Shannon entropy helps optimize the performance of a frequency-multiplexed extreme learning machine

Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs and minimized energy consumption levels. In nonlinear substrates such as optical fibers or semiconductors, these dynamics can widely vary depe...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 192; p. 113552
Main Author Zajnulina, Marina
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2025
Subjects
Online AccessGet full text
ISSN0030-3992
DOI10.1016/j.optlastec.2025.113552

Cover

Loading…
Abstract Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs and minimized energy consumption levels. In nonlinear substrates such as optical fibers or semiconductors, these dynamics can widely vary depending on the encoded inputs, even for a single set of physical parameters. Thus, other approaches are required to optimize the schemes. Here, I consider a frequency-multiplexed Extreme Learning Machine (ELM) that encodes information in the line amplitudes of a frequency comb and processes this information in a single-mode fiber subject to Kerr nonlinearity. Its performance is evaluated with Iris and Breast Cancer Wisconsin classification datasets. I introduce the notions of Shannon entropy of optical power, phase, and spectrum and numerically show that the optimization of system parameters (continuous-wave laser optical power and the modulation depth of the subsequent phase modulator as well as the fiber group-velocity dispersion and length) yields the ELM performance that places this neuromorphic scheme among the top-performing state-of-the-art computer-based machine-learning models. I show that the ELM’s performance is robust against initial noise, paving the way for cost-effective designs. Using Soliton Radiation Beat Analysis, I show that information encoding symmetric in frequency-comb lines yields the formation of input-power-dependent Akhmediev-breather-like structures and Peregrine solitons, whereas asymmetric encoding of the comb exhibits an additional regime of soliton crystals. Also, I discuss that asymmetric encoding supports the theory of Four-Wave Mixing as a data processing mechanism, whereas symmetric encoding underlines the theory of soliton-mediated information processing. The findings advance the toolbox and knowledge of Neuromorphic Photonics and general Nonlinear Optics. [Display omitted] •Shannon entropy enables effective ELM system design and performance optimization.•Entropy-optimized ELM competes with state-of-the- art machine and deep learning models.•Symmetry of initial information encoding impacts data processing via FWM or solitons.•Symmetric encoding yields breathers and solitons; asymmetric encoding also generates crystals.•ELM performance is robust to initial noise enabling cost-effective implementations.
AbstractList Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs and minimized energy consumption levels. In nonlinear substrates such as optical fibers or semiconductors, these dynamics can widely vary depending on the encoded inputs, even for a single set of physical parameters. Thus, other approaches are required to optimize the schemes. Here, I consider a frequency-multiplexed Extreme Learning Machine (ELM) that encodes information in the line amplitudes of a frequency comb and processes this information in a single-mode fiber subject to Kerr nonlinearity. Its performance is evaluated with Iris and Breast Cancer Wisconsin classification datasets. I introduce the notions of Shannon entropy of optical power, phase, and spectrum and numerically show that the optimization of system parameters (continuous-wave laser optical power and the modulation depth of the subsequent phase modulator as well as the fiber group-velocity dispersion and length) yields the ELM performance that places this neuromorphic scheme among the top-performing state-of-the-art computer-based machine-learning models. I show that the ELM’s performance is robust against initial noise, paving the way for cost-effective designs. Using Soliton Radiation Beat Analysis, I show that information encoding symmetric in frequency-comb lines yields the formation of input-power-dependent Akhmediev-breather-like structures and Peregrine solitons, whereas asymmetric encoding of the comb exhibits an additional regime of soliton crystals. Also, I discuss that asymmetric encoding supports the theory of Four-Wave Mixing as a data processing mechanism, whereas symmetric encoding underlines the theory of soliton-mediated information processing. The findings advance the toolbox and knowledge of Neuromorphic Photonics and general Nonlinear Optics. [Display omitted] •Shannon entropy enables effective ELM system design and performance optimization.•Entropy-optimized ELM competes with state-of-the- art machine and deep learning models.•Symmetry of initial information encoding impacts data processing via FWM or solitons.•Symmetric encoding yields breathers and solitons; asymmetric encoding also generates crystals.•ELM performance is robust to initial noise enabling cost-effective implementations.
ArticleNumber 113552
Author Zajnulina, Marina
Author_xml – sequence: 1
  givenname: Marina
  orcidid: 0000-0002-9666-0534
  surname: Zajnulina
  fullname: Zajnulina, Marina
  email: marina@physik.tu-berlin.de, zajnulina@multitel.be
  organization: Multitel Innovation Centre, Rue Pierre et Marie Curie 2, Mons, 7000, Belgium
BookMark eNqFkEtOwzAYhL0oEm3hDPgCCY4fCVlWFS8JiQWwthz7N3GVOMF2UcuKG3EnTkKqIrasZjWfZr4FmvnBA0IXBckLUpSXm3wYU6diAp1TQkVeFEwIOkNzQhjJWF3TU7SIcUMI4aVgc2SeWuUnCgafwjDucQvdGPGEcb37AJxawCMEO4ReeQ14sFh9f37ZAG9b8Hqf9dsuubGDHRgMuxSgB9yBCt75V9wr3ToPZ-jEqi7C-W8u0cvN9fP6Lnt4vL1frx4yTUuWskY3AphltmFa64qYurKNJbzSinNeWkGp0dw0YERdiIraSjVVcUU54VwwzdgSVUeuDkOMAawcg-tV2MuCyIMguZF_guRBkDwKmpqrYxOmee8OgozaTf_AuAA6STO4fxk_4057uw
Cites_doi 10.1364/OE.17.021497
10.1063/5.0212158
10.1016/j.aop.2022.168906
10.1364/OE.503279
10.1117/1.AP.6.1.016002
10.1051/jeos/2023001
10.3390/app7060635
10.1063/5.0158611
10.1515/nanoph-2022-0485
10.1364/OL.496884
10.1103/PhysRevE.109.061001
10.1515/nanoph-2024-0593
10.1103/PhysRevE.73.066615
10.1515/nanoph-2025-0045
10.1103/PhysRevResearch.4.023195
10.1038/s41567-024-02534-9
10.1038/s41586-020-2973-6
10.1364/OE.433535
10.1111/j.1469-1809.1936.tb02137.x
10.1364/JOSAB.28.000275
10.1109/JQE.2024.3405826
10.1103/PhysRevLett.122.084101
10.1016/j.procs.2021.07.062
10.1364/OE.425626
10.1063/1.4930316
10.1103/PhysRevApplied.21.034013
10.1051/epjconf/202328713003
10.1038/srep22381
10.1364/OL.562186
10.1002/advs.202303835
10.1364/JOSA.71.001373
10.1016/j.optcom.2017.02.035
10.1038/s41598-022-05061-w
10.1016/j.physd.2020.132816
10.1103/PhysRevLett.125.093901
10.1364/OE.489057
10.1364/PRJ.423531
10.1364/OL.530216
10.1140/epjp/s13360-024-05402-w
10.1038/s41566-024-01494-z
10.1109/JLT.2007.909373
10.1063/1.5042342
10.1007/s12559-014-9255-2
10.1038/s41566-024-01493-0
10.1364/OL.451087
10.1088/2634-4386/ad025b
10.1038/s42005-023-01375-x
10.1007/s00521-013-1522-8
10.1038/s41598-018-26927-y
10.1038/s41566-020-00754-y
10.1016/j.wavemoti.2020.102545
10.1063/5.0156189
10.1038/srep28516
10.1038/s42254-023-00645-5
10.3389/fphy.2019.00138
10.1109/JLT.2022.3146131
10.3389/fphy.2020.596950
10.1364/OL.40.001422
10.1364/OL.36.000112
10.1364/OL.33.000830
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2025.113552
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_optlastec_2025_113552
S0030399225011430
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFFNX
AFJKZ
AFPUW
AFRZQ
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
ZMT
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c263t-bcb5e3f3fb3ccc70d97fbf047ca4446f522dc4dbed591572f7ab7182404453c33
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Thu Jul 24 02:08:28 EDT 2025
Sat Aug 16 17:00:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Peregrine soliton
Extreme learning machine
Akhmediev breather
Optical computing
Frequency comb
Soliton radiation beat analysis (SRBA)
Optimization
Hardware software codesign
Four wave mixing
Optical soliton
Neuromorphic photonics
Dynamics
Explainable AI (XAI)
Shannon entropy
Soliton crystal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-bcb5e3f3fb3ccc70d97fbf047ca4446f522dc4dbed591572f7ab7182404453c33
ORCID 0000-0002-9666-0534
ParticipantIDs crossref_primary_10_1016_j_optlastec_2025_113552
elsevier_sciencedirect_doi_10_1016_j_optlastec_2025_113552
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lozano-Durán, Adrián (bib0265) 2022; 4
Biasi, Franchi, Cerini, Pavesi (bib0145) 2023; 8
Yamano (bib0225) 2024; 139
Bile, Tari, Pepino, Riccardo, Fazio (bib0160) 2023; 287
Zajnulina, Böhm, Bodenmüller, Blow, Boggio, Rieznik, Roth (bib0250) 2017; 393
Sunada, Uchida (bib0340) 2019; 9
Marcucci, Pierangeli, Conti (bib0155) 2020; 125
McMahon (bib0005) 2023; 5
Agrawal (bib0165) 2019
Finot (bib0185) 2015; 40
Butschek, Akrout, Dimitriadou, Lupo, Haelterman, Massar (bib0100) 2022; 47
Bai, Xu, Tan, Sun, Li, Wu, Morandotti, Mitchell, Xu, Moss (bib0080) 2023; 12
Pauwels, Verschaffelt, Massar, Van der Sande (bib0015) 2019; 7
Jannson, Jannson (bib0290) 1981; 71
Mitschke, Mahnke, Hause (bib0255) 2017; 7
Ye, Bu, Wang, Chen, Baronio, Mihalache (bib0310) 2020; 8
Kimmoun, Hsu, Branger, Li, Chen, Kharif, Onorato, Kelleher, Kibler, Akhmediev, Chabchoub (bib0300) 2016; 6
Wanjura, Marquardt (bib0070) 2024; 20
Suret, Pierre, Gelash, Agafontsev, Doyon, El (bib0220) 2024; 109
Fisher (bib0230) 1936; 7
Xia, Kim, Eliezer, Han, Shaughnessy, Gigan, Cao (bib0075) 2024; 18
Cincotta, Giordano, Silva, Beaugé (bib0260) 2021; 417
.
Zajnulina, Böhm (bib0215) 2024; 49
Sozos, Deligiannidis, Mesaritakis, Bogris (bib0180) 2024; 60
I. Oguz, J. Ke, Q. Weng, F. Yang, M. Yildirim, N.U. Dinc, J.-L. Hsieh, C. Moser, D. Psaltis, Opt. Lett. 48 (20) (2023) 5249–5252
Hammani, Kibler, Finot, Morin, Fatome, Dudley, Millot (bib0305) 2011; 36
Xu, Han, Tan, Sun, Li, Wu, Morandotti, Mitchell, Xu, Moss (bib0085) 2023; 29
Phang (bib0040) 2023; 31
Saeed, Müftüoglu, Cheeran, Bocklitz, Fischer, Chemnitz (bib0170) 2025
Redding, Murray, Hart, Zhu, Pang, Sarma (bib0060) 2024; 7
Zajnulina, Lupo, Massar (bib0025) 2025; 33
Wetzstein, Ozcan, Gigan, Fan, Englund, Soljacic, Denz, Miller, Psaltis (bib0055) 2020; 588
Pierangeli, Marcucci, Conti (bib0150) 2021; 9
Wolberg, Mangasarian, Street, Street (bib0235) 1993
Naji, Filali, Aarika, Benlahmar, Abdelouhahid, Debauche (bib0330) 2021; 191
Brunner, Penkovsky, Marquez, Jacquot, Fischer, Larger (bib0035) 2018; 124
Ermolaev, Hary, Leybov, Ryczkowski, Skalli, Brunner, Genty, Dudley (bib0175) 2025; 50
Morison, Singh, Kayed, Aadhi, Moridsadat, Tamura, Tait, Shastri (bib0335) 2024; 21
Fischer, Chemnitz, Zhu, Perron, Roztocki, MacLellan, Di Lauro, Luigi, Rimoldi, Falk, Morandotti (bib0020) 2023; 10
Xu, Gelash, Chabchoub, Zakharov, Kibler (bib0200) 2019; 122
Skontranis, Sarantoglou, Sozos, Kamalakis, Mesaritakis, Borgis (bib0140) 2023; 3
Ding, Xu, Nie (bib0115) 2014; 25
Kesgin, Teğin (bib0345) 2025
Duport, Smerieri, Akrout, Haelterman, Massar (bib0095) 2016; 6
Zhang, Belić, Zheng, Chen, Li, Song, Zhang (bib0325) 2014; 39
Yildirim, Oguz, Kaufmann, Escalé, Grange, Psaltis, Moser (bib0130) 2023; 8
Suzuki, Gao, Pradel, Yasuoka, Yamamoto (bib0105) 2022; 12
Lima (bib0275) 2022; 442
Dudley, Genty, Dias, Kibler, Akhmediev (bib0190) 2009; 17
Cox, Murray, Hart, Redding (bib0065) 2024; 34
Zhou, Tingyi, Jalali (bib0125) 2022; 40
Oguz, Hsieh, Dinc, Teğin, Yildirim, Gigli, Moser, Psaltis (bib0045) 2024; 6
Schiek (bib0210) 2021; 29
Andral, Kibler, Dudley, Finot (bib0205) 2020; 95
Sprinkhuizen-Kuyper (bib0270) 1996
Argyris, Bueno, Fischer (bib0090) 2018; 8
Shastri, Tait, Ferreira de Lima, Pernice, Bhaskaran, Wright, Prucnal (bib0010) 2021; 15
Yildirim, Dinc, Oguz, Psaltis, Moser (bib0050) 2024; 18
Zajnulina, Böhm, Blow, Rieznik, Giannone, Haynes, Roth (bib0245) 2015; 25
Cohen, Chong, Schwartz, Popmintchev, Murnane, Kapteyn (bib0315) 2008; 33
Silva, Ferreira, Moreira, Rosa, Carla, Silva (bib0120) 2023; 19
Huang (bib0110) 2014; 6
Wen, Zhang, Zhu, Xiao (bib0320) 2011; 28
Lupo, Butschek, Massar (bib0030) 2021; 29
Hult (bib0280) 2007; 25
Frisquet, Kibler, Millot (bib0195) 2013; 3
Böhm, Mitschke (bib0240) 2006; 73
Wu, Clementi, Nitiss, Hu, Lafforgue, Brès (bib0295) 2023; 6
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0285) 2011; 12
Ye (10.1016/j.optlastec.2025.113552_bib0310) 2020; 8
Hammani (10.1016/j.optlastec.2025.113552_bib0305) 2011; 36
Yildirim (10.1016/j.optlastec.2025.113552_bib0050) 2024; 18
Wen (10.1016/j.optlastec.2025.113552_bib0320) 2011; 28
Sozos (10.1016/j.optlastec.2025.113552_bib0180) 2024; 60
Brunner (10.1016/j.optlastec.2025.113552_bib0035) 2018; 124
Wanjura (10.1016/j.optlastec.2025.113552_bib0070) 2024; 20
Duport (10.1016/j.optlastec.2025.113552_bib0095) 2016; 6
Ding (10.1016/j.optlastec.2025.113552_bib0115) 2014; 25
Hult (10.1016/j.optlastec.2025.113552_bib0280) 2007; 25
Jannson (10.1016/j.optlastec.2025.113552_bib0290) 1981; 71
Cincotta (10.1016/j.optlastec.2025.113552_bib0260) 2021; 417
Kesgin (10.1016/j.optlastec.2025.113552_bib0345) 2025
Bile (10.1016/j.optlastec.2025.113552_bib0160) 2023; 287
Agrawal (10.1016/j.optlastec.2025.113552_bib0165) 2019
Xu (10.1016/j.optlastec.2025.113552_bib0200) 2019; 122
Lupo (10.1016/j.optlastec.2025.113552_bib0030) 2021; 29
Wetzstein (10.1016/j.optlastec.2025.113552_bib0055) 2020; 588
Marcucci (10.1016/j.optlastec.2025.113552_bib0155) 2020; 125
Lima (10.1016/j.optlastec.2025.113552_bib0275) 2022; 442
Dudley (10.1016/j.optlastec.2025.113552_bib0190) 2009; 17
McMahon (10.1016/j.optlastec.2025.113552_bib0005) 2023; 5
Zajnulina (10.1016/j.optlastec.2025.113552_bib0250) 2017; 393
10.1016/j.optlastec.2025.113552_bib0135
Silva (10.1016/j.optlastec.2025.113552_bib0120) 2023; 19
Kimmoun (10.1016/j.optlastec.2025.113552_bib0300) 2016; 6
Shastri (10.1016/j.optlastec.2025.113552_bib0010) 2021; 15
Pauwels (10.1016/j.optlastec.2025.113552_bib0015) 2019; 7
Oguz (10.1016/j.optlastec.2025.113552_bib0045) 2024; 6
Wu (10.1016/j.optlastec.2025.113552_bib0295) 2023; 6
Phang (10.1016/j.optlastec.2025.113552_bib0040) 2023; 31
Zajnulina (10.1016/j.optlastec.2025.113552_bib0215) 2024; 49
Andral (10.1016/j.optlastec.2025.113552_bib0205) 2020; 95
Yamano (10.1016/j.optlastec.2025.113552_bib0225) 2024; 139
Wolberg (10.1016/j.optlastec.2025.113552_bib0235) 1993
Bai (10.1016/j.optlastec.2025.113552_bib0080) 2023; 12
Lozano-Durán (10.1016/j.optlastec.2025.113552_bib0265) 2022; 4
Sprinkhuizen-Kuyper (10.1016/j.optlastec.2025.113552_bib0270) 1996
Ermolaev (10.1016/j.optlastec.2025.113552_bib0175) 2025; 50
Zhou (10.1016/j.optlastec.2025.113552_bib0125) 2022; 40
Saeed (10.1016/j.optlastec.2025.113552_bib0170) 2025
Zajnulina (10.1016/j.optlastec.2025.113552_bib0025) 2025; 33
Naji (10.1016/j.optlastec.2025.113552_bib0330) 2021; 191
Fischer (10.1016/j.optlastec.2025.113552_bib0020) 2023; 10
Argyris (10.1016/j.optlastec.2025.113552_bib0090) 2018; 8
Pedregosa (10.1016/j.optlastec.2025.113552_bib0285) 2011; 12
Böhm (10.1016/j.optlastec.2025.113552_bib0240) 2006; 73
Xia (10.1016/j.optlastec.2025.113552_bib0075) 2024; 18
Pierangeli (10.1016/j.optlastec.2025.113552_bib0150) 2021; 9
Schiek (10.1016/j.optlastec.2025.113552_bib0210) 2021; 29
Suzuki (10.1016/j.optlastec.2025.113552_bib0105) 2022; 12
Redding (10.1016/j.optlastec.2025.113552_bib0060) 2024; 7
Butschek (10.1016/j.optlastec.2025.113552_bib0100) 2022; 47
Skontranis (10.1016/j.optlastec.2025.113552_bib0140) 2023; 3
Suret (10.1016/j.optlastec.2025.113552_bib0220) 2024; 109
Mitschke (10.1016/j.optlastec.2025.113552_bib0255) 2017; 7
Cox (10.1016/j.optlastec.2025.113552_bib0065) 2024; 34
Frisquet (10.1016/j.optlastec.2025.113552_bib0195) 2013; 3
Biasi (10.1016/j.optlastec.2025.113552_bib0145) 2023; 8
Zajnulina (10.1016/j.optlastec.2025.113552_bib0245) 2015; 25
Huang (10.1016/j.optlastec.2025.113552_bib0110) 2014; 6
Finot (10.1016/j.optlastec.2025.113552_bib0185) 2015; 40
Morison (10.1016/j.optlastec.2025.113552_bib0335) 2024; 21
Xu (10.1016/j.optlastec.2025.113552_bib0085) 2023; 29
Zhang (10.1016/j.optlastec.2025.113552_bib0325) 2014; 39
Fisher (10.1016/j.optlastec.2025.113552_bib0230) 1936; 7
Sunada (10.1016/j.optlastec.2025.113552_bib0340) 2019; 9
Cohen (10.1016/j.optlastec.2025.113552_bib0315) 2008; 33
Yildirim (10.1016/j.optlastec.2025.113552_bib0130) 2023; 8
References_xml – volume: 588
  start-page: 39
  year: 2020
  end-page: 47
  ident: bib0055
  article-title: Inference in artificial intelligence with deep optics and photonics
  publication-title: Nature
– volume: 39
  year: 2014
  ident: bib0325
  article-title: Nonlinear Talbot effect of rogue waves
  publication-title: Phys. Rev. E
– volume: 8
  year: 2023
  ident: bib0130
  article-title: Nonlinear optical feature generator for machine learning
  publication-title: APL. Photonics
– volume: 40
  start-page: 1422
  year: 2015
  end-page: 1425
  ident: bib0185
  article-title: 40-GHz photonic waveform generator by linear shaping of four spectral sidebands
  publication-title: Opt. Lett.
– volume: 7
  year: 2019
  ident: bib0015
  article-title: Distributed Kerr non-linearity in a coherent all-optical fiber-ring reservoir computer
  publication-title: Front. Phys.
– volume: 8
  year: 2023
  ident: bib0145
  article-title: An array of microresonators as a photonic extreme learning machine
  publication-title: APL Photon.
– volume: 139
  start-page: 595
  year: 2024
  ident: bib0225
  article-title: Shannon entropy and fisher information of solitons for the cubic nonlinear Schrödinger equation
  publication-title: Eur. Phys. J. Plus
– volume: 34
  year: 2024
  ident: bib0065
  article-title: Photonic next-generation reservoir computer based on distributed feedback in optical fiber
  publication-title: Chaos
– volume: 49
  start-page: 3894
  year: 2024
  end-page: 3897
  ident: bib0215
  article-title: Temporal Talbot effect: from a quasi-linear Talbot carpet to soliton crystals and Talbot solitons
  publication-title: Opt. Lett.
– volume: 28
  start-page: 275
  year: 2011
  end-page: 280
  ident: bib0320
  article-title: Theory of nonlinear Talbot effect
  publication-title: J. Opt. Soc. Am. B.
– year: 2025
  ident: bib0345
  article-title: Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers
  publication-title: Nanophotonics
– volume: 33
  start-page: 830
  year: 2008
  end-page: 832
  ident: bib0315
  article-title: Talbot solitons
  publication-title: Opt. Lett.
– volume: 33
  start-page: 7601
  year: 2025
  end-page: 7619
  ident: bib0025
  article-title: Weak Kerr nonlinearity boosts the performance of frequency-multiplexed photonic extreme learning machines: a multifaceted approach
  publication-title: Opt. Express.
– volume: 73
  year: 2006
  ident: bib0240
  article-title: Soliton-radiation beat analysis
  publication-title: Phys. Rev. E.
– volume: 71
  start-page: 1373
  year: 1981
  end-page: 1376
  ident: bib0290
  article-title: Temporal self-imaging effect in single-mode fibers
  publication-title: J. Opt. Soc. Am.
– volume: 19
  start-page: 8
  year: 2023
  ident: bib0120
  article-title: Exploring the hidden dimensions of an optical extreme learning machine
  publication-title: J. Eur. Opt. Society-Rapid Publ.
– volume: 5
  start-page: 717
  year: 2023
  end-page: 734
  ident: bib0005
  article-title: The physics of optical computing
  publication-title: Nat. Rev. Phys.
– volume: 12
  start-page: 1353
  year: 2022
  ident: bib0105
  article-title: Natural quantum reservoir computing for temporal information processing
  publication-title: Sci. Rep.
– volume: 7
  start-page: 635
  year: 2017
  ident: bib0255
  article-title: Soliton content of fiber-optic light pulses
  publication-title: Appl. Sci.
– volume: 124
  year: 2018
  ident: bib0035
  article-title: Tutorial: photonic neural networks in delay systems
  publication-title: J. Appl. Phys.
– volume: 21
  year: 2024
  ident: bib0335
  article-title: Nonlinear dynamics in neuromorphic photonic networks: physical simulation in Verilog-A
  publication-title: Phys. Rev. Appl.
– volume: 29
  year: 2023
  ident: bib0085
  article-title: Neuromorphic computing based on wavelength-division multiplexing
  publication-title: IEEE J. Sel. Top. Quantum Electron
– volume: 95
  year: 2020
  ident: bib0205
  article-title: Akhmediev breather signatures from dispersive propagation of a periodically phase-modulated continuous wave
  publication-title: Wave Motion
– volume: 18
  start-page: 1067
  year: 2024
  end-page: 1075
  ident: bib0075
  article-title: Nonlinear optical encoding enabled by recurrent linear scattering
  publication-title: Nat. Photon
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib0230
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen
– volume: 40
  start-page: 1308
  year: 2022
  end-page: 1319
  ident: bib0125
  article-title: Nonlinear schrödinger kernel for hardware acceleration of machine learning
  publication-title: J. Light. Technol
– volume: 3
  year: 2023
  ident: bib0140
  article-title: Multimode fabry-perot laser as a reservoir computing and extreme learning machine photonic accelerator
  publication-title: Neuromorph. Comput. Eng.
– volume: 9
  start-page: 1446
  year: 2021
  end-page: 1454
  ident: bib0150
  article-title: Photonic extreme learning machine by free-space optical propagation
  publication-title: Photon. Res.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0285
  article-title: Scikit-learn: machine learning in Python
  publication-title: JMLR
– volume: 9
  year: 2019
  ident: bib0340
  article-title: Photonic reservoir computing based on nonlinear wave dynamics at microscale
  publication-title: Sci. Rep.
– volume: 36
  start-page: 112
  year: 2011
  end-page: 114
  ident: bib0305
  article-title: Peregrine soliton generation and breakup in standard telecommunications fiber
  publication-title: Opt. Lett.
– volume: 8
  start-page: 8487
  year: 2018
  ident: bib0090
  article-title: Photonic machine learning implementation for signal recovery in optical communications
  publication-title: Sci. Rep.
– volume: 47
  start-page: 782
  year: 2022
  end-page: 785
  ident: bib0100
  article-title: Photonic reservoir computer based on frequency multiplexing
  publication-title: Opt. Lett.
– volume: 17
  year: 2009
  ident: bib0190
  article-title: Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation
  publication-title: Opt. Express.
– volume: 15
  start-page: 102
  year: 2021
  end-page: 114
  ident: bib0010
  article-title: Photonics for artificial intelligence and neuromorphic computing
  publication-title: Nat. Photonics
– year: 2025
  ident: bib0170
  article-title: Nonlinear inference capacity of fiber-optical extreme learning machines
  publication-title: Nanophotonics
– year: 1996
  ident: bib0270
  publication-title: Some Remarks on the Entropy of a Neural Network
– volume: 4
  year: 2022
  ident: bib0265
  article-title: Information-theoretic formulation of dynamical systems: causality, modeling, and control
  publication-title: Phys. Rev. Res.
– volume: 6
  start-page: 376
  year: 2014
  end-page: 390
  ident: bib0110
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cogn. Comput.
– volume: 393
  start-page: 95
  year: 2017
  end-page: 102
  ident: bib0250
  article-title: Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation
  publication-title: Opt. Commun
– volume: 122
  year: 2019
  ident: bib0200
  article-title: Breather wave molecules
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 3770
  year: 2007
  end-page: 3775
  ident: bib0280
  article-title: A Fourth-Order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers
  publication-title: J. Light. Technol
– volume: 29
  start-page: 28257
  year: 2021
  end-page: 28276
  ident: bib0030
  article-title: Photonic extreme learning machine based on frequency multiplexing
  publication-title: Opt. Express.
– volume: 31
  start-page: 22061
  year: 2023
  end-page: 22074
  ident: bib0040
  article-title: Photonic reservoir computing enabled by stimulated Brillouin scattering
  publication-title: Opt. Express.
– volume: 7
  year: 2024
  ident: bib0060
  article-title: Fiber optic computing using distributed feedback
  publication-title: Commun. Phys
– volume: 6
  year: 2016
  ident: bib0095
  article-title: Fully analogue photonic reservoir computer
  publication-title: Sci. Rep.
– volume: 6
  start-page: 2399
  year: 2023
  end-page: 3650
  ident: bib0295
  article-title: Bright and dark Talbot pulse trains on a chip
  publication-title: Commun. Phys.
– year: 1993
  ident: bib0235
  article-title: Breast Cancer Wisconsin (diagnostic)
– volume: 6
  year: 2024
  ident: bib0045
  article-title: Programming nonlinear propagation for efficient optical learning machines
  publication-title: Adv. Photonics
– volume: 191
  start-page: 487
  year: 2021
  end-page: 492
  ident: bib0330
  article-title: Machine learning algorithms for breast cancer prediction and diagnosis
  publication-title: Procedia Comput. Sci.
– year: 2019
  ident: bib0165
  publication-title: Nonlinear Fiber Optics
– volume: 8
  year: 2020
  ident: bib0310
  article-title: Peregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equation
  publication-title: Front. Phys.
– volume: 287
  year: 2023
  ident: bib0160
  article-title: Solitonic neural network: a novel approach of photonic artificial intelligence based on photorefractive solitonic waveguides
  publication-title: EPJ. Web. Conf.
– volume: 12
  start-page: 795
  year: 2023
  end-page: 817
  ident: bib0080
  article-title: Photonic multiplexing techniques for neuromorphic computing
  publication-title: Nanophotonics
– volume: 25
  start-page: 549
  year: 2014
  end-page: 556
  ident: bib0115
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
– volume: 109
  year: 2024
  ident: bib0220
  article-title: Soliton gas: theory, numerics, and experiments
  publication-title: Phys. Rev. E.
– volume: 29
  start-page: 15830
  year: 2021
  end-page: 15851
  ident: bib0210
  article-title: Excitation of nonlinear beams: from the linear Talbot effect through modulation instability to Akhmediev breathers
  publication-title: Opt. Express.
– volume: 442
  year: 2022
  ident: bib0275
  article-title: Quantum information entropies for a soliton at hyperbolic well
  publication-title: Ann. Phys.
– reference: I. Oguz, J. Ke, Q. Weng, F. Yang, M. Yildirim, N.U. Dinc, J.-L. Hsieh, C. Moser, D. Psaltis, Opt. Lett. 48 (20) (2023) 5249–5252,
– reference: .
– volume: 60
  start-page: 1
  year: 2024
  end-page: 6
  ident: bib0180
  article-title: Unconventional computing based on four wave mixing in highly nonlinear waveguides
  publication-title: IEEE J. Quantum Electron.
– volume: 10
  year: 2023
  ident: bib0020
  article-title: Neuromorphic computing via fission-based broadband frequency generation
  publication-title: Adv. Sci.
– volume: 25
  year: 2015
  ident: bib0245
  article-title: Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
  publication-title: Chaos
– volume: 20
  start-page: 1434
  year: 2024
  end-page: 1440
  ident: bib0070
  article-title: Fully nonlinear neuromorphic computing with linear wave scattering
  publication-title: Nat. Phys.
– volume: 125
  year: 2020
  ident: bib0155
  article-title: Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons
  publication-title: Phys. Rev. Lett.
– volume: 3
  year: 2013
  ident: bib0195
  article-title: Collision of Akhmediev breathers in nonlinear fiber optics
  publication-title: Phys. Rev. X
– volume: 6
  year: 2016
  ident: bib0300
  article-title: Modulation instability and phase-shifted fermi-pasta-ulam recurrence
  publication-title: Sci. Rep.
– volume: 50
  start-page: 4166
  year: 2025
  end-page: 4169
  ident: bib0175
  article-title: Limits of nonlinear and dispersive fiber propagation for photonic extreme learning
  publication-title: Opt. Lett.
– volume: 18
  start-page: 1076
  year: 2024
  end-page: 1082
  ident: bib0050
  article-title: Nonlinear processing with linear optics
  publication-title: Nat. Photon
– volume: 417
  year: 2021
  ident: bib0260
  article-title: The Shannon entropy: an efficient indicator of dynamical stability
  publication-title: Phys. D: Nonlinear Phenom.
– volume: 17
  issue: 24
  year: 2009
  ident: 10.1016/j.optlastec.2025.113552_bib0190
  article-title: Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation
  publication-title: Opt. Express.
  doi: 10.1364/OE.17.021497
– year: 1993
  ident: 10.1016/j.optlastec.2025.113552_bib0235
– volume: 34
  issue: 7
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0065
  article-title: Photonic next-generation reservoir computer based on distributed feedback in optical fiber
  publication-title: Chaos
  doi: 10.1063/5.0212158
– volume: 442
  year: 2022
  ident: 10.1016/j.optlastec.2025.113552_bib0275
  article-title: Quantum information entropies for a soliton at hyperbolic well
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2022.168906
– volume: 33
  start-page: 7601
  issue: 4
  year: 2025
  ident: 10.1016/j.optlastec.2025.113552_bib0025
  article-title: Weak Kerr nonlinearity boosts the performance of frequency-multiplexed photonic extreme learning machines: a multifaceted approach
  publication-title: Opt. Express.
  doi: 10.1364/OE.503279
– volume: 6
  issue: 1
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0045
  article-title: Programming nonlinear propagation for efficient optical learning machines
  publication-title: Adv. Photonics
  doi: 10.1117/1.AP.6.1.016002
– volume: 19
  start-page: 8
  issue: 1
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0120
  article-title: Exploring the hidden dimensions of an optical extreme learning machine
  publication-title: J. Eur. Opt. Society-Rapid Publ.
  doi: 10.1051/jeos/2023001
– volume: 7
  start-page: 635
  issue: 6
  year: 2017
  ident: 10.1016/j.optlastec.2025.113552_bib0255
  article-title: Soliton content of fiber-optic light pulses
  publication-title: Appl. Sci.
  doi: 10.3390/app7060635
– volume: 8
  issue: 10
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0130
  article-title: Nonlinear optical feature generator for machine learning
  publication-title: APL. Photonics
  doi: 10.1063/5.0158611
– volume: 12
  start-page: 795
  issue: 5
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0080
  article-title: Photonic multiplexing techniques for neuromorphic computing
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0485
– ident: 10.1016/j.optlastec.2025.113552_bib0135
  doi: 10.1364/OL.496884
– volume: 109
  issue: 6
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0220
  article-title: Soliton gas: theory, numerics, and experiments
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.109.061001
– year: 2025
  ident: 10.1016/j.optlastec.2025.113552_bib0345
  article-title: Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2024-0593
– volume: 73
  issue: 6
  year: 2006
  ident: 10.1016/j.optlastec.2025.113552_bib0240
  article-title: Soliton-radiation beat analysis
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.73.066615
– year: 2025
  ident: 10.1016/j.optlastec.2025.113552_bib0170
  article-title: Nonlinear inference capacity of fiber-optical extreme learning machines
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2025-0045
– volume: 7
  issue: 75
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0060
  article-title: Fiber optic computing using distributed feedback
  publication-title: Commun. Phys
– volume: 4
  issue: 2
  year: 2022
  ident: 10.1016/j.optlastec.2025.113552_bib0265
  article-title: Information-theoretic formulation of dynamical systems: causality, modeling, and control
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.023195
– volume: 20
  start-page: 1434
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0070
  article-title: Fully nonlinear neuromorphic computing with linear wave scattering
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-024-02534-9
– volume: 588
  start-page: 39
  year: 2020
  ident: 10.1016/j.optlastec.2025.113552_bib0055
  article-title: Inference in artificial intelligence with deep optics and photonics
  publication-title: Nature
  doi: 10.1038/s41586-020-2973-6
– volume: 29
  start-page: 28257
  issue: 18
  year: 2021
  ident: 10.1016/j.optlastec.2025.113552_bib0030
  article-title: Photonic extreme learning machine based on frequency multiplexing
  publication-title: Opt. Express.
  doi: 10.1364/OE.433535
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 10.1016/j.optlastec.2025.113552_bib0230
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 28
  start-page: 275
  issue: 2
  year: 2011
  ident: 10.1016/j.optlastec.2025.113552_bib0320
  article-title: Theory of nonlinear Talbot effect
  publication-title: J. Opt. Soc. Am. B.
  doi: 10.1364/JOSAB.28.000275
– volume: 29
  issue: 2
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0085
  article-title: Neuromorphic computing based on wavelength-division multiplexing
  publication-title: IEEE J. Sel. Top. Quantum Electron
– volume: 60
  start-page: 1
  issue: 4
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0180
  article-title: Unconventional computing based on four wave mixing in highly nonlinear waveguides
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2024.3405826
– volume: 122
  issue: 8
  year: 2019
  ident: 10.1016/j.optlastec.2025.113552_bib0200
  article-title: Breather wave molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.084101
– volume: 191
  start-page: 487
  year: 2021
  ident: 10.1016/j.optlastec.2025.113552_bib0330
  article-title: Machine learning algorithms for breast cancer prediction and diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.07.062
– volume: 29
  start-page: 15830
  issue: 10
  year: 2021
  ident: 10.1016/j.optlastec.2025.113552_bib0210
  article-title: Excitation of nonlinear beams: from the linear Talbot effect through modulation instability to Akhmediev breathers
  publication-title: Opt. Express.
  doi: 10.1364/OE.425626
– volume: 3
  issue: 4
  year: 2013
  ident: 10.1016/j.optlastec.2025.113552_bib0195
  article-title: Collision of Akhmediev breathers in nonlinear fiber optics
  publication-title: Phys. Rev. X
– volume: 25
  issue: 10
  year: 2015
  ident: 10.1016/j.optlastec.2025.113552_bib0245
  article-title: Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
  publication-title: Chaos
  doi: 10.1063/1.4930316
– volume: 21
  issue: 3
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0335
  article-title: Nonlinear dynamics in neuromorphic photonic networks: physical simulation in Verilog-A
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.21.034013
– volume: 287
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0160
  article-title: Solitonic neural network: a novel approach of photonic artificial intelligence based on photorefractive solitonic waveguides
  publication-title: EPJ. Web. Conf.
  doi: 10.1051/epjconf/202328713003
– volume: 6
  year: 2016
  ident: 10.1016/j.optlastec.2025.113552_bib0095
  article-title: Fully analogue photonic reservoir computer
  publication-title: Sci. Rep.
  doi: 10.1038/srep22381
– volume: 50
  start-page: 4166
  year: 2025
  ident: 10.1016/j.optlastec.2025.113552_bib0175
  article-title: Limits of nonlinear and dispersive fiber propagation for photonic extreme learning
  publication-title: Opt. Lett.
  doi: 10.1364/OL.562186
– volume: 10
  issue: 35
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0020
  article-title: Neuromorphic computing via fission-based broadband frequency generation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202303835
– volume: 71
  start-page: 1373
  issue: 11
  year: 1981
  ident: 10.1016/j.optlastec.2025.113552_bib0290
  article-title: Temporal self-imaging effect in single-mode fibers
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.71.001373
– volume: 393
  start-page: 95
  year: 2017
  ident: 10.1016/j.optlastec.2025.113552_bib0250
  article-title: Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation
  publication-title: Opt. Commun
  doi: 10.1016/j.optcom.2017.02.035
– volume: 12
  start-page: 1353
  year: 2022
  ident: 10.1016/j.optlastec.2025.113552_bib0105
  article-title: Natural quantum reservoir computing for temporal information processing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05061-w
– year: 2019
  ident: 10.1016/j.optlastec.2025.113552_bib0165
– volume: 417
  year: 2021
  ident: 10.1016/j.optlastec.2025.113552_bib0260
  article-title: The Shannon entropy: an efficient indicator of dynamical stability
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/j.physd.2020.132816
– volume: 125
  issue: 9
  year: 2020
  ident: 10.1016/j.optlastec.2025.113552_bib0155
  article-title: Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.093901
– volume: 31
  start-page: 22061
  issue: 13
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0040
  article-title: Photonic reservoir computing enabled by stimulated Brillouin scattering
  publication-title: Opt. Express.
  doi: 10.1364/OE.489057
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.optlastec.2025.113552_bib0285
  article-title: Scikit-learn: machine learning in Python
  publication-title: JMLR
– volume: 9
  start-page: 1446
  year: 2021
  ident: 10.1016/j.optlastec.2025.113552_bib0150
  article-title: Photonic extreme learning machine by free-space optical propagation
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.423531
– volume: 49
  start-page: 3894
  issue: 14
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0215
  article-title: Temporal Talbot effect: from a quasi-linear Talbot carpet to soliton crystals and Talbot solitons
  publication-title: Opt. Lett.
  doi: 10.1364/OL.530216
– volume: 139
  start-page: 595
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0225
  article-title: Shannon entropy and fisher information of solitons for the cubic nonlinear Schrödinger equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-024-05402-w
– volume: 18
  start-page: 1076
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0050
  article-title: Nonlinear processing with linear optics
  publication-title: Nat. Photon
  doi: 10.1038/s41566-024-01494-z
– volume: 25
  start-page: 3770
  issue: 12
  year: 2007
  ident: 10.1016/j.optlastec.2025.113552_bib0280
  article-title: A Fourth-Order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers
  publication-title: J. Light. Technol
  doi: 10.1109/JLT.2007.909373
– volume: 124
  year: 2018
  ident: 10.1016/j.optlastec.2025.113552_bib0035
  article-title: Tutorial: photonic neural networks in delay systems
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5042342
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 10.1016/j.optlastec.2025.113552_bib0110
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-014-9255-2
– volume: 18
  start-page: 1067
  year: 2024
  ident: 10.1016/j.optlastec.2025.113552_bib0075
  article-title: Nonlinear optical encoding enabled by recurrent linear scattering
  publication-title: Nat. Photon
  doi: 10.1038/s41566-024-01493-0
– volume: 47
  start-page: 782
  issue: 4
  year: 2022
  ident: 10.1016/j.optlastec.2025.113552_bib0100
  article-title: Photonic reservoir computer based on frequency multiplexing
  publication-title: Opt. Lett.
  doi: 10.1364/OL.451087
– volume: 3
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0140
  article-title: Multimode fabry-perot laser as a reservoir computing and extreme learning machine photonic accelerator
  publication-title: Neuromorph. Comput. Eng.
  doi: 10.1088/2634-4386/ad025b
– volume: 6
  start-page: 2399
  issue: 1
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0295
  article-title: Bright and dark Talbot pulse trains on a chip
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-023-01375-x
– volume: 25
  start-page: 549
  year: 2014
  ident: 10.1016/j.optlastec.2025.113552_bib0115
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1522-8
– volume: 8
  start-page: 8487
  year: 2018
  ident: 10.1016/j.optlastec.2025.113552_bib0090
  article-title: Photonic machine learning implementation for signal recovery in optical communications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26927-y
– volume: 15
  start-page: 102
  year: 2021
  ident: 10.1016/j.optlastec.2025.113552_bib0010
  article-title: Photonics for artificial intelligence and neuromorphic computing
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-020-00754-y
– volume: 95
  year: 2020
  ident: 10.1016/j.optlastec.2025.113552_bib0205
  article-title: Akhmediev breather signatures from dispersive propagation of a periodically phase-modulated continuous wave
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2020.102545
– volume: 39
  issue: 3
  year: 2014
  ident: 10.1016/j.optlastec.2025.113552_bib0325
  article-title: Nonlinear Talbot effect of rogue waves
  publication-title: Phys. Rev. E
– volume: 8
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0145
  article-title: An array of microresonators as a photonic extreme learning machine
  publication-title: APL Photon.
  doi: 10.1063/5.0156189
– volume: 6
  year: 2016
  ident: 10.1016/j.optlastec.2025.113552_bib0300
  article-title: Modulation instability and phase-shifted fermi-pasta-ulam recurrence
  publication-title: Sci. Rep.
  doi: 10.1038/srep28516
– volume: 5
  start-page: 717
  issue: 12
  year: 2023
  ident: 10.1016/j.optlastec.2025.113552_bib0005
  article-title: The physics of optical computing
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00645-5
– volume: 7
  year: 2019
  ident: 10.1016/j.optlastec.2025.113552_bib0015
  article-title: Distributed Kerr non-linearity in a coherent all-optical fiber-ring reservoir computer
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00138
– volume: 40
  start-page: 1308
  issue: 5
  year: 2022
  ident: 10.1016/j.optlastec.2025.113552_bib0125
  article-title: Nonlinear schrödinger kernel for hardware acceleration of machine learning
  publication-title: J. Light. Technol
  doi: 10.1109/JLT.2022.3146131
– year: 1996
  ident: 10.1016/j.optlastec.2025.113552_bib0270
– volume: 8
  year: 2020
  ident: 10.1016/j.optlastec.2025.113552_bib0310
  article-title: Peregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equation
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.596950
– volume: 40
  start-page: 1422
  issue: 7
  year: 2015
  ident: 10.1016/j.optlastec.2025.113552_bib0185
  article-title: 40-GHz photonic waveform generator by linear shaping of four spectral sidebands
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.001422
– volume: 36
  start-page: 112
  year: 2011
  ident: 10.1016/j.optlastec.2025.113552_bib0305
  article-title: Peregrine soliton generation and breakup in standard telecommunications fiber
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.000112
– volume: 33
  start-page: 830
  issue: 8
  year: 2008
  ident: 10.1016/j.optlastec.2025.113552_bib0315
  article-title: Talbot solitons
  publication-title: Opt. Lett.
  doi: 10.1364/OL.33.000830
– volume: 9
  issue: 19078
  year: 2019
  ident: 10.1016/j.optlastec.2025.113552_bib0340
  article-title: Photonic reservoir computing based on nonlinear wave dynamics at microscale
  publication-title: Sci. Rep.
SSID ssj0004653
Score 2.4134772
Snippet Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113552
SubjectTerms Akhmediev breather
Dynamics
Explainable AI (XAI)
Extreme learning machine
Four wave mixing
Frequency comb
Hardware software codesign
Neuromorphic photonics
Optical computing
Optical soliton
Optimization
Peregrine soliton
Shannon entropy
Soliton crystal
Soliton radiation beat analysis (SRBA)
Title Shannon entropy helps optimize the performance of a frequency-multiplexed extreme learning machine
URI https://dx.doi.org/10.1016/j.optlastec.2025.113552
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lIuhBfGJ9lBy8rt1ukqbxVoqlKvaihd6WJJvYim2XdgXrQfxH_id_iZN9aAuCB4-7bNgwSb6ZCd98g9BZ04liSTjfJhDKo5bWPaGY9Li1Td0kcMaoq0a-7TW6fXo9YIMSahe1MI5WmWN_hukpWudvark1a_Fo5Gp8AX6drCpzQT1xeTul3O3y87f6Um1krkRJAG_g6xWO1zROIEZNjNMyDJjrb8JY8LuHWvI6nW20lYeLuJXNaAeVzGQXbS6JCO6i9ZTEqed7KLobygmk89jd2E7jBR6ap3iO4fej8ejVYIj1cPxTKICnFsvP9w87y-jUC69gF76YCANou6tDnLeVeMDjlHZp9lG_c3nf7np5FwVPBw2SeEorZoglVhGtNfcjwa2yPuVaUsgFLQRgkaaRMhETdcYDy6UChwWenlJGNCEHqAxTN4cIc1e4KgOuKI1ooKVsCCG19rkQlFrOKsgvLBfGmVhGWLDIHsNvY4fO2GFm7Aq6KCwcrqx7CJD-1-Cj_ww-RhvuKaOmnKByMns2pxBgJKqa7qAqWmtd3XR7X9dK08k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB2kIupBtCp-m4PXpXWTNF1vUixbbXuxhd6WJJtoxbZLu4J68h_5n_wlTrq7WkHw4HWXYcNs8mYmvHkDcFZ3olgSz7fxA-Uxy869QHHpCWvruk7xjDHXjdzp1sI-ux7wwRI0il4YR6vMsT_D9Dla508quTcryXDoenwRfp2sKndJPcW6fdmpU_ESLF-2bsLuQntkLkZJEXLQ4AfNa5KkmKamxskZ-tyNOOHc_z1ILQSe5iZs5BkjucwWtQVLZlyG9QUdwTKszHmcerYN8e29HGNFT9yl7SR5IffmMZkR_PxwNHw1BNM9knz3CpCJJfLj7d1OM0b1i1cQDJ9NTBC33e0hySdL3JHRnHlpdqDfvOo1Qi8fpOBpv0ZTT2nFDbXUKqq1FtU4EFbZKhNaMiwHLeZgsWaxMjEPzrnwrZAKYxYGe8Y41ZTuQgmXbvaACNe7Kn2hGIuZr6WsBYHUuiqCgDEr-D5UC89FSaaXERVEsofoy9mRc3aUOXsfLgoPRz9-fYSo_pfxwX-MT2E17HXaUbvVvTmENfcmY6ocQSmdPpljzDdSdZLvp08eEdZ6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shannon+entropy+helps+optimize+the+performance+of+a%E2%80%AFfrequency-multiplexed+extreme+learning+machine&rft.jtitle=Optics+and+laser+technology&rft.au=Zajnulina%2C+Marina&rft.date=2025-12-01&rft.issn=0030-3992&rft.volume=192&rft.spage=113552&rft_id=info:doi/10.1016%2Fj.optlastec.2025.113552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2025_113552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon