Non‐Invasive Diagnosis of Hypertrophic Cardiomyopathy by Breath
Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early t...
Saved in:
Published in | Advanced Sensor Research Vol. 4; no. 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2751-1219 2751-1219 |
DOI | 10.1002/adsr.70012 |
Cover
Abstract | Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option.
The use of sensor technologies for the diagnosis of hypertrophic cardiomyopathy (HCM) by identification of volatile organic compounds (VOCs) in breath samples. By combining gas chromatography‐mass spectrometry (GC‐MS) and electronic nose (eNose) platforms, specific VOC patterns associated with HCM are detected and analyzed. Results reveal distinct metabolic signatures, supporting sensor‐based, non‐invasive diagnostic approaches for early and accurate detection of HCM. |
---|---|
AbstractList | Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option.
The use of sensor technologies for the diagnosis of hypertrophic cardiomyopathy (HCM) by identification of volatile organic compounds (VOCs) in breath samples. By combining gas chromatography‐mass spectrometry (GC‐MS) and electronic nose (eNose) platforms, specific VOC patterns associated with HCM are detected and analyzed. Results reveal distinct metabolic signatures, supporting sensor‐based, non‐invasive diagnostic approaches for early and accurate detection of HCM. Abstract Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option. Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option. |
Author | Broza, Yoav Y. Hershkovitz‐Pollak, Yael Habib, Manhal Haick, Hossam Katz, Olga Rakowski, Harry |
Author_xml | – sequence: 1 givenname: Yael orcidid: 0009-0008-6104-5946 surname: Hershkovitz‐Pollak fullname: Hershkovitz‐Pollak, Yael organization: Technion‐Israel Institute of Technology – sequence: 2 givenname: Manhal surname: Habib fullname: Habib, Manhal organization: University Health Network – sequence: 3 givenname: Yoav Y. orcidid: 0000-0003-0185-2312 surname: Broza fullname: Broza, Yoav Y. organization: Technion‐Israel Institute of Technology – sequence: 4 givenname: Olga surname: Katz fullname: Katz, Olga organization: University Health Network – sequence: 5 givenname: Harry surname: Rakowski fullname: Rakowski, Harry organization: University Health Network – sequence: 6 givenname: Hossam orcidid: 0000-0002-2370-4073 surname: Haick fullname: Haick, Hossam email: hhossam@technion.ac.il organization: Technion‐Israel Institute of Technology |
BookMark | eNp9kM1KAzEUhYMoWGs3PsGshanJTaZJlrVVWygK_qxDJpNpU9rJkJTK7HwEn9EncdoRceXqHg7f_RbnAp1WvrIIXRE8JBjDjS5iGHKMCZygHvCMpASIPP2Tz9EgxjVuYSEJZdBD40dffX18zqu9jm5vk6nTy8pHFxNfJrOmtmEXfL1yJpnoUDi_bXytd6smyZvkNtg2XqKzUm-iHfzcPnq7v3udzNLF08N8Ml6kBkYM0pxxLA2lubGlxkIQnUkKQvO2BwGCs3xkGMnAEkYLM4LC8JJbxqXAUpeM9tG88xZer1Ud3FaHRnnt1LHwYal02DmzsQqIkRnFJTfWMsoKwQnDmgnJcQE4g9Z13blM8DEGW_76CFaHLdVhS3XcsoVJB7-7jW3-IdV4-vLc_XwDMxl3Lg |
Cites_doi | 10.1039/C3CS60329F 10.1088/1752-7163/aaba84 10.1016/S1388-9842(01)00128-3 10.2217/nnm.13.85 10.1136/openhrt-2017-000614 10.1007/s11306-019-1559-5 10.1021/nl8030218 10.1159/000525688 10.1093/cvr/cvy147 10.1016/j.jacc.2015.01.019 10.1161/CIRCRESAHA.113.300376 10.1021/acsnano.6b04930 10.1016/j.chroma.2015.07.044 10.1136/gutjnl-2014-308536 10.1161/JAHA.119.014448 10.1016/0140-6736(91)91569-G 10.1021/acs.analchem.6b02927 10.1039/C4RA01422G 10.1093/eurheartj/ehx527 10.1016/j.jacc.2020.08.045 10.1002/adhm.201600588 10.1093/eurheartj/ehu283 10.1038/nnano.2009.235 10.1021/nn202314k 10.1038/sj.bjc.6605810 10.1186/s12889-024-18115-7 10.1021/acssensors.3c00945 10.2147/IJN.S171488 10.1021/acschemneuro.7b00181 10.2217/nnm.12.105 10.18632/oncotarget.5938 10.1021/nl801577u 10.1016/0891-5849(93)90145-K 10.1002/anie.201500153 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Sensor Research published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Advanced Sensor Research published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/adsr.70012 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1219 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_21c9530f7cee434d87140a48970d2052 10_1002_adsr_70012 ADSR70012 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Richard and Edith Strauss Canada Foundation funderid: 119118529RR000 – fundername: Halpern HCM Research Fund |
GroupedDBID | 0R~ 24P AAMMB ACCMX AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ K7- M~E PHGZM PHGZT PIMPY PQGLB AAYXX ARCSS CITATION PUEGO WIN |
ID | FETCH-LOGICAL-c2642-b4709c33bcefa0881a59328a7470282874b6c4152e143dc62dc7f7e479809af43 |
IEDL.DBID | DOA |
ISSN | 2751-1219 |
IngestDate | Wed Aug 27 01:24:41 EDT 2025 Wed Jul 16 16:35:28 EDT 2025 Sat Jul 12 03:16:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2642-b4709c33bcefa0881a59328a7470282874b6c4152e143dc62dc7f7e479809af43 |
ORCID | 0009-0008-6104-5946 0000-0002-2370-4073 0000-0003-0185-2312 |
OpenAccessLink | https://doaj.org/article/21c9530f7cee434d87140a48970d2052 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21c9530f7cee434d87140a48970d2052 crossref_primary_10_1002_adsr_70012 wiley_primary_10_1002_adsr_70012_ADSR70012 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Sensor Research |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2019; 8 2017; 8 2015; 6 2017; 4 2010; 103 2023; 8 2019; 15 2013; 64 2015; 54 2008; 8 2020; 76 2013; 8 1991; 337 2011; 5 2014; 43 1993; 14 2016; 5 2011; 108 2014; 4 2017; 38 2015; 1409 2017; 11 2015; 65 2018; 114 2016; 65 2009; 9 2014; 35 2013; 113 2001; 3 2024; 24 2009; 4 2014; 9 2018; 12 2022; 147 2018; 13 2016; 88 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 Jin Y. (e_1_2_9_22_1) 2013; 64 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 Prinz C. (e_1_2_9_4_1) 2011; 108 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 108 start-page: 209 year: 2011 publication-title: Dtsch. Arztebl. – volume: 35 start-page: 2733 year: 2014 publication-title: Eur. Heart J. – volume: 1409 start-page: 226 year: 2015 publication-title: J. Chromatogr. A – volume: 13 start-page: 4661 year: 2018 publication-title: Int. J. Nanomed. – volume: 15 start-page: 98 year: 2019 publication-title: Metabolomics – volume: 11 start-page: 112 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 3631 year: 2008 publication-title: Nano Lett. – volume: 24 start-page: 616 year: 2024 publication-title: BMC Public Health – volume: 3 start-page: 423 year: 2001 publication-title: Eur. J. Heart Failure – volume: 54 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 2402 year: 2017 publication-title: ACS Chem. Neurosci. – volume: 114 start-page: 1273 year: 2018 publication-title: Cardiovasc. Res. – volume: 65 start-page: 400 year: 2016 publication-title: Gut – volume: 88 start-page: 9821 year: 2016 publication-title: Anal. Chem. – volume: 9 start-page: 1362 year: 2009 publication-title: Nano Lett. – volume: 113 start-page: 709 year: 2013 publication-title: Circ. Res. – volume: 14 start-page: 643 year: 1993 publication-title: Free Radical Biol. Med. – volume: 337 start-page: 933 year: 1991 publication-title: Lancet – volume: 6 year: 2015 publication-title: Oncotarget – volume: 4 year: 2017 publication-title: Open Heart – volume: 5 start-page: 2339 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 76 start-page: 159 year: 2020 publication-title: J. Am. Coll. Cardiol. – volume: 9 start-page: 1035 year: 2014 publication-title: Nanomedicine – volume: 4 start-page: 669 year: 2009 publication-title: Nat. Nanotechnol. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 65 start-page: 1249 year: 2015 publication-title: J. Am. Coll. Cardiol. – volume: 12 year: 2018 publication-title: J. Breath Res. – volume: 64 start-page: 34 year: 2013 publication-title: Huagong Xuebao/CIESC J. – volume: 147 start-page: 389 year: 2022 publication-title: Cardiology – volume: 43 start-page: 1423 year: 2014 publication-title: Chem. Soc. Rev. – volume: 8 year: 2019 publication-title: J. Am. Heart Assoc. – volume: 103 start-page: 542 year: 2010 publication-title: Br. J. Cancer – volume: 8 start-page: 3215 year: 2023 publication-title: ACS Sens. – volume: 38 start-page: 3434 year: 2017 publication-title: Eur. Heart J. – volume: 5 start-page: 6743 year: 2011 publication-title: ACS Nano – volume: 8 start-page: 43 year: 2013 publication-title: Nanomedicine – ident: e_1_2_9_9_1 doi: 10.1039/C3CS60329F – ident: e_1_2_9_16_1 doi: 10.1088/1752-7163/aaba84 – ident: e_1_2_9_8_1 doi: 10.1016/S1388-9842(01)00128-3 – ident: e_1_2_9_10_1 doi: 10.2217/nnm.13.85 – ident: e_1_2_9_21_1 doi: 10.1136/openhrt-2017-000614 – ident: e_1_2_9_17_1 doi: 10.1007/s11306-019-1559-5 – ident: e_1_2_9_34_1 doi: 10.1021/nl8030218 – ident: e_1_2_9_6_1 doi: 10.1159/000525688 – ident: e_1_2_9_24_1 doi: 10.1093/cvr/cvy147 – ident: e_1_2_9_1_1 doi: 10.1016/j.jacc.2015.01.019 – ident: e_1_2_9_23_1 doi: 10.1161/CIRCRESAHA.113.300376 – ident: e_1_2_9_26_1 doi: 10.1021/acsnano.6b04930 – ident: e_1_2_9_31_1 doi: 10.1016/j.chroma.2015.07.044 – ident: e_1_2_9_29_1 doi: 10.1136/gutjnl-2014-308536 – ident: e_1_2_9_19_1 doi: 10.1161/JAHA.119.014448 – ident: e_1_2_9_12_1 doi: 10.1016/0140-6736(91)91569-G – volume: 64 start-page: 34 year: 2013 ident: e_1_2_9_22_1 publication-title: Huagong Xuebao/CIESC J. – ident: e_1_2_9_30_1 doi: 10.1021/acs.analchem.6b02927 – ident: e_1_2_9_15_1 doi: 10.1039/C4RA01422G – ident: e_1_2_9_20_1 doi: 10.1093/eurheartj/ehx527 – ident: e_1_2_9_3_1 doi: 10.1016/j.jacc.2020.08.045 – ident: e_1_2_9_14_1 doi: 10.1002/adhm.201600588 – ident: e_1_2_9_2_1 doi: 10.1093/eurheartj/ehu283 – ident: e_1_2_9_28_1 doi: 10.1038/nnano.2009.235 – ident: e_1_2_9_36_1 doi: 10.1021/nn202314k – ident: e_1_2_9_27_1 doi: 10.1038/sj.bjc.6605810 – ident: e_1_2_9_18_1 doi: 10.1186/s12889-024-18115-7 – ident: e_1_2_9_32_1 doi: 10.1021/acssensors.3c00945 – ident: e_1_2_9_7_1 doi: 10.2147/IJN.S171488 – ident: e_1_2_9_35_1 doi: 10.1021/acschemneuro.7b00181 – volume: 108 start-page: 209 year: 2011 ident: e_1_2_9_4_1 publication-title: Dtsch. Arztebl. – ident: e_1_2_9_5_1 doi: 10.2217/nnm.12.105 – ident: e_1_2_9_13_1 doi: 10.18632/oncotarget.5938 – ident: e_1_2_9_33_1 doi: 10.1021/nl801577u – ident: e_1_2_9_11_1 doi: 10.1016/0891-5849(93)90145-K – ident: e_1_2_9_25_1 doi: 10.1002/anie.201500153 |
SSID | ssj0002891342 |
Score | 2.297179 |
Snippet | Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics... Abstract Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | chromatography hypertrophic cardiomyopathy (HCM) machine learning (ML) noninvasive sensor volatile organic compound (VOC) |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA9jXryIouL8R0BPQl2bJk0LXvbHMQWHqIPdSpImbgfb0U1hNz-Cn9FPYl46N3YRvLUlbeEl773fS977PYQuweqTiGuPShZ6VCjuyUQQeytkrGMVSQ0Fzg-DqD-k9yM2qqGb31qYih9iteEGmuHsNSi4kLPmmjRUZLPyGk5NrQHegtpaaNxA6ONqh4XACZzrnkM4C7zA6uaKn5Q0169veCRH3L8JVJ2n6e2inSVExK1qTvdQTef7qDUo8u_Pr7v8Q0DCOe5WKXKTGS4M7ttgspyXxXQ8UbjjMkzfFgU0G15gucBtAIbjAzTs3b50-t6y_YGnLEohnqTcT1QYSqWNsMYgEMyCrVjYAMAFSpzKSIH_1RbzZCoimeKGa8qT2E-EoeEhqudFro8QjkLrk5jU1nlLykwgVaBDbZJI6NhYpW2gi18RpNOK5SKt-IxJCoJKnaAaqA3SWY0AZmr3oChf0-VCT0mgEhb6hlvvS0OaxcAIKGiccD8jPrMfuXKy_eM_aav7_OSujv8z-ARtE2jO63JpT1F9Xr7rM4sY5vLcLYwfbpC6Zw priority: 102 providerName: Wiley-Blackwell |
Title | Non‐Invasive Diagnosis of Hypertrophic Cardiomyopathy by Breath |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadsr.70012 https://doaj.org/article/21c9530f7cee434d87140a48970d2052 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L15EUXH-GAE9CXVtkjbNcT-ZgmNMB7uVJE3YBNvRTWE3_wT_Rv8Sk3SO7aIXb00pJHyvee975OV7ANxYr48iqjwiQuwRLqknGEdmyEWsYhkJZS84P_aj3og8jMPxRqsvWxNWygOXwNVRIFmIfU2NNyeYpLFVmOMkZtRPkR867-szfyOZeimPzwJM0FqPFNV5Oi_u7CEr2opATqh_m5i6yNI9BAcrSggb5VKOwI7KjkGjn2dfH5_32Tu3BeawXZbETecw17BnksdiUeSzyVTClqsofV3mtrnwEoolbFoiODkBo27nudXzVu0OPGlYCfIEoT6TGAupNDebP-ChIVcxN4TfJUaUiEjaeKsMx0llhFJJNVWEsthnXBN8CipZnqkzACNsYlAolAnWgoQ6EDJQWGkWcRVrs0mr4PoHgmRWqlokpX4xSixQiQOqCpoWnfUXVonavTD2SVb2Sf6yTxXcOmx_mSdptJ-G7un8P2a8APvINul1NbWXoLIo3tSVYQ4LUQO7iAxqYK_Z6Q-GNffLfAMuMsD9 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NToNAEN6YetCL0aix_pLoyQQLy8LCsT82VNvGaJv0RnaXxfYgNLSa9OYj-Iw-iTsL0vRi4g3IwibDzsw3s7PfIHQDVh97VJqEu45JmKAmDxhWt4z70hcel3DAeTD0wjF5mLiTsjYHzsIU_BBVwg00Q9trUHBISDfWrKEsXuR3sG2qLPA2UTNCRR8mT1WKBcMWnG6fg6lrm7ZSzoqgFDfWr2-4JM3cv4lUtavp7qO9EiMazeKnHqAtmR6i5jBLvz-_eukHg4pzo1PUyM0WRpYYoYom82WezaczYbR1ienbKoNuwyuDr4wWIMPpERp370ft0Cz7H5hCwRRsckKtQDgOFzJhyhrYzFVoy2cqAtCREiXcE-CApQI9sfBwLGhCJaGBbwUsIc4xqqVZKk-Q4TnKKblcKu_NiZvYXNjSkUngMeknSmvr6PpXBNG8oLmICkJjHIGgIi2oOmqBdKoRQE2tH2T5a1Su9AjbInAdK6HK_RKHxD5QAjLiB9SKseWqj9xq2f4xT9TsvDzrq9P_DL5CO-Fo0I_6veHjGdrF0KlXF9aeo9oyf5cXCj4s-aVeJD-itb3a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7DgfgiiorzWtAnoa5N06YFX7rNsXkZolaGLyVJE7cH29FNYW_-BH-jv8Qk7Tr2IvjWlpDCybl8Jzn5DgDnyutDD3MTUdcxEWHYpAGB8pVQn_vMo1xdcL4feL0I3QzdYQ1cLe7CFPwQ1Yabsgztr5WBTxLRXJKGkmSaX6pTU-mA64omT2p5PXyJXqNqjwWqMzjdPwdi1zZtaZ0VQylsLidYiUmaun8VqupY090CmyVINMJiVbdBjac7IBxk6c_Xdz_9JKrk3OgURXLjqZEJoyfTyXyWZ5PRmBltXWP6Ps9Uu-G5QedGS0HD0S6IutfP7Z5ZNkAwmcQp0KQIWwFzHMq4INId2MSVcMsnMgXQqRJG1GMqAnOJehLmwYRhgTnCgW8FRCBnD6ylWcr3geE5Miq5lMvwTZErbMps7nAReIT7QpptA5wtRBBPCp6LuGA0hrESVKwF1QAtJZ1qhOKm1h-y_C0uVT2GNgtcxxJYxl_koMRXnIAE-QG2Emi5cpILLds__hOHnadH_XTwn8GnYP2h043v-oPbQ7ABVadeXVh7BNZm-Qc_lvBhRk9KLfkFTM6-yQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Invasive+Diagnosis+of+Hypertrophic+Cardiomyopathy+by+Breath&rft.jtitle=Advanced+Sensor+Research&rft.au=Hershkovitz%E2%80%90Pollak%2C+Yael&rft.au=Habib%2C+Manhal&rft.au=Broza%2C+Yoav+Y.&rft.au=Katz%2C+Olga&rft.date=2025-07-01&rft.issn=2751-1219&rft.eissn=2751-1219&rft.volume=4&rft.issue=7&rft_id=info:doi/10.1002%2Fadsr.70012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adsr_70012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1219&client=summon |