k73m7qe9ztZK3sjPi4neYEuQbrLVb9UEt5ht5ZI2hDpP5nWYc-h55jiVZMAn-CiSffkIRvj7KXA3BewBw-EbR66YvHIKhh_wwQSJ9XM2HsOEZ2hZRiTbvM267dbT5Y0oRRREglwnFJGMEhckQWR9Y3EzBKGXgDINz2qjXUhRI54HTT-RfaUj17cqsIHqA06uiiLZDHZYNc1S2GW84WTgSK5HU80aC1pDKFVfIWkAiYDvscYMsjgpK4yT0MUwzm-6pY4RxhhRjgnlmFDeY6dfXcZFeY1FjU_o3WwBLGoY5FP195DxY-fav2jTfWW4_9_hD9gKPjfzg5jmIau-T6ZwhNTk3dRYxZedWrnuPgHtnOGn |
linkProvider | Institution of Engineering and Technology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4ine5IA4IBXWNm2aI4-NAWNCiEm7VUvjDMReGkPi52On3WBCAolb1SaR6sT2l8T-zNiRb7QiGI_bEqU9YY32dMkYD12B9oUFXDYuQLYeVxvithk1Z9jVOBcm54eYHLiRZjh7TQpOB9L5hlMQSeYLjLzhoE3hWfIUXQ8a4nkRB5LUMxAPY3tMRb1djpGMAo_yuiZ3m-rsxxBT3mkWP09jVud0KitsuUCL_Dyf3lU2A701tvSNQ3CdmbIrZEOy5tkX-7ITOO9bTkQM-AQfeYov70IX_7oH3L4D9oBO540jQsxeOYXAt3l7iHD6uT8YwJD30Z50qVjzBmtUyk-XVa8oneBliHAiLxZxZsMsjE2gDW6BIPIzkLrkG6WVjShWxPchCTLRkiq2LSNDE8oW4JTKOBZJuMnmev0ebDFesiK0VKRHEVONAaUgErIlESqAkNLfZqWxyNKs4BWn8had1N1vC5WiGFOUckpSTknK2-xk0mWQk2r81viY3hWq9fZbw9BN1d9Dpo8P18FFhW4po51_9TpkC9Wn-1pau6nf7bJFbJO4c5lkj82Nhu-wj0hlpA_cQvwEyOjiUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQfQgPrE-cxAPwmq3m900R62tT4qIFfGyNJtJFftY-gB_vjPZbVUEBW_L7iSwk2TmSzLzDWMHvtGKYDxuS5T2hDXa0yVjPHQF2hcWcNq4ANlGdNkU10_h0wyrTnJhMn6I6YEbrQxnr2mBp8Zm-01BHJmvMPIGaZuis-Qxeh60w3PElodTe-70sfncnBhkqurtkoxkWPYosWt6ualOfnTyzT3N4ufvoNV5nfoyW8rhIj_NxneFzUBvlS1-IRFcY6bmKtmQsnnySb_sNM77lhMTAz7Be5bjy7vQxd_uAbdjwBbQ6Qw5QsTkjVMMfJu3B4inX_ppCgPeR4PSpWrN66xZrz1UL728doKXIMQJvUhEiQ2SIDJlbXAPBKGfgNQl3yitbEjBIr4PlXIiWlJFtmVkYALZAhxTGUWiEmywQq_fg03GS1YElqr0KKKqMaAUhEK2JGIFEFL6RVaaqCxOcmJxqm_Rid0Ft1AxqjFGLcek5Zi0XGRH0yZpxqrxm_AhvcvX1vA3wcAN1d9dxvd3F-WzOl1Thlv_arXP5u_O6_HtVeNmmy2gSMWdy1R2WGE0GMMuIpWR3stn4gfVxeNJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+characterisation+of+proton+exchange+membrane+fuel+cells+stack+using+grasshopper+optimiser&rft.jtitle=IET+renewable+power+generation&rft.au=El-Fergany%2C+Attia+A&rft.date=2018-01-08&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=12&rft.issue=1&rft.spage=9&rft.epage=17&rft_id=info:doi/10.1049%2Fiet-rpg.2017.0232&rft.externalDocID=10_1049_iet_rpg_2017_0232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon |