Spontaneous curvature effects of the Helfrich flow: singularities and convergence
While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural generalization is not yet well-understood. Past results for the gradient flow of a locally area- and volume-constrained Willmore flow indicate the exis...
Saved in:
Published in | Communications in partial differential equations Vol. 50; no. 3; pp. 441 - 476 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
04.03.2025
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5302 1532-4133 |
DOI | 10.1080/03605302.2025.2457047 |
Cover
Abstract | While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural generalization is not yet well-understood. Past results for the gradient flow of a locally area- and volume-constrained Willmore flow indicate the existence of finite-time singularities which correspond to the scaling-behavior of the underlying energy. However, for a non-vanishing spontaneous curvature, the scaling behavior is not quite as conclusive. Indeed, in this article, we find that a negative spontaneous curvature corresponds to finite-time singularities of the locally constrained Helfrich flow if the initial surface is close to a round sphere in terms of its Willmore energy. Conversely however, in the case of a positive spontaneous curvature, we find a positive result in terms of the convergence behavior: The locally area-constrained Helfrich flow starting from a spherical immersion with suitably small Helfrich energy exists globally and converges to a Helfrich immersion after reparametrization. Moreover, this energetic smallness assumption is given by an explicit energy threshold depending on the spontaneous curvature and the local area constraint of the energy. |
---|---|
AbstractList | While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural generalization is not yet well-understood. Past results for the gradient flow of a locally area- and volume-constrained Willmore flow indicate the existence of finite-time singularities which correspond to the scaling-behavior of the underlying energy. However, for a non-vanishing spontaneous curvature, the scaling behavior is not quite as conclusive. Indeed, in this article, we find that a negative spontaneous curvature corresponds to finite-time singularities of the locally constrained Helfrich flow if the initial surface is close to a round sphere in terms of its Willmore energy. Conversely however, in the case of a positive spontaneous curvature, we find a positive result in terms of the convergence behavior: The locally area-constrained Helfrich flow starting from a spherical immersion with suitably small Helfrich energy exists globally and converges to a Helfrich immersion after reparametrization. Moreover, this energetic smallness assumption is given by an explicit energy threshold depending on the spontaneous curvature and the local area constraint of the energy. |
Author | Schlierf, Manuel |
Author_xml | – sequence: 1 givenname: Manuel surname: Schlierf fullname: Schlierf, Manuel organization: Institute of Applied Analysis, Ulm University |
BookMark | eNp9kE1LAzEQhoNUsK3-BCHgeWs-NtmuJ6WoFQoi6jlk00m7ZZvUJNvSf-8urVdPM4fnfYd5RmjgvAOEbimZUDIl94RLIjhhE0aYmLBcFCQvLtCQCs6ynHI-QMOeyXroCo1i3BBCp6zMh-jjc-dd0g58G7Fpw16nNgAGa8GkiL3FaQ14Do0NtVlj2_jDA461W7WNDnWqIWLtlth4t4ewAmfgGl1a3US4Oc8x-n55_prNs8X769vsaZEZJnnKQHNS6Slly6rURpQmJzqXhc0tJSCm3W4ol0wbJkxpSltxLU1lpbBSUis4H6O7U-8u-J8WYlIb3wbXnVScFlR075Wko8SJMsHHGMCqXai3OhwVJaq3p_7sqd6eOtvrco-nXO2sD1t98KFZqqSPjQ82aGfq_sy_Fb9RfHjJ |
Cites_doi | 10.1007/s00526-022-02381-7 10.1051/m2an/2021014 10.4310/CAG.2012.v20.n2.a4 10.4310/jdg/1214438991 10.4310/CAG.2002.v10.n2.a4 10.4310/CAG.2016.v24.n4.a7 10.1515/znc-1973-11-1209 10.1007/s00205-020-01497-4 10.4007/annals.2004.160.315 10.1515/crelle-2012-0106 10.1002/cpa.3160260305 10.1016/s0022-5193(70)80032-7 10.1007/s00205-025-02087-y 10.1515/crll.1998.099 10.1007/s00208-013-0944-z 10.1007/s11401-012-0741-0 10.1007/s10455-020-09718-5 10.1007/BF02572424 10.1007/BF01399507 10.2422/2036-2145.201010_ 10.4310/jdg/1121540340 10.1007/s00526-020-01759-9 10.1215/00127094-2009-014 10.1155/S1073792803208072 10.4310/jdg/1090348128 10.4310/CAG.1993.v1.n2.a4 10.1080/03605302.2024.2302377 10.1007/s00028-019-00483-y 10.1112/jlms.12976 10.4171/ifb/411 10.1137/16M1065379 10.1016/j.na.2023.113220 10.1007/978-88-7642-427-4_1 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published with license by Taylor & Francis Group, LLC 2025 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC 2025 – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03605302.2025.2457047 |
DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 476 |
ExternalDocumentID | 10_1080_03605302_2025_2457047 2457047 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 0YH 29F 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z N9A NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c263t-ea30ba812db9ac59c40a467f4f10e58a46c1362ac25c9c9fb3a6cbf65f661f533 |
IEDL.DBID | 0YH |
ISSN | 0360-5302 |
IngestDate | Wed Aug 13 10:06:49 EDT 2025 Mon Sep 08 01:36:59 EDT 2025 Wed Sep 10 04:24:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-ea30ba812db9ac59c40a467f4f10e58a46c1362ac25c9c9fb3a6cbf65f661f533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/03605302.2025.2457047 |
PQID | 3171529490 |
PQPubID | 186205 |
PageCount | 36 |
ParticipantIDs | proquest_journals_3171529490 crossref_primary_10_1080_03605302_2025_2457047 informaworld_taylorfrancis_310_1080_03605302_2025_2457047 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-04 |
PublicationDateYYYYMMDD | 2025-03-04 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2025 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_3_30_1 e_1_3_3_18_1 Blatt S. (e_1_3_3_22_1) 2009; 29 e_1_3_3_39_1 e_1_3_3_19_1 Kohsaka Y. (e_1_3_3_26_1) 2006; 19 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 Hopf H. (e_1_3_3_40_1) 1983 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 Simonett G. (e_1_3_3_17_1) 2001; 14 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 |
References_xml | – ident: e_1_3_3_36_1 – ident: e_1_3_3_14_1 doi: 10.1007/s00526-022-02381-7 – ident: e_1_3_3_28_1 doi: 10.1051/m2an/2021014 – ident: e_1_3_3_12_1 doi: 10.4310/CAG.2012.v20.n2.a4 – ident: e_1_3_3_37_1 doi: 10.4310/jdg/1214438991 – ident: e_1_3_3_18_1 doi: 10.4310/CAG.2002.v10.n2.a4 – ident: e_1_3_3_16_1 doi: 10.4310/CAG.2016.v24.n4.a7 – ident: e_1_3_3_3_1 doi: 10.1515/znc-1973-11-1209 – ident: e_1_3_3_13_1 doi: 10.1007/s00205-020-01497-4 – ident: e_1_3_3_21_1 doi: 10.4007/annals.2004.160.315 – ident: e_1_3_3_7_1 doi: 10.1515/crelle-2012-0106 – ident: e_1_3_3_19_1 doi: 10.1002/cpa.3160260305 – ident: e_1_3_3_2_1 doi: 10.1016/s0022-5193(70)80032-7 – ident: e_1_3_3_33_1 doi: 10.1007/s00205-025-02087-y – ident: e_1_3_3_34_1 doi: 10.1515/crll.1998.099 – ident: e_1_3_3_31_1 doi: 10.1007/s00208-013-0944-z – volume: 29 start-page: 407 issue: 4 year: 2009 ident: e_1_3_3_22_1 article-title: A singular example for the Willmore flow publication-title: Analysis (Munich) – ident: e_1_3_3_35_1 doi: 10.1007/s11401-012-0741-0 – volume-title: Lecture Notes in Mathematics year: 1983 ident: e_1_3_3_40_1 – ident: e_1_3_3_10_1 doi: 10.1007/s10455-020-09718-5 – ident: e_1_3_3_9_1 doi: 10.1007/BF02572424 – volume: 14 start-page: 1005 issue: 8 year: 2001 ident: e_1_3_3_17_1 article-title: The Willmore flow near spheres publication-title: Differ. Integral Equ – ident: e_1_3_3_15_1 doi: 10.1007/BF01399507 – ident: e_1_3_3_32_1 doi: 10.2422/2036-2145.201010_ – ident: e_1_3_3_29_1 doi: 10.4310/jdg/1121540340 – ident: e_1_3_3_11_1 doi: 10.1007/s00526-020-01759-9 – volume: 19 start-page: 121 issue: 2 year: 2006 ident: e_1_3_3_26_1 article-title: On the existence of solutions of the Helfrich flow and its center manifold near spheres publication-title: Differ. Integral Equ – ident: e_1_3_3_38_1 doi: 10.1215/00127094-2009-014 – ident: e_1_3_3_6_1 doi: 10.1155/S1073792803208072 – ident: e_1_3_3_20_1 doi: 10.4310/jdg/1090348128 – ident: e_1_3_3_5_1 doi: 10.4310/CAG.1993.v1.n2.a4 – ident: e_1_3_3_24_1 doi: 10.1080/03605302.2024.2302377 – ident: e_1_3_3_4_1 – ident: e_1_3_3_25_1 doi: 10.1007/s00028-019-00483-y – ident: e_1_3_3_8_1 doi: 10.1112/jlms.12976 – ident: e_1_3_3_39_1 doi: 10.4171/ifb/411 – ident: e_1_3_3_27_1 doi: 10.1137/16M1065379 – ident: e_1_3_3_23_1 doi: 10.1016/j.na.2023.113220 – ident: e_1_3_3_30_1 doi: 10.1007/978-88-7642-427-4_1 |
SSID | ssj0018294 |
Score | 2.4049988 |
Snippet | While there are various results on the long-time behavior of the Willmore flow, the Helfrich flow with non-zero spontaneous curvature as its natural... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 441 |
SubjectTerms | 35K41 (secondary) 49Q10 (primary) Canham-Helfrich model Constraints Convergence Curvature geometric flows Gradient flow Helfrich flow Singularities Submerging Willmore energy Willmore surfaces Łojasiewicz-Simon inequality |
Title | Spontaneous curvature effects of the Helfrich flow: singularities and convergence |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2025.2457047 https://www.proquest.com/docview/3171529490 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA66XfQgfuJ0jhy8ZqZtmjbehh8UYYLo8ONSkizBg7Rj6_Dv-yZth0PEg7cWkkCfNO9H8uR5ETpPpJCOXkEkTD5hScSICjQj6RRyB6M5s16nYHzPswm7e4lbNuGioVW6HNrWQhHeVrvFLdWiZcRdgNGlrtgNZHdhPAxZnFCWbKJuCIGiY_XR12x1kJCGolGQosT1aS_x_DbMmntaEy_9Yay9B7rdRTtN6IhH9VzvoQ1T7KPt8Up3dXGAHh5nZQEfZiCfx3rp9luXc4Mb0gYuLYbGGFyNqw70ju1H-XmJ3W6BI6N6bVUMqGBPRfe3Ms0hmtzePF1lpCmaQHTIo4oYGVElwW1PlZA6FppRCcbQMhtQE6fwrANwWlKHsRZaWBVJrpXlsQVPbSH4O0KdoizMMcJyqmRsrNDWKpZwnmoIVwzjSvIAmpoeGrZY5bNaGyMPWsnRBtzcgZs34PaQ-I5oXvlNCVtXEMmjP_r2W_jzZpm5LgnEH4IJevKPoU_Rlnv1zDLWR51qvjRnEGpUauB_pgHqjrLrt-cvklLLJQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86D-pB_MTp1By8dvYjSRtvIo6q20DcYJ5KkiV4kHbMDv99X9J2bIh48FZoXqC_JO-rL7-H0HUsuLDlFZ6AxfdIHBFPBop4yRRiB60YMY6nYDBk6Zg8Tehk5S6MLau0MbSpiCKcrraH2yajm5K4G9C6vu12A-FdSLshobFP4k20RROIJmBP-2_p8k9CEvKaQsr3rExzi-e3adbs0xp76Q9t7UxQbx_t1b4jvqsW-wBt6PwQ7Q6WxKufR-jldVbk8GUaAnqsFjbhuphrXFdt4MJgGIzB1tj2QO_YfBRft9imC2w1qiNXxQALdrXo7lqmPkbj3sPoPvXqrgmeCllUelpEvhRgt6eSC0W5Ir4AbWiICXxNE3hWAVgtoUKquOJGRoIpaRg1YKoNeH8nqJUXuT5FWEyloNpwZYwkMWOJAn9FEyYFC2CobqNug1U2q8gxsqDhHK3BzSy4WQ1uG_FVRLPSZSVM1UIki_6Q7TTwZ_U5syIxOCCccP_sH1Nfoe10NOhn_cfh8znasa9cmRnpoFY5X-gL8DtKeek21jczlszv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuzidmgdfW3tJ08Y3Uce8bCg68K0kWYKgtGNrEfz1nqTtcIr44FuhSdrmJOd8Sb98B6GTmDNu6BUOB-M7JA6JI3xJnGQEawclKdFWp6A_oL0huXmOGjbhtKZVmjW0roQirK82k3s80g0j7hScrmeS3cDqLojcgESxR-JFtEQBnhhWX-gNZj8SkoDVClKeY-o0h3h-a2YuPM2Jl_5w1jYCddeRaN69Ip68umUhXPnxTdbxXx-3gdZqfIrPqwG1iRZUtoVW-zNx1-k2engc5xk8QOXlFMvSbOqWE4VrZgjONYbCGOKZSUH0gvVb_n6GzZaEYbxaAVcMb4ct390e_VQ7aNi9erroOXVmBkcGNCwcxUNPcMAGI8G4jJgkHgePq4n2PRUlcC19iIxcBpFkkmkRciqFppEGOKABYe6iVpZnag9hPhI8UppJrQWJKU0kYCJFqODUh6KqjdzGIOm4EuBI_UbXtO6r1PRVWvdVG7GvZksLu_OhqzQlafhH3U5j47Sey6ZKDCCHEebt_6PpY7R8f9lN764HtwdoxdyxTDbSQa1iUqpDgDaFOLKD9xMzjeuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+curvature+effects+of+the+Helfrich+flow%3A+singularities+and+convergence&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Schlierf%2C+Manuel&rft.date=2025-03-04&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=50&rft.issue=3&rft.spage=441&rft.epage=476&rft_id=info:doi/10.1080%2F03605302.2025.2457047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03605302_2025_2457047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |