Spontaneous curvature effects of the Helfrich flow: singularities and convergence

While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural generalization is not yet well-understood. Past results for the gradient flow of a locally area- and volume-constrained Willmore flow indicate the exis...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 50; no. 3; pp. 441 - 476
Main Author Schlierf, Manuel
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 04.03.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0360-5302
1532-4133
DOI10.1080/03605302.2025.2457047

Cover

Abstract While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural generalization is not yet well-understood. Past results for the gradient flow of a locally area- and volume-constrained Willmore flow indicate the existence of finite-time singularities which correspond to the scaling-behavior of the underlying energy. However, for a non-vanishing spontaneous curvature, the scaling behavior is not quite as conclusive. Indeed, in this article, we find that a negative spontaneous curvature corresponds to finite-time singularities of the locally constrained Helfrich flow if the initial surface is close to a round sphere in terms of its Willmore energy. Conversely however, in the case of a positive spontaneous curvature, we find a positive result in terms of the convergence behavior: The locally area-constrained Helfrich flow starting from a spherical immersion with suitably small Helfrich energy exists globally and converges to a Helfrich immersion after reparametrization. Moreover, this energetic smallness assumption is given by an explicit energy threshold depending on the spontaneous curvature and the local area constraint of the energy.
AbstractList While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural generalization is not yet well-understood. Past results for the gradient flow of a locally area- and volume-constrained Willmore flow indicate the existence of finite-time singularities which correspond to the scaling-behavior of the underlying energy. However, for a non-vanishing spontaneous curvature, the scaling behavior is not quite as conclusive. Indeed, in this article, we find that a negative spontaneous curvature corresponds to finite-time singularities of the locally constrained Helfrich flow if the initial surface is close to a round sphere in terms of its Willmore energy. Conversely however, in the case of a positive spontaneous curvature, we find a positive result in terms of the convergence behavior: The locally area-constrained Helfrich flow starting from a spherical immersion with suitably small Helfrich energy exists globally and converges to a Helfrich immersion after reparametrization. Moreover, this energetic smallness assumption is given by an explicit energy threshold depending on the spontaneous curvature and the local area constraint of the energy.
Author Schlierf, Manuel
Author_xml – sequence: 1
  givenname: Manuel
  surname: Schlierf
  fullname: Schlierf, Manuel
  organization: Institute of Applied Analysis, Ulm University
BookMark eNp9kE1LAzEQhoNUsK3-BCHgeWs-NtmuJ6WoFQoi6jlk00m7ZZvUJNvSf-8urVdPM4fnfYd5RmjgvAOEbimZUDIl94RLIjhhE0aYmLBcFCQvLtCQCs6ynHI-QMOeyXroCo1i3BBCp6zMh-jjc-dd0g58G7Fpw16nNgAGa8GkiL3FaQ14Do0NtVlj2_jDA461W7WNDnWqIWLtlth4t4ewAmfgGl1a3US4Oc8x-n55_prNs8X769vsaZEZJnnKQHNS6Slly6rURpQmJzqXhc0tJSCm3W4ol0wbJkxpSltxLU1lpbBSUis4H6O7U-8u-J8WYlIb3wbXnVScFlR075Wko8SJMsHHGMCqXai3OhwVJaq3p_7sqd6eOtvrco-nXO2sD1t98KFZqqSPjQ82aGfq_sy_Fb9RfHjJ
Cites_doi 10.1007/s00526-022-02381-7
10.1051/m2an/2021014
10.4310/CAG.2012.v20.n2.a4
10.4310/jdg/1214438991
10.4310/CAG.2002.v10.n2.a4
10.4310/CAG.2016.v24.n4.a7
10.1515/znc-1973-11-1209
10.1007/s00205-020-01497-4
10.4007/annals.2004.160.315
10.1515/crelle-2012-0106
10.1002/cpa.3160260305
10.1016/s0022-5193(70)80032-7
10.1007/s00205-025-02087-y
10.1515/crll.1998.099
10.1007/s00208-013-0944-z
10.1007/s11401-012-0741-0
10.1007/s10455-020-09718-5
10.1007/BF02572424
10.1007/BF01399507
10.2422/2036-2145.201010_
10.4310/jdg/1121540340
10.1007/s00526-020-01759-9
10.1215/00127094-2009-014
10.1155/S1073792803208072
10.4310/jdg/1090348128
10.4310/CAG.1993.v1.n2.a4
10.1080/03605302.2024.2302377
10.1007/s00028-019-00483-y
10.1112/jlms.12976
10.4171/ifb/411
10.1137/16M1065379
10.1016/j.na.2023.113220
10.1007/978-88-7642-427-4_1
ContentType Journal Article
Copyright 2025 The Author(s). Published with license by Taylor & Francis Group, LLC 2025
2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC 2025
– notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2025.2457047
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 476
ExternalDocumentID 10_1080_03605302_2025_2457047
2457047
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
0YH
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
N9A
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c263t-ea30ba812db9ac59c40a467f4f10e58a46c1362ac25c9c9fb3a6cbf65f661f533
IEDL.DBID 0YH
ISSN 0360-5302
IngestDate Wed Aug 13 10:06:49 EDT 2025
Mon Sep 08 01:36:59 EDT 2025
Wed Sep 10 04:24:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-ea30ba812db9ac59c40a467f4f10e58a46c1362ac25c9c9fb3a6cbf65f661f533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/03605302.2025.2457047
PQID 3171529490
PQPubID 186205
PageCount 36
ParticipantIDs proquest_journals_3171529490
crossref_primary_10_1080_03605302_2025_2457047
informaworld_taylorfrancis_310_1080_03605302_2025_2457047
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
e_1_3_3_18_1
Blatt S. (e_1_3_3_22_1) 2009; 29
e_1_3_3_39_1
e_1_3_3_19_1
Kohsaka Y. (e_1_3_3_26_1) 2006; 19
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
Hopf H. (e_1_3_3_40_1) 1983
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
Simonett G. (e_1_3_3_17_1) 2001; 14
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
References_xml – ident: e_1_3_3_36_1
– ident: e_1_3_3_14_1
  doi: 10.1007/s00526-022-02381-7
– ident: e_1_3_3_28_1
  doi: 10.1051/m2an/2021014
– ident: e_1_3_3_12_1
  doi: 10.4310/CAG.2012.v20.n2.a4
– ident: e_1_3_3_37_1
  doi: 10.4310/jdg/1214438991
– ident: e_1_3_3_18_1
  doi: 10.4310/CAG.2002.v10.n2.a4
– ident: e_1_3_3_16_1
  doi: 10.4310/CAG.2016.v24.n4.a7
– ident: e_1_3_3_3_1
  doi: 10.1515/znc-1973-11-1209
– ident: e_1_3_3_13_1
  doi: 10.1007/s00205-020-01497-4
– ident: e_1_3_3_21_1
  doi: 10.4007/annals.2004.160.315
– ident: e_1_3_3_7_1
  doi: 10.1515/crelle-2012-0106
– ident: e_1_3_3_19_1
  doi: 10.1002/cpa.3160260305
– ident: e_1_3_3_2_1
  doi: 10.1016/s0022-5193(70)80032-7
– ident: e_1_3_3_33_1
  doi: 10.1007/s00205-025-02087-y
– ident: e_1_3_3_34_1
  doi: 10.1515/crll.1998.099
– ident: e_1_3_3_31_1
  doi: 10.1007/s00208-013-0944-z
– volume: 29
  start-page: 407
  issue: 4
  year: 2009
  ident: e_1_3_3_22_1
  article-title: A singular example for the Willmore flow
  publication-title: Analysis (Munich)
– ident: e_1_3_3_35_1
  doi: 10.1007/s11401-012-0741-0
– volume-title: Lecture Notes in Mathematics
  year: 1983
  ident: e_1_3_3_40_1
– ident: e_1_3_3_10_1
  doi: 10.1007/s10455-020-09718-5
– ident: e_1_3_3_9_1
  doi: 10.1007/BF02572424
– volume: 14
  start-page: 1005
  issue: 8
  year: 2001
  ident: e_1_3_3_17_1
  article-title: The Willmore flow near spheres
  publication-title: Differ. Integral Equ
– ident: e_1_3_3_15_1
  doi: 10.1007/BF01399507
– ident: e_1_3_3_32_1
  doi: 10.2422/2036-2145.201010_
– ident: e_1_3_3_29_1
  doi: 10.4310/jdg/1121540340
– ident: e_1_3_3_11_1
  doi: 10.1007/s00526-020-01759-9
– volume: 19
  start-page: 121
  issue: 2
  year: 2006
  ident: e_1_3_3_26_1
  article-title: On the existence of solutions of the Helfrich flow and its center manifold near spheres
  publication-title: Differ. Integral Equ
– ident: e_1_3_3_38_1
  doi: 10.1215/00127094-2009-014
– ident: e_1_3_3_6_1
  doi: 10.1155/S1073792803208072
– ident: e_1_3_3_20_1
  doi: 10.4310/jdg/1090348128
– ident: e_1_3_3_5_1
  doi: 10.4310/CAG.1993.v1.n2.a4
– ident: e_1_3_3_24_1
  doi: 10.1080/03605302.2024.2302377
– ident: e_1_3_3_4_1
– ident: e_1_3_3_25_1
  doi: 10.1007/s00028-019-00483-y
– ident: e_1_3_3_8_1
  doi: 10.1112/jlms.12976
– ident: e_1_3_3_39_1
  doi: 10.4171/ifb/411
– ident: e_1_3_3_27_1
  doi: 10.1137/16M1065379
– ident: e_1_3_3_23_1
  doi: 10.1016/j.na.2023.113220
– ident: e_1_3_3_30_1
  doi: 10.1007/978-88-7642-427-4_1
SSID ssj0018294
Score 2.4049988
Snippet While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 441
SubjectTerms 35K41 (secondary)
49Q10 (primary)
Canham-Helfrich model
Constraints
Convergence
Curvature
geometric flows
Gradient flow
Helfrich flow
Singularities
Submerging
Willmore energy
Willmore surfaces
Łojasiewicz-Simon inequality
Title Spontaneous curvature effects of the Helfrich flow: singularities and convergence
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2025.2457047
https://www.proquest.com/docview/3171529490
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA66XfQgfuJ0jhy8ZqZtmjbehh8UYYLo8ONSkizBg7Rj6_Dv-yZth0PEg7cWkkCfNO9H8uR5ETpPpJCOXkEkTD5hScSICjQj6RRyB6M5s16nYHzPswm7e4lbNuGioVW6HNrWQhHeVrvFLdWiZcRdgNGlrtgNZHdhPAxZnFCWbKJuCIGiY_XR12x1kJCGolGQosT1aS_x_DbMmntaEy_9Yay9B7rdRTtN6IhH9VzvoQ1T7KPt8Up3dXGAHh5nZQEfZiCfx3rp9luXc4Mb0gYuLYbGGFyNqw70ju1H-XmJ3W6BI6N6bVUMqGBPRfe3Ms0hmtzePF1lpCmaQHTIo4oYGVElwW1PlZA6FppRCcbQMhtQE6fwrANwWlKHsRZaWBVJrpXlsQVPbSH4O0KdoizMMcJyqmRsrNDWKpZwnmoIVwzjSvIAmpoeGrZY5bNaGyMPWsnRBtzcgZs34PaQ-I5oXvlNCVtXEMmjP_r2W_jzZpm5LgnEH4IJevKPoU_Rlnv1zDLWR51qvjRnEGpUauB_pgHqjrLrt-cvklLLJQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86D-pB_MTp1By8dvYjSRtvIo6q20DcYJ5KkiV4kHbMDv99X9J2bIh48FZoXqC_JO-rL7-H0HUsuLDlFZ6AxfdIHBFPBop4yRRiB60YMY6nYDBk6Zg8Tehk5S6MLau0MbSpiCKcrraH2yajm5K4G9C6vu12A-FdSLshobFP4k20RROIJmBP-2_p8k9CEvKaQsr3rExzi-e3adbs0xp76Q9t7UxQbx_t1b4jvqsW-wBt6PwQ7Q6WxKufR-jldVbk8GUaAnqsFjbhuphrXFdt4MJgGIzB1tj2QO_YfBRft9imC2w1qiNXxQALdrXo7lqmPkbj3sPoPvXqrgmeCllUelpEvhRgt6eSC0W5Ir4AbWiICXxNE3hWAVgtoUKquOJGRoIpaRg1YKoNeH8nqJUXuT5FWEyloNpwZYwkMWOJAn9FEyYFC2CobqNug1U2q8gxsqDhHK3BzSy4WQ1uG_FVRLPSZSVM1UIki_6Q7TTwZ_U5syIxOCCccP_sH1Nfoe10NOhn_cfh8znasa9cmRnpoFY5X-gL8DtKeek21jczlszv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuzidmgdfW3tJ08Y3Uce8bCg68K0kWYKgtGNrEfz1nqTtcIr44FuhSdrmJOd8Sb98B6GTmDNu6BUOB-M7JA6JI3xJnGQEawclKdFWp6A_oL0huXmOGjbhtKZVmjW0roQirK82k3s80g0j7hScrmeS3cDqLojcgESxR-JFtEQBnhhWX-gNZj8SkoDVClKeY-o0h3h-a2YuPM2Jl_5w1jYCddeRaN69Ip68umUhXPnxTdbxXx-3gdZqfIrPqwG1iRZUtoVW-zNx1-k2engc5xk8QOXlFMvSbOqWE4VrZgjONYbCGOKZSUH0gvVb_n6GzZaEYbxaAVcMb4ct390e_VQ7aNi9erroOXVmBkcGNCwcxUNPcMAGI8G4jJgkHgePq4n2PRUlcC19iIxcBpFkkmkRciqFppEGOKABYe6iVpZnag9hPhI8UppJrQWJKU0kYCJFqODUh6KqjdzGIOm4EuBI_UbXtO6r1PRVWvdVG7GvZksLu_OhqzQlafhH3U5j47Sey6ZKDCCHEebt_6PpY7R8f9lN764HtwdoxdyxTDbSQa1iUqpDgDaFOLKD9xMzjeuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+curvature+effects+of+the+Helfrich+flow%3A+singularities+and+convergence&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Schlierf%2C+Manuel&rft.date=2025-03-04&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=50&rft.issue=3&rft.spage=441&rft.epage=476&rft_id=info:doi/10.1080%2F03605302.2025.2457047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03605302_2025_2457047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon