Shannon entropy helps optimize the performance of a frequency-multiplexed extreme learning machine
Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs and minimized energy consumption levels. In nonlinear substrates such as optical fibers or semiconductors, these dynamics can widely vary depe...
Saved in:
Published in | Optics and laser technology Vol. 192; p. 113552 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0030-3992 |
DOI | 10.1016/j.optlastec.2025.113552 |
Cover
Loading…
Abstract | Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs and minimized energy consumption levels. In nonlinear substrates such as optical fibers or semiconductors, these dynamics can widely vary depending on the encoded inputs, even for a single set of physical parameters. Thus, other approaches are required to optimize the schemes. Here, I consider a frequency-multiplexed Extreme Learning Machine (ELM) that encodes information in the line amplitudes of a frequency comb and processes this information in a single-mode fiber subject to Kerr nonlinearity. Its performance is evaluated with Iris and Breast Cancer Wisconsin classification datasets. I introduce the notions of Shannon entropy of optical power, phase, and spectrum and numerically show that the optimization of system parameters (continuous-wave laser optical power and the modulation depth of the subsequent phase modulator as well as the fiber group-velocity dispersion and length) yields the ELM performance that places this neuromorphic scheme among the top-performing state-of-the-art computer-based machine-learning models. I show that the ELM’s performance is robust against initial noise, paving the way for cost-effective designs. Using Soliton Radiation Beat Analysis, I show that information encoding symmetric in frequency-comb lines yields the formation of input-power-dependent Akhmediev-breather-like structures and Peregrine solitons, whereas asymmetric encoding of the comb exhibits an additional regime of soliton crystals. Also, I discuss that asymmetric encoding supports the theory of Four-Wave Mixing as a data processing mechanism, whereas symmetric encoding underlines the theory of soliton-mediated information processing. The findings advance the toolbox and knowledge of Neuromorphic Photonics and general Nonlinear Optics.
[Display omitted]
•Shannon entropy enables effective ELM system design and performance optimization.•Entropy-optimized ELM competes with state-of-the- art machine and deep learning models.•Symmetry of initial information encoding impacts data processing via FWM or solitons.•Symmetric encoding yields breathers and solitons; asymmetric encoding also generates crystals.•ELM performance is robust to initial noise enabling cost-effective implementations. |
---|---|
AbstractList | Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs and minimized energy consumption levels. In nonlinear substrates such as optical fibers or semiconductors, these dynamics can widely vary depending on the encoded inputs, even for a single set of physical parameters. Thus, other approaches are required to optimize the schemes. Here, I consider a frequency-multiplexed Extreme Learning Machine (ELM) that encodes information in the line amplitudes of a frequency comb and processes this information in a single-mode fiber subject to Kerr nonlinearity. Its performance is evaluated with Iris and Breast Cancer Wisconsin classification datasets. I introduce the notions of Shannon entropy of optical power, phase, and spectrum and numerically show that the optimization of system parameters (continuous-wave laser optical power and the modulation depth of the subsequent phase modulator as well as the fiber group-velocity dispersion and length) yields the ELM performance that places this neuromorphic scheme among the top-performing state-of-the-art computer-based machine-learning models. I show that the ELM’s performance is robust against initial noise, paving the way for cost-effective designs. Using Soliton Radiation Beat Analysis, I show that information encoding symmetric in frequency-comb lines yields the formation of input-power-dependent Akhmediev-breather-like structures and Peregrine solitons, whereas asymmetric encoding of the comb exhibits an additional regime of soliton crystals. Also, I discuss that asymmetric encoding supports the theory of Four-Wave Mixing as a data processing mechanism, whereas symmetric encoding underlines the theory of soliton-mediated information processing. The findings advance the toolbox and knowledge of Neuromorphic Photonics and general Nonlinear Optics.
[Display omitted]
•Shannon entropy enables effective ELM system design and performance optimization.•Entropy-optimized ELM competes with state-of-the- art machine and deep learning models.•Symmetry of initial information encoding impacts data processing via FWM or solitons.•Symmetric encoding yields breathers and solitons; asymmetric encoding also generates crystals.•ELM performance is robust to initial noise enabling cost-effective implementations. |
ArticleNumber | 113552 |
Author | Zajnulina, Marina |
Author_xml | – sequence: 1 givenname: Marina orcidid: 0000-0002-9666-0534 surname: Zajnulina fullname: Zajnulina, Marina email: marina@physik.tu-berlin.de, zajnulina@multitel.be organization: Multitel Innovation Centre, Rue Pierre et Marie Curie 2, Mons, 7000, Belgium |
BookMark | eNqFkEtOwzAYhL0oEm3hDPgCCY4fCVlWFS8JiQWwthz7N3GVOMF2UcuKG3EnTkKqIrasZjWfZr4FmvnBA0IXBckLUpSXm3wYU6diAp1TQkVeFEwIOkNzQhjJWF3TU7SIcUMI4aVgc2SeWuUnCgafwjDucQvdGPGEcb37AJxawCMEO4ReeQ14sFh9f37ZAG9b8Hqf9dsuubGDHRgMuxSgB9yBCt75V9wr3ToPZ-jEqi7C-W8u0cvN9fP6Lnt4vL1frx4yTUuWskY3AphltmFa64qYurKNJbzSinNeWkGp0dw0YERdiIraSjVVcUU54VwwzdgSVUeuDkOMAawcg-tV2MuCyIMguZF_guRBkDwKmpqrYxOmee8OgozaTf_AuAA6STO4fxk_4057uw |
Cites_doi | 10.1364/OE.17.021497 10.1063/5.0212158 10.1016/j.aop.2022.168906 10.1364/OE.503279 10.1117/1.AP.6.1.016002 10.1051/jeos/2023001 10.3390/app7060635 10.1063/5.0158611 10.1515/nanoph-2022-0485 10.1364/OL.496884 10.1103/PhysRevE.109.061001 10.1515/nanoph-2024-0593 10.1103/PhysRevE.73.066615 10.1515/nanoph-2025-0045 10.1103/PhysRevResearch.4.023195 10.1038/s41567-024-02534-9 10.1038/s41586-020-2973-6 10.1364/OE.433535 10.1111/j.1469-1809.1936.tb02137.x 10.1364/JOSAB.28.000275 10.1109/JQE.2024.3405826 10.1103/PhysRevLett.122.084101 10.1016/j.procs.2021.07.062 10.1364/OE.425626 10.1063/1.4930316 10.1103/PhysRevApplied.21.034013 10.1051/epjconf/202328713003 10.1038/srep22381 10.1364/OL.562186 10.1002/advs.202303835 10.1364/JOSA.71.001373 10.1016/j.optcom.2017.02.035 10.1038/s41598-022-05061-w 10.1016/j.physd.2020.132816 10.1103/PhysRevLett.125.093901 10.1364/OE.489057 10.1364/PRJ.423531 10.1364/OL.530216 10.1140/epjp/s13360-024-05402-w 10.1038/s41566-024-01494-z 10.1109/JLT.2007.909373 10.1063/1.5042342 10.1007/s12559-014-9255-2 10.1038/s41566-024-01493-0 10.1364/OL.451087 10.1088/2634-4386/ad025b 10.1038/s42005-023-01375-x 10.1007/s00521-013-1522-8 10.1038/s41598-018-26927-y 10.1038/s41566-020-00754-y 10.1016/j.wavemoti.2020.102545 10.1063/5.0156189 10.1038/srep28516 10.1038/s42254-023-00645-5 10.3389/fphy.2019.00138 10.1109/JLT.2022.3146131 10.3389/fphy.2020.596950 10.1364/OL.40.001422 10.1364/OL.36.000112 10.1364/OL.33.000830 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optlastec.2025.113552 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_optlastec_2025_113552 S0030399225011430 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ ZMT ~G- AAYXX AFXIZ AGRNS BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c263t-bcb5e3f3fb3ccc70d97fbf047ca4446f522dc4dbed591572f7ab7182404453c33 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Thu Jul 24 02:08:28 EDT 2025 Sat Aug 16 17:00:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Peregrine soliton Extreme learning machine Akhmediev breather Optical computing Frequency comb Soliton radiation beat analysis (SRBA) Optimization Hardware software codesign Four wave mixing Optical soliton Neuromorphic photonics Dynamics Explainable AI (XAI) Shannon entropy Soliton crystal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-bcb5e3f3fb3ccc70d97fbf047ca4446f522dc4dbed591572f7ab7182404453c33 |
ORCID | 0000-0002-9666-0534 |
ParticipantIDs | crossref_primary_10_1016_j_optlastec_2025_113552 elsevier_sciencedirect_doi_10_1016_j_optlastec_2025_113552 |
PublicationCentury | 2000 |
PublicationDate | December 2025 2025-12-00 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
PublicationDecade | 2020 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lozano-Durán, Adrián (bib0265) 2022; 4 Biasi, Franchi, Cerini, Pavesi (bib0145) 2023; 8 Yamano (bib0225) 2024; 139 Bile, Tari, Pepino, Riccardo, Fazio (bib0160) 2023; 287 Zajnulina, Böhm, Bodenmüller, Blow, Boggio, Rieznik, Roth (bib0250) 2017; 393 Sunada, Uchida (bib0340) 2019; 9 Marcucci, Pierangeli, Conti (bib0155) 2020; 125 McMahon (bib0005) 2023; 5 Agrawal (bib0165) 2019 Finot (bib0185) 2015; 40 Butschek, Akrout, Dimitriadou, Lupo, Haelterman, Massar (bib0100) 2022; 47 Bai, Xu, Tan, Sun, Li, Wu, Morandotti, Mitchell, Xu, Moss (bib0080) 2023; 12 Pauwels, Verschaffelt, Massar, Van der Sande (bib0015) 2019; 7 Jannson, Jannson (bib0290) 1981; 71 Mitschke, Mahnke, Hause (bib0255) 2017; 7 Ye, Bu, Wang, Chen, Baronio, Mihalache (bib0310) 2020; 8 Kimmoun, Hsu, Branger, Li, Chen, Kharif, Onorato, Kelleher, Kibler, Akhmediev, Chabchoub (bib0300) 2016; 6 Wanjura, Marquardt (bib0070) 2024; 20 Suret, Pierre, Gelash, Agafontsev, Doyon, El (bib0220) 2024; 109 Fisher (bib0230) 1936; 7 Xia, Kim, Eliezer, Han, Shaughnessy, Gigan, Cao (bib0075) 2024; 18 Cincotta, Giordano, Silva, Beaugé (bib0260) 2021; 417 . Zajnulina, Böhm (bib0215) 2024; 49 Sozos, Deligiannidis, Mesaritakis, Bogris (bib0180) 2024; 60 I. Oguz, J. Ke, Q. Weng, F. Yang, M. Yildirim, N.U. Dinc, J.-L. Hsieh, C. Moser, D. Psaltis, Opt. Lett. 48 (20) (2023) 5249–5252 Hammani, Kibler, Finot, Morin, Fatome, Dudley, Millot (bib0305) 2011; 36 Xu, Han, Tan, Sun, Li, Wu, Morandotti, Mitchell, Xu, Moss (bib0085) 2023; 29 Phang (bib0040) 2023; 31 Saeed, Müftüoglu, Cheeran, Bocklitz, Fischer, Chemnitz (bib0170) 2025 Redding, Murray, Hart, Zhu, Pang, Sarma (bib0060) 2024; 7 Zajnulina, Lupo, Massar (bib0025) 2025; 33 Wetzstein, Ozcan, Gigan, Fan, Englund, Soljacic, Denz, Miller, Psaltis (bib0055) 2020; 588 Pierangeli, Marcucci, Conti (bib0150) 2021; 9 Wolberg, Mangasarian, Street, Street (bib0235) 1993 Naji, Filali, Aarika, Benlahmar, Abdelouhahid, Debauche (bib0330) 2021; 191 Brunner, Penkovsky, Marquez, Jacquot, Fischer, Larger (bib0035) 2018; 124 Ermolaev, Hary, Leybov, Ryczkowski, Skalli, Brunner, Genty, Dudley (bib0175) 2025; 50 Morison, Singh, Kayed, Aadhi, Moridsadat, Tamura, Tait, Shastri (bib0335) 2024; 21 Fischer, Chemnitz, Zhu, Perron, Roztocki, MacLellan, Di Lauro, Luigi, Rimoldi, Falk, Morandotti (bib0020) 2023; 10 Xu, Gelash, Chabchoub, Zakharov, Kibler (bib0200) 2019; 122 Skontranis, Sarantoglou, Sozos, Kamalakis, Mesaritakis, Borgis (bib0140) 2023; 3 Ding, Xu, Nie (bib0115) 2014; 25 Kesgin, Teğin (bib0345) 2025 Duport, Smerieri, Akrout, Haelterman, Massar (bib0095) 2016; 6 Zhang, Belić, Zheng, Chen, Li, Song, Zhang (bib0325) 2014; 39 Yildirim, Oguz, Kaufmann, Escalé, Grange, Psaltis, Moser (bib0130) 2023; 8 Suzuki, Gao, Pradel, Yasuoka, Yamamoto (bib0105) 2022; 12 Lima (bib0275) 2022; 442 Dudley, Genty, Dias, Kibler, Akhmediev (bib0190) 2009; 17 Cox, Murray, Hart, Redding (bib0065) 2024; 34 Zhou, Tingyi, Jalali (bib0125) 2022; 40 Oguz, Hsieh, Dinc, Teğin, Yildirim, Gigli, Moser, Psaltis (bib0045) 2024; 6 Schiek (bib0210) 2021; 29 Andral, Kibler, Dudley, Finot (bib0205) 2020; 95 Sprinkhuizen-Kuyper (bib0270) 1996 Argyris, Bueno, Fischer (bib0090) 2018; 8 Shastri, Tait, Ferreira de Lima, Pernice, Bhaskaran, Wright, Prucnal (bib0010) 2021; 15 Yildirim, Dinc, Oguz, Psaltis, Moser (bib0050) 2024; 18 Zajnulina, Böhm, Blow, Rieznik, Giannone, Haynes, Roth (bib0245) 2015; 25 Cohen, Chong, Schwartz, Popmintchev, Murnane, Kapteyn (bib0315) 2008; 33 Silva, Ferreira, Moreira, Rosa, Carla, Silva (bib0120) 2023; 19 Huang (bib0110) 2014; 6 Wen, Zhang, Zhu, Xiao (bib0320) 2011; 28 Lupo, Butschek, Massar (bib0030) 2021; 29 Hult (bib0280) 2007; 25 Frisquet, Kibler, Millot (bib0195) 2013; 3 Böhm, Mitschke (bib0240) 2006; 73 Wu, Clementi, Nitiss, Hu, Lafforgue, Brès (bib0295) 2023; 6 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0285) 2011; 12 Ye (10.1016/j.optlastec.2025.113552_bib0310) 2020; 8 Hammani (10.1016/j.optlastec.2025.113552_bib0305) 2011; 36 Yildirim (10.1016/j.optlastec.2025.113552_bib0050) 2024; 18 Wen (10.1016/j.optlastec.2025.113552_bib0320) 2011; 28 Sozos (10.1016/j.optlastec.2025.113552_bib0180) 2024; 60 Brunner (10.1016/j.optlastec.2025.113552_bib0035) 2018; 124 Wanjura (10.1016/j.optlastec.2025.113552_bib0070) 2024; 20 Duport (10.1016/j.optlastec.2025.113552_bib0095) 2016; 6 Ding (10.1016/j.optlastec.2025.113552_bib0115) 2014; 25 Hult (10.1016/j.optlastec.2025.113552_bib0280) 2007; 25 Jannson (10.1016/j.optlastec.2025.113552_bib0290) 1981; 71 Cincotta (10.1016/j.optlastec.2025.113552_bib0260) 2021; 417 Kesgin (10.1016/j.optlastec.2025.113552_bib0345) 2025 Bile (10.1016/j.optlastec.2025.113552_bib0160) 2023; 287 Agrawal (10.1016/j.optlastec.2025.113552_bib0165) 2019 Xu (10.1016/j.optlastec.2025.113552_bib0200) 2019; 122 Lupo (10.1016/j.optlastec.2025.113552_bib0030) 2021; 29 Wetzstein (10.1016/j.optlastec.2025.113552_bib0055) 2020; 588 Marcucci (10.1016/j.optlastec.2025.113552_bib0155) 2020; 125 Lima (10.1016/j.optlastec.2025.113552_bib0275) 2022; 442 Dudley (10.1016/j.optlastec.2025.113552_bib0190) 2009; 17 McMahon (10.1016/j.optlastec.2025.113552_bib0005) 2023; 5 Zajnulina (10.1016/j.optlastec.2025.113552_bib0250) 2017; 393 10.1016/j.optlastec.2025.113552_bib0135 Silva (10.1016/j.optlastec.2025.113552_bib0120) 2023; 19 Kimmoun (10.1016/j.optlastec.2025.113552_bib0300) 2016; 6 Shastri (10.1016/j.optlastec.2025.113552_bib0010) 2021; 15 Pauwels (10.1016/j.optlastec.2025.113552_bib0015) 2019; 7 Oguz (10.1016/j.optlastec.2025.113552_bib0045) 2024; 6 Wu (10.1016/j.optlastec.2025.113552_bib0295) 2023; 6 Phang (10.1016/j.optlastec.2025.113552_bib0040) 2023; 31 Zajnulina (10.1016/j.optlastec.2025.113552_bib0215) 2024; 49 Andral (10.1016/j.optlastec.2025.113552_bib0205) 2020; 95 Yamano (10.1016/j.optlastec.2025.113552_bib0225) 2024; 139 Wolberg (10.1016/j.optlastec.2025.113552_bib0235) 1993 Bai (10.1016/j.optlastec.2025.113552_bib0080) 2023; 12 Lozano-Durán (10.1016/j.optlastec.2025.113552_bib0265) 2022; 4 Sprinkhuizen-Kuyper (10.1016/j.optlastec.2025.113552_bib0270) 1996 Ermolaev (10.1016/j.optlastec.2025.113552_bib0175) 2025; 50 Zhou (10.1016/j.optlastec.2025.113552_bib0125) 2022; 40 Saeed (10.1016/j.optlastec.2025.113552_bib0170) 2025 Zajnulina (10.1016/j.optlastec.2025.113552_bib0025) 2025; 33 Naji (10.1016/j.optlastec.2025.113552_bib0330) 2021; 191 Fischer (10.1016/j.optlastec.2025.113552_bib0020) 2023; 10 Argyris (10.1016/j.optlastec.2025.113552_bib0090) 2018; 8 Pedregosa (10.1016/j.optlastec.2025.113552_bib0285) 2011; 12 Böhm (10.1016/j.optlastec.2025.113552_bib0240) 2006; 73 Xia (10.1016/j.optlastec.2025.113552_bib0075) 2024; 18 Pierangeli (10.1016/j.optlastec.2025.113552_bib0150) 2021; 9 Schiek (10.1016/j.optlastec.2025.113552_bib0210) 2021; 29 Suzuki (10.1016/j.optlastec.2025.113552_bib0105) 2022; 12 Redding (10.1016/j.optlastec.2025.113552_bib0060) 2024; 7 Butschek (10.1016/j.optlastec.2025.113552_bib0100) 2022; 47 Skontranis (10.1016/j.optlastec.2025.113552_bib0140) 2023; 3 Suret (10.1016/j.optlastec.2025.113552_bib0220) 2024; 109 Mitschke (10.1016/j.optlastec.2025.113552_bib0255) 2017; 7 Cox (10.1016/j.optlastec.2025.113552_bib0065) 2024; 34 Frisquet (10.1016/j.optlastec.2025.113552_bib0195) 2013; 3 Biasi (10.1016/j.optlastec.2025.113552_bib0145) 2023; 8 Zajnulina (10.1016/j.optlastec.2025.113552_bib0245) 2015; 25 Huang (10.1016/j.optlastec.2025.113552_bib0110) 2014; 6 Finot (10.1016/j.optlastec.2025.113552_bib0185) 2015; 40 Morison (10.1016/j.optlastec.2025.113552_bib0335) 2024; 21 Xu (10.1016/j.optlastec.2025.113552_bib0085) 2023; 29 Zhang (10.1016/j.optlastec.2025.113552_bib0325) 2014; 39 Fisher (10.1016/j.optlastec.2025.113552_bib0230) 1936; 7 Sunada (10.1016/j.optlastec.2025.113552_bib0340) 2019; 9 Cohen (10.1016/j.optlastec.2025.113552_bib0315) 2008; 33 Yildirim (10.1016/j.optlastec.2025.113552_bib0130) 2023; 8 |
References_xml | – volume: 588 start-page: 39 year: 2020 end-page: 47 ident: bib0055 article-title: Inference in artificial intelligence with deep optics and photonics publication-title: Nature – volume: 39 year: 2014 ident: bib0325 article-title: Nonlinear Talbot effect of rogue waves publication-title: Phys. Rev. E – volume: 8 year: 2023 ident: bib0130 article-title: Nonlinear optical feature generator for machine learning publication-title: APL. Photonics – volume: 40 start-page: 1422 year: 2015 end-page: 1425 ident: bib0185 article-title: 40-GHz photonic waveform generator by linear shaping of four spectral sidebands publication-title: Opt. Lett. – volume: 7 year: 2019 ident: bib0015 article-title: Distributed Kerr non-linearity in a coherent all-optical fiber-ring reservoir computer publication-title: Front. Phys. – volume: 8 year: 2023 ident: bib0145 article-title: An array of microresonators as a photonic extreme learning machine publication-title: APL Photon. – volume: 139 start-page: 595 year: 2024 ident: bib0225 article-title: Shannon entropy and fisher information of solitons for the cubic nonlinear Schrödinger equation publication-title: Eur. Phys. J. Plus – volume: 34 year: 2024 ident: bib0065 article-title: Photonic next-generation reservoir computer based on distributed feedback in optical fiber publication-title: Chaos – volume: 49 start-page: 3894 year: 2024 end-page: 3897 ident: bib0215 article-title: Temporal Talbot effect: from a quasi-linear Talbot carpet to soliton crystals and Talbot solitons publication-title: Opt. Lett. – volume: 28 start-page: 275 year: 2011 end-page: 280 ident: bib0320 article-title: Theory of nonlinear Talbot effect publication-title: J. Opt. Soc. Am. B. – year: 2025 ident: bib0345 article-title: Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers publication-title: Nanophotonics – volume: 33 start-page: 830 year: 2008 end-page: 832 ident: bib0315 article-title: Talbot solitons publication-title: Opt. Lett. – volume: 33 start-page: 7601 year: 2025 end-page: 7619 ident: bib0025 article-title: Weak Kerr nonlinearity boosts the performance of frequency-multiplexed photonic extreme learning machines: a multifaceted approach publication-title: Opt. Express. – volume: 73 year: 2006 ident: bib0240 article-title: Soliton-radiation beat analysis publication-title: Phys. Rev. E. – volume: 71 start-page: 1373 year: 1981 end-page: 1376 ident: bib0290 article-title: Temporal self-imaging effect in single-mode fibers publication-title: J. Opt. Soc. Am. – volume: 19 start-page: 8 year: 2023 ident: bib0120 article-title: Exploring the hidden dimensions of an optical extreme learning machine publication-title: J. Eur. Opt. Society-Rapid Publ. – volume: 5 start-page: 717 year: 2023 end-page: 734 ident: bib0005 article-title: The physics of optical computing publication-title: Nat. Rev. Phys. – volume: 12 start-page: 1353 year: 2022 ident: bib0105 article-title: Natural quantum reservoir computing for temporal information processing publication-title: Sci. Rep. – volume: 7 start-page: 635 year: 2017 ident: bib0255 article-title: Soliton content of fiber-optic light pulses publication-title: Appl. Sci. – volume: 124 year: 2018 ident: bib0035 article-title: Tutorial: photonic neural networks in delay systems publication-title: J. Appl. Phys. – volume: 21 year: 2024 ident: bib0335 article-title: Nonlinear dynamics in neuromorphic photonic networks: physical simulation in Verilog-A publication-title: Phys. Rev. Appl. – volume: 29 year: 2023 ident: bib0085 article-title: Neuromorphic computing based on wavelength-division multiplexing publication-title: IEEE J. Sel. Top. Quantum Electron – volume: 95 year: 2020 ident: bib0205 article-title: Akhmediev breather signatures from dispersive propagation of a periodically phase-modulated continuous wave publication-title: Wave Motion – volume: 18 start-page: 1067 year: 2024 end-page: 1075 ident: bib0075 article-title: Nonlinear optical encoding enabled by recurrent linear scattering publication-title: Nat. Photon – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib0230 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen – volume: 40 start-page: 1308 year: 2022 end-page: 1319 ident: bib0125 article-title: Nonlinear schrödinger kernel for hardware acceleration of machine learning publication-title: J. Light. Technol – volume: 3 year: 2023 ident: bib0140 article-title: Multimode fabry-perot laser as a reservoir computing and extreme learning machine photonic accelerator publication-title: Neuromorph. Comput. Eng. – volume: 9 start-page: 1446 year: 2021 end-page: 1454 ident: bib0150 article-title: Photonic extreme learning machine by free-space optical propagation publication-title: Photon. Res. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0285 article-title: Scikit-learn: machine learning in Python publication-title: JMLR – volume: 9 year: 2019 ident: bib0340 article-title: Photonic reservoir computing based on nonlinear wave dynamics at microscale publication-title: Sci. Rep. – volume: 36 start-page: 112 year: 2011 end-page: 114 ident: bib0305 article-title: Peregrine soliton generation and breakup in standard telecommunications fiber publication-title: Opt. Lett. – volume: 8 start-page: 8487 year: 2018 ident: bib0090 article-title: Photonic machine learning implementation for signal recovery in optical communications publication-title: Sci. Rep. – volume: 47 start-page: 782 year: 2022 end-page: 785 ident: bib0100 article-title: Photonic reservoir computer based on frequency multiplexing publication-title: Opt. Lett. – volume: 17 year: 2009 ident: bib0190 article-title: Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation publication-title: Opt. Express. – volume: 15 start-page: 102 year: 2021 end-page: 114 ident: bib0010 article-title: Photonics for artificial intelligence and neuromorphic computing publication-title: Nat. Photonics – year: 2025 ident: bib0170 article-title: Nonlinear inference capacity of fiber-optical extreme learning machines publication-title: Nanophotonics – year: 1996 ident: bib0270 publication-title: Some Remarks on the Entropy of a Neural Network – volume: 4 year: 2022 ident: bib0265 article-title: Information-theoretic formulation of dynamical systems: causality, modeling, and control publication-title: Phys. Rev. Res. – volume: 6 start-page: 376 year: 2014 end-page: 390 ident: bib0110 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cogn. Comput. – volume: 393 start-page: 95 year: 2017 end-page: 102 ident: bib0250 article-title: Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation publication-title: Opt. Commun – volume: 122 year: 2019 ident: bib0200 article-title: Breather wave molecules publication-title: Phys. Rev. Lett. – volume: 25 start-page: 3770 year: 2007 end-page: 3775 ident: bib0280 article-title: A Fourth-Order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers publication-title: J. Light. Technol – volume: 29 start-page: 28257 year: 2021 end-page: 28276 ident: bib0030 article-title: Photonic extreme learning machine based on frequency multiplexing publication-title: Opt. Express. – volume: 31 start-page: 22061 year: 2023 end-page: 22074 ident: bib0040 article-title: Photonic reservoir computing enabled by stimulated Brillouin scattering publication-title: Opt. Express. – volume: 7 year: 2024 ident: bib0060 article-title: Fiber optic computing using distributed feedback publication-title: Commun. Phys – volume: 6 year: 2016 ident: bib0095 article-title: Fully analogue photonic reservoir computer publication-title: Sci. Rep. – volume: 6 start-page: 2399 year: 2023 end-page: 3650 ident: bib0295 article-title: Bright and dark Talbot pulse trains on a chip publication-title: Commun. Phys. – year: 1993 ident: bib0235 article-title: Breast Cancer Wisconsin (diagnostic) – volume: 6 year: 2024 ident: bib0045 article-title: Programming nonlinear propagation for efficient optical learning machines publication-title: Adv. Photonics – volume: 191 start-page: 487 year: 2021 end-page: 492 ident: bib0330 article-title: Machine learning algorithms for breast cancer prediction and diagnosis publication-title: Procedia Comput. Sci. – year: 2019 ident: bib0165 publication-title: Nonlinear Fiber Optics – volume: 8 year: 2020 ident: bib0310 article-title: Peregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equation publication-title: Front. Phys. – volume: 287 year: 2023 ident: bib0160 article-title: Solitonic neural network: a novel approach of photonic artificial intelligence based on photorefractive solitonic waveguides publication-title: EPJ. Web. Conf. – volume: 12 start-page: 795 year: 2023 end-page: 817 ident: bib0080 article-title: Photonic multiplexing techniques for neuromorphic computing publication-title: Nanophotonics – volume: 25 start-page: 549 year: 2014 end-page: 556 ident: bib0115 article-title: Extreme learning machine and its applications publication-title: Neural Comput. Appl. – volume: 109 year: 2024 ident: bib0220 article-title: Soliton gas: theory, numerics, and experiments publication-title: Phys. Rev. E. – volume: 29 start-page: 15830 year: 2021 end-page: 15851 ident: bib0210 article-title: Excitation of nonlinear beams: from the linear Talbot effect through modulation instability to Akhmediev breathers publication-title: Opt. Express. – volume: 442 year: 2022 ident: bib0275 article-title: Quantum information entropies for a soliton at hyperbolic well publication-title: Ann. Phys. – reference: I. Oguz, J. Ke, Q. Weng, F. Yang, M. Yildirim, N.U. Dinc, J.-L. Hsieh, C. Moser, D. Psaltis, Opt. Lett. 48 (20) (2023) 5249–5252, – reference: . – volume: 60 start-page: 1 year: 2024 end-page: 6 ident: bib0180 article-title: Unconventional computing based on four wave mixing in highly nonlinear waveguides publication-title: IEEE J. Quantum Electron. – volume: 10 year: 2023 ident: bib0020 article-title: Neuromorphic computing via fission-based broadband frequency generation publication-title: Adv. Sci. – volume: 25 year: 2015 ident: bib0245 article-title: Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers publication-title: Chaos – volume: 20 start-page: 1434 year: 2024 end-page: 1440 ident: bib0070 article-title: Fully nonlinear neuromorphic computing with linear wave scattering publication-title: Nat. Phys. – volume: 125 year: 2020 ident: bib0155 article-title: Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons publication-title: Phys. Rev. Lett. – volume: 3 year: 2013 ident: bib0195 article-title: Collision of Akhmediev breathers in nonlinear fiber optics publication-title: Phys. Rev. X – volume: 6 year: 2016 ident: bib0300 article-title: Modulation instability and phase-shifted fermi-pasta-ulam recurrence publication-title: Sci. Rep. – volume: 50 start-page: 4166 year: 2025 end-page: 4169 ident: bib0175 article-title: Limits of nonlinear and dispersive fiber propagation for photonic extreme learning publication-title: Opt. Lett. – volume: 18 start-page: 1076 year: 2024 end-page: 1082 ident: bib0050 article-title: Nonlinear processing with linear optics publication-title: Nat. Photon – volume: 417 year: 2021 ident: bib0260 article-title: The Shannon entropy: an efficient indicator of dynamical stability publication-title: Phys. D: Nonlinear Phenom. – volume: 17 issue: 24 year: 2009 ident: 10.1016/j.optlastec.2025.113552_bib0190 article-title: Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation publication-title: Opt. Express. doi: 10.1364/OE.17.021497 – year: 1993 ident: 10.1016/j.optlastec.2025.113552_bib0235 – volume: 34 issue: 7 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0065 article-title: Photonic next-generation reservoir computer based on distributed feedback in optical fiber publication-title: Chaos doi: 10.1063/5.0212158 – volume: 442 year: 2022 ident: 10.1016/j.optlastec.2025.113552_bib0275 article-title: Quantum information entropies for a soliton at hyperbolic well publication-title: Ann. Phys. doi: 10.1016/j.aop.2022.168906 – volume: 33 start-page: 7601 issue: 4 year: 2025 ident: 10.1016/j.optlastec.2025.113552_bib0025 article-title: Weak Kerr nonlinearity boosts the performance of frequency-multiplexed photonic extreme learning machines: a multifaceted approach publication-title: Opt. Express. doi: 10.1364/OE.503279 – volume: 6 issue: 1 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0045 article-title: Programming nonlinear propagation for efficient optical learning machines publication-title: Adv. Photonics doi: 10.1117/1.AP.6.1.016002 – volume: 19 start-page: 8 issue: 1 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0120 article-title: Exploring the hidden dimensions of an optical extreme learning machine publication-title: J. Eur. Opt. Society-Rapid Publ. doi: 10.1051/jeos/2023001 – volume: 7 start-page: 635 issue: 6 year: 2017 ident: 10.1016/j.optlastec.2025.113552_bib0255 article-title: Soliton content of fiber-optic light pulses publication-title: Appl. Sci. doi: 10.3390/app7060635 – volume: 8 issue: 10 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0130 article-title: Nonlinear optical feature generator for machine learning publication-title: APL. Photonics doi: 10.1063/5.0158611 – volume: 12 start-page: 795 issue: 5 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0080 article-title: Photonic multiplexing techniques for neuromorphic computing publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0485 – ident: 10.1016/j.optlastec.2025.113552_bib0135 doi: 10.1364/OL.496884 – volume: 109 issue: 6 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0220 article-title: Soliton gas: theory, numerics, and experiments publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.109.061001 – year: 2025 ident: 10.1016/j.optlastec.2025.113552_bib0345 article-title: Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers publication-title: Nanophotonics doi: 10.1515/nanoph-2024-0593 – volume: 73 issue: 6 year: 2006 ident: 10.1016/j.optlastec.2025.113552_bib0240 article-title: Soliton-radiation beat analysis publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.73.066615 – year: 2025 ident: 10.1016/j.optlastec.2025.113552_bib0170 article-title: Nonlinear inference capacity of fiber-optical extreme learning machines publication-title: Nanophotonics doi: 10.1515/nanoph-2025-0045 – volume: 7 issue: 75 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0060 article-title: Fiber optic computing using distributed feedback publication-title: Commun. Phys – volume: 4 issue: 2 year: 2022 ident: 10.1016/j.optlastec.2025.113552_bib0265 article-title: Information-theoretic formulation of dynamical systems: causality, modeling, and control publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.023195 – volume: 20 start-page: 1434 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0070 article-title: Fully nonlinear neuromorphic computing with linear wave scattering publication-title: Nat. Phys. doi: 10.1038/s41567-024-02534-9 – volume: 588 start-page: 39 year: 2020 ident: 10.1016/j.optlastec.2025.113552_bib0055 article-title: Inference in artificial intelligence with deep optics and photonics publication-title: Nature doi: 10.1038/s41586-020-2973-6 – volume: 29 start-page: 28257 issue: 18 year: 2021 ident: 10.1016/j.optlastec.2025.113552_bib0030 article-title: Photonic extreme learning machine based on frequency multiplexing publication-title: Opt. Express. doi: 10.1364/OE.433535 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 10.1016/j.optlastec.2025.113552_bib0230 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 28 start-page: 275 issue: 2 year: 2011 ident: 10.1016/j.optlastec.2025.113552_bib0320 article-title: Theory of nonlinear Talbot effect publication-title: J. Opt. Soc. Am. B. doi: 10.1364/JOSAB.28.000275 – volume: 29 issue: 2 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0085 article-title: Neuromorphic computing based on wavelength-division multiplexing publication-title: IEEE J. Sel. Top. Quantum Electron – volume: 60 start-page: 1 issue: 4 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0180 article-title: Unconventional computing based on four wave mixing in highly nonlinear waveguides publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2024.3405826 – volume: 122 issue: 8 year: 2019 ident: 10.1016/j.optlastec.2025.113552_bib0200 article-title: Breather wave molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.084101 – volume: 191 start-page: 487 year: 2021 ident: 10.1016/j.optlastec.2025.113552_bib0330 article-title: Machine learning algorithms for breast cancer prediction and diagnosis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.07.062 – volume: 29 start-page: 15830 issue: 10 year: 2021 ident: 10.1016/j.optlastec.2025.113552_bib0210 article-title: Excitation of nonlinear beams: from the linear Talbot effect through modulation instability to Akhmediev breathers publication-title: Opt. Express. doi: 10.1364/OE.425626 – volume: 3 issue: 4 year: 2013 ident: 10.1016/j.optlastec.2025.113552_bib0195 article-title: Collision of Akhmediev breathers in nonlinear fiber optics publication-title: Phys. Rev. X – volume: 25 issue: 10 year: 2015 ident: 10.1016/j.optlastec.2025.113552_bib0245 article-title: Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers publication-title: Chaos doi: 10.1063/1.4930316 – volume: 21 issue: 3 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0335 article-title: Nonlinear dynamics in neuromorphic photonic networks: physical simulation in Verilog-A publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.21.034013 – volume: 287 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0160 article-title: Solitonic neural network: a novel approach of photonic artificial intelligence based on photorefractive solitonic waveguides publication-title: EPJ. Web. Conf. doi: 10.1051/epjconf/202328713003 – volume: 6 year: 2016 ident: 10.1016/j.optlastec.2025.113552_bib0095 article-title: Fully analogue photonic reservoir computer publication-title: Sci. Rep. doi: 10.1038/srep22381 – volume: 50 start-page: 4166 year: 2025 ident: 10.1016/j.optlastec.2025.113552_bib0175 article-title: Limits of nonlinear and dispersive fiber propagation for photonic extreme learning publication-title: Opt. Lett. doi: 10.1364/OL.562186 – volume: 10 issue: 35 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0020 article-title: Neuromorphic computing via fission-based broadband frequency generation publication-title: Adv. Sci. doi: 10.1002/advs.202303835 – volume: 71 start-page: 1373 issue: 11 year: 1981 ident: 10.1016/j.optlastec.2025.113552_bib0290 article-title: Temporal self-imaging effect in single-mode fibers publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.71.001373 – volume: 393 start-page: 95 year: 2017 ident: 10.1016/j.optlastec.2025.113552_bib0250 article-title: Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation publication-title: Opt. Commun doi: 10.1016/j.optcom.2017.02.035 – volume: 12 start-page: 1353 year: 2022 ident: 10.1016/j.optlastec.2025.113552_bib0105 article-title: Natural quantum reservoir computing for temporal information processing publication-title: Sci. Rep. doi: 10.1038/s41598-022-05061-w – year: 2019 ident: 10.1016/j.optlastec.2025.113552_bib0165 – volume: 417 year: 2021 ident: 10.1016/j.optlastec.2025.113552_bib0260 article-title: The Shannon entropy: an efficient indicator of dynamical stability publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/j.physd.2020.132816 – volume: 125 issue: 9 year: 2020 ident: 10.1016/j.optlastec.2025.113552_bib0155 article-title: Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.093901 – volume: 31 start-page: 22061 issue: 13 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0040 article-title: Photonic reservoir computing enabled by stimulated Brillouin scattering publication-title: Opt. Express. doi: 10.1364/OE.489057 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.optlastec.2025.113552_bib0285 article-title: Scikit-learn: machine learning in Python publication-title: JMLR – volume: 9 start-page: 1446 year: 2021 ident: 10.1016/j.optlastec.2025.113552_bib0150 article-title: Photonic extreme learning machine by free-space optical propagation publication-title: Photon. Res. doi: 10.1364/PRJ.423531 – volume: 49 start-page: 3894 issue: 14 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0215 article-title: Temporal Talbot effect: from a quasi-linear Talbot carpet to soliton crystals and Talbot solitons publication-title: Opt. Lett. doi: 10.1364/OL.530216 – volume: 139 start-page: 595 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0225 article-title: Shannon entropy and fisher information of solitons for the cubic nonlinear Schrödinger equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-024-05402-w – volume: 18 start-page: 1076 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0050 article-title: Nonlinear processing with linear optics publication-title: Nat. Photon doi: 10.1038/s41566-024-01494-z – volume: 25 start-page: 3770 issue: 12 year: 2007 ident: 10.1016/j.optlastec.2025.113552_bib0280 article-title: A Fourth-Order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers publication-title: J. Light. Technol doi: 10.1109/JLT.2007.909373 – volume: 124 year: 2018 ident: 10.1016/j.optlastec.2025.113552_bib0035 article-title: Tutorial: photonic neural networks in delay systems publication-title: J. Appl. Phys. doi: 10.1063/1.5042342 – volume: 6 start-page: 376 issue: 3 year: 2014 ident: 10.1016/j.optlastec.2025.113552_bib0110 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cogn. Comput. doi: 10.1007/s12559-014-9255-2 – volume: 18 start-page: 1067 year: 2024 ident: 10.1016/j.optlastec.2025.113552_bib0075 article-title: Nonlinear optical encoding enabled by recurrent linear scattering publication-title: Nat. Photon doi: 10.1038/s41566-024-01493-0 – volume: 47 start-page: 782 issue: 4 year: 2022 ident: 10.1016/j.optlastec.2025.113552_bib0100 article-title: Photonic reservoir computer based on frequency multiplexing publication-title: Opt. Lett. doi: 10.1364/OL.451087 – volume: 3 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0140 article-title: Multimode fabry-perot laser as a reservoir computing and extreme learning machine photonic accelerator publication-title: Neuromorph. Comput. Eng. doi: 10.1088/2634-4386/ad025b – volume: 6 start-page: 2399 issue: 1 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0295 article-title: Bright and dark Talbot pulse trains on a chip publication-title: Commun. Phys. doi: 10.1038/s42005-023-01375-x – volume: 25 start-page: 549 year: 2014 ident: 10.1016/j.optlastec.2025.113552_bib0115 article-title: Extreme learning machine and its applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1522-8 – volume: 8 start-page: 8487 year: 2018 ident: 10.1016/j.optlastec.2025.113552_bib0090 article-title: Photonic machine learning implementation for signal recovery in optical communications publication-title: Sci. Rep. doi: 10.1038/s41598-018-26927-y – volume: 15 start-page: 102 year: 2021 ident: 10.1016/j.optlastec.2025.113552_bib0010 article-title: Photonics for artificial intelligence and neuromorphic computing publication-title: Nat. Photonics doi: 10.1038/s41566-020-00754-y – volume: 95 year: 2020 ident: 10.1016/j.optlastec.2025.113552_bib0205 article-title: Akhmediev breather signatures from dispersive propagation of a periodically phase-modulated continuous wave publication-title: Wave Motion doi: 10.1016/j.wavemoti.2020.102545 – volume: 39 issue: 3 year: 2014 ident: 10.1016/j.optlastec.2025.113552_bib0325 article-title: Nonlinear Talbot effect of rogue waves publication-title: Phys. Rev. E – volume: 8 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0145 article-title: An array of microresonators as a photonic extreme learning machine publication-title: APL Photon. doi: 10.1063/5.0156189 – volume: 6 year: 2016 ident: 10.1016/j.optlastec.2025.113552_bib0300 article-title: Modulation instability and phase-shifted fermi-pasta-ulam recurrence publication-title: Sci. Rep. doi: 10.1038/srep28516 – volume: 5 start-page: 717 issue: 12 year: 2023 ident: 10.1016/j.optlastec.2025.113552_bib0005 article-title: The physics of optical computing publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00645-5 – volume: 7 year: 2019 ident: 10.1016/j.optlastec.2025.113552_bib0015 article-title: Distributed Kerr non-linearity in a coherent all-optical fiber-ring reservoir computer publication-title: Front. Phys. doi: 10.3389/fphy.2019.00138 – volume: 40 start-page: 1308 issue: 5 year: 2022 ident: 10.1016/j.optlastec.2025.113552_bib0125 article-title: Nonlinear schrödinger kernel for hardware acceleration of machine learning publication-title: J. Light. Technol doi: 10.1109/JLT.2022.3146131 – year: 1996 ident: 10.1016/j.optlastec.2025.113552_bib0270 – volume: 8 year: 2020 ident: 10.1016/j.optlastec.2025.113552_bib0310 article-title: Peregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equation publication-title: Front. Phys. doi: 10.3389/fphy.2020.596950 – volume: 40 start-page: 1422 issue: 7 year: 2015 ident: 10.1016/j.optlastec.2025.113552_bib0185 article-title: 40-GHz photonic waveform generator by linear shaping of four spectral sidebands publication-title: Opt. Lett. doi: 10.1364/OL.40.001422 – volume: 36 start-page: 112 year: 2011 ident: 10.1016/j.optlastec.2025.113552_bib0305 article-title: Peregrine soliton generation and breakup in standard telecommunications fiber publication-title: Opt. Lett. doi: 10.1364/OL.36.000112 – volume: 33 start-page: 830 issue: 8 year: 2008 ident: 10.1016/j.optlastec.2025.113552_bib0315 article-title: Talbot solitons publication-title: Opt. Lett. doi: 10.1364/OL.33.000830 – volume: 9 issue: 19078 year: 2019 ident: 10.1016/j.optlastec.2025.113552_bib0340 article-title: Photonic reservoir computing based on nonlinear wave dynamics at microscale publication-title: Sci. Rep. |
SSID | ssj0004653 |
Score | 2.4134772 |
Snippet | Knowing the dynamics of neuromorphic photonic schemes would allow their optimization for controlled data-processing capability in possibly simplified designs... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 113552 |
SubjectTerms | Akhmediev breather Dynamics Explainable AI (XAI) Extreme learning machine Four wave mixing Frequency comb Hardware software codesign Neuromorphic photonics Optical computing Optical soliton Optimization Peregrine soliton Shannon entropy Soliton crystal Soliton radiation beat analysis (SRBA) |
Title | Shannon entropy helps optimize the performance of a frequency-multiplexed extreme learning machine |
URI | https://dx.doi.org/10.1016/j.optlastec.2025.113552 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lIuhBfGJ9lBy8rt1ukqbxVoqlKvaihd6WJJvYim2XdgXrQfxH_id_iZN9aAuCB4-7bNgwSb6ZCd98g9BZ04liSTjfJhDKo5bWPaGY9Li1Td0kcMaoq0a-7TW6fXo9YIMSahe1MI5WmWN_hukpWudvark1a_Fo5Gp8AX6drCpzQT1xeTul3O3y87f6Um1krkRJAG_g6xWO1zROIEZNjNMyDJjrb8JY8LuHWvI6nW20lYeLuJXNaAeVzGQXbS6JCO6i9ZTEqed7KLobygmk89jd2E7jBR6ap3iO4fej8ejVYIj1cPxTKICnFsvP9w87y-jUC69gF76YCANou6tDnLeVeMDjlHZp9lG_c3nf7np5FwVPBw2SeEorZoglVhGtNfcjwa2yPuVaUsgFLQRgkaaRMhETdcYDy6UChwWenlJGNCEHqAxTN4cIc1e4KgOuKI1ooKVsCCG19rkQlFrOKsgvLBfGmVhGWLDIHsNvY4fO2GFm7Aq6KCwcrqx7CJD-1-Cj_ww-RhvuKaOmnKByMns2pxBgJKqa7qAqWmtd3XR7X9dK08k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB2kIupBtCp-m4PXpXWTNF1vUixbbXuxhd6WJJtoxbZLu4J68h_5n_wlTrq7WkHw4HWXYcNs8mYmvHkDcFZ3olgSz7fxA-Uxy869QHHpCWvruk7xjDHXjdzp1sI-ux7wwRI0il4YR6vMsT_D9Dla508quTcryXDoenwRfp2sKndJPcW6fdmpU_ESLF-2bsLuQntkLkZJEXLQ4AfNa5KkmKamxskZ-tyNOOHc_z1ILQSe5iZs5BkjucwWtQVLZlyG9QUdwTKszHmcerYN8e29HGNFT9yl7SR5IffmMZkR_PxwNHw1BNM9knz3CpCJJfLj7d1OM0b1i1cQDJ9NTBC33e0hySdL3JHRnHlpdqDfvOo1Qi8fpOBpv0ZTT2nFDbXUKqq1FtU4EFbZKhNaMiwHLeZgsWaxMjEPzrnwrZAKYxYGe8Y41ZTuQgmXbvaACNe7Kn2hGIuZr6WsBYHUuiqCgDEr-D5UC89FSaaXERVEsofoy9mRc3aUOXsfLgoPRz9-fYSo_pfxwX-MT2E17HXaUbvVvTmENfcmY6ocQSmdPpljzDdSdZLvp08eEdZ6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shannon+entropy+helps+optimize+the+performance+of+a%E2%80%AFfrequency-multiplexed+extreme+learning+machine&rft.jtitle=Optics+and+laser+technology&rft.au=Zajnulina%2C+Marina&rft.date=2025-12-01&rft.issn=0030-3992&rft.volume=192&rft.spage=113552&rft_id=info:doi/10.1016%2Fj.optlastec.2025.113552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2025_113552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |