Non‐Invasive Diagnosis of Hypertrophic Cardiomyopathy by Breath

Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Sensor Research Vol. 4; no. 7
Main Authors Hershkovitz‐Pollak, Yael, Habib, Manhal, Broza, Yoav Y., Katz, Olga, Rakowski, Harry, Haick, Hossam
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.07.2025
Subjects
Online AccessGet full text
ISSN2751-1219
2751-1219
DOI10.1002/adsr.70012

Cover

Abstract Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option. The use of sensor technologies for the diagnosis of hypertrophic cardiomyopathy (HCM) by identification of volatile organic compounds (VOCs) in breath samples. By combining gas chromatography‐mass spectrometry (GC‐MS) and electronic nose (eNose) platforms, specific VOC patterns associated with HCM are detected and analyzed. Results reveal distinct metabolic signatures, supporting sensor‐based, non‐invasive diagnostic approaches for early and accurate detection of HCM.
AbstractList Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option. The use of sensor technologies for the diagnosis of hypertrophic cardiomyopathy (HCM) by identification of volatile organic compounds (VOCs) in breath samples. By combining gas chromatography‐mass spectrometry (GC‐MS) and electronic nose (eNose) platforms, specific VOC patterns associated with HCM are detected and analyzed. Results reveal distinct metabolic signatures, supporting sensor‐based, non‐invasive diagnostic approaches for early and accurate detection of HCM.
Abstract Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option.
Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics such as blood pressure, imaging techniques, and genetic testing. Detection of HCM is crucial for proper follow‐up, family screening, early treatment, and risk stratification to prevent sudden cardiac death. Therefore, there is an unmet need for fast and reliable diagnostic methods. This study introduces an innovative approach for the noninvasive, rapid, and accurate diagnosis of HCM by detecting patterns of volatile organic compounds (VOCs) in the patient's breath. Breath from 157 volunteers is collected on sorbent tubes and analyzed using a two‐step approach, gas chromatography‐mass spectrometry (GC‐MS), and a developed nano‐based sensor array. Initially, statistically significant differences in VOC patterns among sampled groups are identified using GC‐MS. Then, the sensor array is used to differentiate between HCM patients and controls, resulting in the testing set, with 92.9% accuracy, 75% specificity, and 94.7% sensitivity. The sensors can further classify subcategories of HCM with >70.3% accuracy for all cases in the testing set. These findings show the applicability of the sensors setup and suggest that VOCs may be a promising noninvasive and real‐time HCM diagnosis option.
Author Broza, Yoav Y.
Hershkovitz‐Pollak, Yael
Habib, Manhal
Haick, Hossam
Katz, Olga
Rakowski, Harry
Author_xml – sequence: 1
  givenname: Yael
  orcidid: 0009-0008-6104-5946
  surname: Hershkovitz‐Pollak
  fullname: Hershkovitz‐Pollak, Yael
  organization: Technion‐Israel Institute of Technology
– sequence: 2
  givenname: Manhal
  surname: Habib
  fullname: Habib, Manhal
  organization: University Health Network
– sequence: 3
  givenname: Yoav Y.
  orcidid: 0000-0003-0185-2312
  surname: Broza
  fullname: Broza, Yoav Y.
  organization: Technion‐Israel Institute of Technology
– sequence: 4
  givenname: Olga
  surname: Katz
  fullname: Katz, Olga
  organization: University Health Network
– sequence: 5
  givenname: Harry
  surname: Rakowski
  fullname: Rakowski, Harry
  organization: University Health Network
– sequence: 6
  givenname: Hossam
  orcidid: 0000-0002-2370-4073
  surname: Haick
  fullname: Haick, Hossam
  email: hhossam@technion.ac.il
  organization: Technion‐Israel Institute of Technology
BookMark eNp9kM1KAzEUhYMoWGs3PsGshanJTaZJlrVVWygK_qxDJpNpU9rJkJTK7HwEn9EncdoRceXqHg7f_RbnAp1WvrIIXRE8JBjDjS5iGHKMCZygHvCMpASIPP2Tz9EgxjVuYSEJZdBD40dffX18zqu9jm5vk6nTy8pHFxNfJrOmtmEXfL1yJpnoUDi_bXytd6smyZvkNtg2XqKzUm-iHfzcPnq7v3udzNLF08N8Ml6kBkYM0pxxLA2lubGlxkIQnUkKQvO2BwGCs3xkGMnAEkYLM4LC8JJbxqXAUpeM9tG88xZer1Ud3FaHRnnt1LHwYal02DmzsQqIkRnFJTfWMsoKwQnDmgnJcQE4g9Z13blM8DEGW_76CFaHLdVhS3XcsoVJB7-7jW3-IdV4-vLc_XwDMxl3Lg
Cites_doi 10.1039/C3CS60329F
10.1088/1752-7163/aaba84
10.1016/S1388-9842(01)00128-3
10.2217/nnm.13.85
10.1136/openhrt-2017-000614
10.1007/s11306-019-1559-5
10.1021/nl8030218
10.1159/000525688
10.1093/cvr/cvy147
10.1016/j.jacc.2015.01.019
10.1161/CIRCRESAHA.113.300376
10.1021/acsnano.6b04930
10.1016/j.chroma.2015.07.044
10.1136/gutjnl-2014-308536
10.1161/JAHA.119.014448
10.1016/0140-6736(91)91569-G
10.1021/acs.analchem.6b02927
10.1039/C4RA01422G
10.1093/eurheartj/ehx527
10.1016/j.jacc.2020.08.045
10.1002/adhm.201600588
10.1093/eurheartj/ehu283
10.1038/nnano.2009.235
10.1021/nn202314k
10.1038/sj.bjc.6605810
10.1186/s12889-024-18115-7
10.1021/acssensors.3c00945
10.2147/IJN.S171488
10.1021/acschemneuro.7b00181
10.2217/nnm.12.105
10.18632/oncotarget.5938
10.1021/nl801577u
10.1016/0891-5849(93)90145-K
10.1002/anie.201500153
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Sensor Research published by Wiley‐VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Advanced Sensor Research published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/adsr.70012
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1219
EndPage n/a
ExternalDocumentID oai_doaj_org_article_21c9530f7cee434d87140a48970d2052
10_1002_adsr_70012
ADSR70012
Genre researchArticle
GrantInformation_xml – fundername: Richard and Edith Strauss Canada Foundation
  funderid: 119118529RR000
– fundername: Halpern HCM Research Fund
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
K7-
M~E
PHGZM
PHGZT
PIMPY
PQGLB
AAYXX
ARCSS
CITATION
PUEGO
WIN
ID FETCH-LOGICAL-c2642-b4709c33bcefa0881a59328a7470282874b6c4152e143dc62dc7f7e479809af43
IEDL.DBID DOA
ISSN 2751-1219
IngestDate Wed Aug 27 01:24:41 EDT 2025
Wed Jul 16 16:35:28 EDT 2025
Sat Jul 12 03:16:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2642-b4709c33bcefa0881a59328a7470282874b6c4152e143dc62dc7f7e479809af43
ORCID 0009-0008-6104-5946
0000-0002-2370-4073
0000-0003-0185-2312
OpenAccessLink https://doaj.org/article/21c9530f7cee434d87140a48970d2052
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_21c9530f7cee434d87140a48970d2052
crossref_primary_10_1002_adsr_70012
wiley_primary_10_1002_adsr_70012_ADSR70012
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Advanced Sensor Research
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2019; 8
2017; 8
2015; 6
2017; 4
2010; 103
2023; 8
2019; 15
2013; 64
2015; 54
2008; 8
2020; 76
2013; 8
1991; 337
2011; 5
2014; 43
1993; 14
2016; 5
2011; 108
2014; 4
2017; 38
2015; 1409
2017; 11
2015; 65
2018; 114
2016; 65
2009; 9
2014; 35
2013; 113
2001; 3
2024; 24
2009; 4
2014; 9
2018; 12
2022; 147
2018; 13
2016; 88
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
Jin Y. (e_1_2_9_22_1) 2013; 64
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
Prinz C. (e_1_2_9_4_1) 2011; 108
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 108
  start-page: 209
  year: 2011
  publication-title: Dtsch. Arztebl.
– volume: 35
  start-page: 2733
  year: 2014
  publication-title: Eur. Heart J.
– volume: 1409
  start-page: 226
  year: 2015
  publication-title: J. Chromatogr. A
– volume: 13
  start-page: 4661
  year: 2018
  publication-title: Int. J. Nanomed.
– volume: 15
  start-page: 98
  year: 2019
  publication-title: Metabolomics
– volume: 11
  start-page: 112
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 3631
  year: 2008
  publication-title: Nano Lett.
– volume: 24
  start-page: 616
  year: 2024
  publication-title: BMC Public Health
– volume: 3
  start-page: 423
  year: 2001
  publication-title: Eur. J. Heart Failure
– volume: 54
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 2402
  year: 2017
  publication-title: ACS Chem. Neurosci.
– volume: 114
  start-page: 1273
  year: 2018
  publication-title: Cardiovasc. Res.
– volume: 65
  start-page: 400
  year: 2016
  publication-title: Gut
– volume: 88
  start-page: 9821
  year: 2016
  publication-title: Anal. Chem.
– volume: 9
  start-page: 1362
  year: 2009
  publication-title: Nano Lett.
– volume: 113
  start-page: 709
  year: 2013
  publication-title: Circ. Res.
– volume: 14
  start-page: 643
  year: 1993
  publication-title: Free Radical Biol. Med.
– volume: 337
  start-page: 933
  year: 1991
  publication-title: Lancet
– volume: 6
  year: 2015
  publication-title: Oncotarget
– volume: 4
  year: 2017
  publication-title: Open Heart
– volume: 5
  start-page: 2339
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 76
  start-page: 159
  year: 2020
  publication-title: J. Am. Coll. Cardiol.
– volume: 9
  start-page: 1035
  year: 2014
  publication-title: Nanomedicine
– volume: 4
  start-page: 669
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 65
  start-page: 1249
  year: 2015
  publication-title: J. Am. Coll. Cardiol.
– volume: 12
  year: 2018
  publication-title: J. Breath Res.
– volume: 64
  start-page: 34
  year: 2013
  publication-title: Huagong Xuebao/CIESC J.
– volume: 147
  start-page: 389
  year: 2022
  publication-title: Cardiology
– volume: 43
  start-page: 1423
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2019
  publication-title: J. Am. Heart Assoc.
– volume: 103
  start-page: 542
  year: 2010
  publication-title: Br. J. Cancer
– volume: 8
  start-page: 3215
  year: 2023
  publication-title: ACS Sens.
– volume: 38
  start-page: 3434
  year: 2017
  publication-title: Eur. Heart J.
– volume: 5
  start-page: 6743
  year: 2011
  publication-title: ACS Nano
– volume: 8
  start-page: 43
  year: 2013
  publication-title: Nanomedicine
– ident: e_1_2_9_9_1
  doi: 10.1039/C3CS60329F
– ident: e_1_2_9_16_1
  doi: 10.1088/1752-7163/aaba84
– ident: e_1_2_9_8_1
  doi: 10.1016/S1388-9842(01)00128-3
– ident: e_1_2_9_10_1
  doi: 10.2217/nnm.13.85
– ident: e_1_2_9_21_1
  doi: 10.1136/openhrt-2017-000614
– ident: e_1_2_9_17_1
  doi: 10.1007/s11306-019-1559-5
– ident: e_1_2_9_34_1
  doi: 10.1021/nl8030218
– ident: e_1_2_9_6_1
  doi: 10.1159/000525688
– ident: e_1_2_9_24_1
  doi: 10.1093/cvr/cvy147
– ident: e_1_2_9_1_1
  doi: 10.1016/j.jacc.2015.01.019
– ident: e_1_2_9_23_1
  doi: 10.1161/CIRCRESAHA.113.300376
– ident: e_1_2_9_26_1
  doi: 10.1021/acsnano.6b04930
– ident: e_1_2_9_31_1
  doi: 10.1016/j.chroma.2015.07.044
– ident: e_1_2_9_29_1
  doi: 10.1136/gutjnl-2014-308536
– ident: e_1_2_9_19_1
  doi: 10.1161/JAHA.119.014448
– ident: e_1_2_9_12_1
  doi: 10.1016/0140-6736(91)91569-G
– volume: 64
  start-page: 34
  year: 2013
  ident: e_1_2_9_22_1
  publication-title: Huagong Xuebao/CIESC J.
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.analchem.6b02927
– ident: e_1_2_9_15_1
  doi: 10.1039/C4RA01422G
– ident: e_1_2_9_20_1
  doi: 10.1093/eurheartj/ehx527
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jacc.2020.08.045
– ident: e_1_2_9_14_1
  doi: 10.1002/adhm.201600588
– ident: e_1_2_9_2_1
  doi: 10.1093/eurheartj/ehu283
– ident: e_1_2_9_28_1
  doi: 10.1038/nnano.2009.235
– ident: e_1_2_9_36_1
  doi: 10.1021/nn202314k
– ident: e_1_2_9_27_1
  doi: 10.1038/sj.bjc.6605810
– ident: e_1_2_9_18_1
  doi: 10.1186/s12889-024-18115-7
– ident: e_1_2_9_32_1
  doi: 10.1021/acssensors.3c00945
– ident: e_1_2_9_7_1
  doi: 10.2147/IJN.S171488
– ident: e_1_2_9_35_1
  doi: 10.1021/acschemneuro.7b00181
– volume: 108
  start-page: 209
  year: 2011
  ident: e_1_2_9_4_1
  publication-title: Dtsch. Arztebl.
– ident: e_1_2_9_5_1
  doi: 10.2217/nnm.12.105
– ident: e_1_2_9_13_1
  doi: 10.18632/oncotarget.5938
– ident: e_1_2_9_33_1
  doi: 10.1021/nl801577u
– ident: e_1_2_9_11_1
  doi: 10.1016/0891-5849(93)90145-K
– ident: e_1_2_9_25_1
  doi: 10.1002/anie.201500153
SSID ssj0002891342
Score 2.297179
Snippet Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on physiological metrics...
Abstract Undetected in many patients, hypertrophic cardiomyopathy (HCM) is a widespread genetic heart disorder. Conventional diagnosis is based on...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms chromatography
hypertrophic cardiomyopathy (HCM)
machine learning (ML)
noninvasive
sensor
volatile organic compound (VOC)
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA9jXryIouL8R0BPQl2bJk0LXvbHMQWHqIPdSpImbgfb0U1hNz-Cn9FPYl46N3YRvLUlbeEl773fS977PYQuweqTiGuPShZ6VCjuyUQQeytkrGMVSQ0Fzg-DqD-k9yM2qqGb31qYih9iteEGmuHsNSi4kLPmmjRUZLPyGk5NrQHegtpaaNxA6ONqh4XACZzrnkM4C7zA6uaKn5Q0169veCRH3L8JVJ2n6e2inSVExK1qTvdQTef7qDUo8u_Pr7v8Q0DCOe5WKXKTGS4M7ttgspyXxXQ8UbjjMkzfFgU0G15gucBtAIbjAzTs3b50-t6y_YGnLEohnqTcT1QYSqWNsMYgEMyCrVjYAMAFSpzKSIH_1RbzZCoimeKGa8qT2E-EoeEhqudFro8QjkLrk5jU1nlLykwgVaBDbZJI6NhYpW2gi18RpNOK5SKt-IxJCoJKnaAaqA3SWY0AZmr3oChf0-VCT0mgEhb6hlvvS0OaxcAIKGiccD8jPrMfuXKy_eM_aav7_OSujv8z-ARtE2jO63JpT1F9Xr7rM4sY5vLcLYwfbpC6Zw
  priority: 102
  providerName: Wiley-Blackwell
Title Non‐Invasive Diagnosis of Hypertrophic Cardiomyopathy by Breath
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadsr.70012
https://doaj.org/article/21c9530f7cee434d87140a48970d2052
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L15EUXH-GAE9CXVtkjbNcT-ZgmNMB7uVJE3YBNvRTWE3_wT_Rv8Sk3SO7aIXb00pJHyvee975OV7ANxYr48iqjwiQuwRLqknGEdmyEWsYhkJZS84P_aj3og8jMPxRqsvWxNWygOXwNVRIFmIfU2NNyeYpLFVmOMkZtRPkR867-szfyOZeimPzwJM0FqPFNV5Oi_u7CEr2opATqh_m5i6yNI9BAcrSggb5VKOwI7KjkGjn2dfH5_32Tu3BeawXZbETecw17BnksdiUeSzyVTClqsofV3mtrnwEoolbFoiODkBo27nudXzVu0OPGlYCfIEoT6TGAupNDebP-ChIVcxN4TfJUaUiEjaeKsMx0llhFJJNVWEsthnXBN8CipZnqkzACNsYlAolAnWgoQ6EDJQWGkWcRVrs0mr4PoHgmRWqlokpX4xSixQiQOqCpoWnfUXVonavTD2SVb2Sf6yTxXcOmx_mSdptJ-G7un8P2a8APvINul1NbWXoLIo3tSVYQ4LUQO7iAxqYK_Z6Q-GNffLfAMuMsD9
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NToNAEN6YetCL0aix_pLoyQQLy8LCsT82VNvGaJv0RnaXxfYgNLSa9OYj-Iw-iTsL0vRi4g3IwibDzsw3s7PfIHQDVh97VJqEu45JmKAmDxhWt4z70hcel3DAeTD0wjF5mLiTsjYHzsIU_BBVwg00Q9trUHBISDfWrKEsXuR3sG2qLPA2UTNCRR8mT1WKBcMWnG6fg6lrm7ZSzoqgFDfWr2-4JM3cv4lUtavp7qO9EiMazeKnHqAtmR6i5jBLvz-_eukHg4pzo1PUyM0WRpYYoYom82WezaczYbR1ienbKoNuwyuDr4wWIMPpERp370ft0Cz7H5hCwRRsckKtQDgOFzJhyhrYzFVoy2cqAtCREiXcE-CApQI9sfBwLGhCJaGBbwUsIc4xqqVZKk-Q4TnKKblcKu_NiZvYXNjSkUngMeknSmvr6PpXBNG8oLmICkJjHIGgIi2oOmqBdKoRQE2tH2T5a1Su9AjbInAdK6HK_RKHxD5QAjLiB9SKseWqj9xq2f4xT9TsvDzrq9P_DL5CO-Fo0I_6veHjGdrF0KlXF9aeo9oyf5cXCj4s-aVeJD-itb3a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7DgfgiiorzWtAnoa5N06YFX7rNsXkZolaGLyVJE7cH29FNYW_-BH-jv8Qk7Tr2IvjWlpDCybl8Jzn5DgDnyutDD3MTUdcxEWHYpAGB8pVQn_vMo1xdcL4feL0I3QzdYQ1cLe7CFPwQ1Yabsgztr5WBTxLRXJKGkmSaX6pTU-mA64omT2p5PXyJXqNqjwWqMzjdPwdi1zZtaZ0VQylsLidYiUmaun8VqupY090CmyVINMJiVbdBjac7IBxk6c_Xdz_9JKrk3OgURXLjqZEJoyfTyXyWZ5PRmBltXWP6Ps9Uu-G5QedGS0HD0S6IutfP7Z5ZNkAwmcQp0KQIWwFzHMq4INId2MSVcMsnMgXQqRJG1GMqAnOJehLmwYRhgTnCgW8FRCBnD6ylWcr3geE5Miq5lMvwTZErbMps7nAReIT7QpptA5wtRBBPCp6LuGA0hrESVKwF1QAtJZ1qhOKm1h-y_C0uVT2GNgtcxxJYxl_koMRXnIAE-QG2Emi5cpILLds__hOHnadH_XTwn8GnYP2h043v-oPbQ7ABVadeXVh7BNZm-Qc_lvBhRk9KLfkFTM6-yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Invasive+Diagnosis+of+Hypertrophic+Cardiomyopathy+by+Breath&rft.jtitle=Advanced+Sensor+Research&rft.au=Hershkovitz%E2%80%90Pollak%2C+Yael&rft.au=Habib%2C+Manhal&rft.au=Broza%2C+Yoav+Y.&rft.au=Katz%2C+Olga&rft.date=2025-07-01&rft.issn=2751-1219&rft.eissn=2751-1219&rft.volume=4&rft.issue=7&rft_id=info:doi/10.1002%2Fadsr.70012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adsr_70012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1219&client=summon