Toward Optimal Energy Management of Microgrids via Robust Two-Stage Optimization
This paper considers energy management in a grid-connected microgrid which has multiple conventional generators (CGs), renewable generators and energy storage systems (ESSs). A robust two-stage optimization approach is presented to schedule the energy generation under uncertainties, aimed at minimiz...
Saved in:
Published in | IEEE transactions on smart grid Vol. 9; no. 2; pp. 1161 - 1174 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1949-3053 1949-3061 |
DOI | 10.1109/TSG.2016.2580575 |
Cover
Abstract | This paper considers energy management in a grid-connected microgrid which has multiple conventional generators (CGs), renewable generators and energy storage systems (ESSs). A robust two-stage optimization approach is presented to schedule the energy generation under uncertainties, aimed at minimizing the long-term average operating cost subject to realistic operational and service constraints. The first stage of optimization determines hourly unit commitment of the CGs via a day-ahead scheduling, and the second stage performs economic dispatch of the CGs, ESSs, and energy trading via a real-time scheduling. The combined solution meets the need of handling large uncertainties in the load demands and renewable generation, and provides an efficient solution under limited computational resource which approximately optimizes the long-term average operating cost while meeting the quality-of-service requirements. The performance of the proposed strategy is evaluated by simulations based on real load demand and renewable generation data. |
---|---|
AbstractList | This paper considers energy management in a grid-connected microgrid which has multiple conventional generators (CGs), renewable generators and energy storage systems (ESSs). A robust two-stage optimization approach is presented to schedule the energy generation under uncertainties, aimed at minimizing the long-term average operating cost subject to realistic operational and service constraints. The first stage of optimization determines hourly unit commitment of the CGs via a day-ahead scheduling, and the second stage performs economic dispatch of the CGs, ESSs, and energy trading via a real-time scheduling. The combined solution meets the need of handling large uncertainties in the load demands and renewable generation, and provides an efficient solution under limited computational resource which approximately optimizes the long-term average operating cost while meeting the quality-of-service requirements. The performance of the proposed strategy is evaluated by simulations based on real load demand and renewable generation data. |
Author | Wang, Ping Gooi, Hoay Beng Hu, Wuhua |
Author_xml | – sequence: 1 givenname: Wuhua surname: Hu fullname: Hu, Wuhua email: hwh@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Ping orcidid: 0000-0002-1599-5480 surname: Wang fullname: Wang, Ping email: wangping@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Hoay Beng orcidid: 0000-0002-5983-2181 surname: Gooi fullname: Gooi, Hoay Beng email: ehbgooi@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
BookMark | eNp9kE1PAjEQhhuDiYjcTbz0Dyz2Y9vdHg1BNIFgZD1vpt2W1MAu6VYJ_HoXIRw8OJeZTOaZeee9Rb26qS1C95SMKCXqsVhOR4xQOWIiJyITV6hPVaoSTiTtXWrBb9CwbT9JF5xzyVQfvRXNDkKFF9voN7DGk9qG1R7PoYaV3dg64sbhuTehWQVftfjbA35v9FcbcbFrkmXsxk6wP0D0TX2Hrh2sWzs85wH6eJ4U45dktpi-jp9miWGSxwQy0DZXljFXyUqD0SlVnGhQEoSQ4CykJgOiXeUMyQzPRc5yzUzX4EIBHyBy2ttJa9tgXbkN3QdhX1JSHk0pO1PKoynl2ZQOkX8Q4-Ov6BjAr_8DH06gt9Ze7mSpoixL-Q8RGnKs |
CODEN | ITSGBQ |
CitedBy_id | crossref_primary_10_1109_JIOT_2020_3042007 crossref_primary_10_1109_TSG_2018_2806973 crossref_primary_10_1109_TSG_2021_3097047 crossref_primary_10_1016_j_energy_2024_133688 crossref_primary_10_1016_j_rser_2025_115416 crossref_primary_10_1049_iet_gtd_2020_0287 crossref_primary_10_3390_su11102763 crossref_primary_10_1016_j_est_2024_112912 crossref_primary_10_1016_j_ijepes_2018_10_027 crossref_primary_10_1109_TSTE_2018_2868548 crossref_primary_10_1016_j_apenergy_2018_07_120 crossref_primary_10_1016_j_scs_2021_103163 crossref_primary_10_1016_j_ijhydene_2021_11_188 crossref_primary_10_1109_JSYST_2018_2859755 crossref_primary_10_1186_s41601_019_0147_z crossref_primary_10_1109_TPWRS_2020_3048401 crossref_primary_10_1002_er_5292 crossref_primary_10_1109_TSG_2018_2863049 crossref_primary_10_1016_j_apenergy_2018_04_103 crossref_primary_10_1109_ACCESS_2018_2795803 crossref_primary_10_3390_electronics8121442 crossref_primary_10_1109_TSG_2021_3092283 crossref_primary_10_1002_er_5649 crossref_primary_10_1016_j_jclepro_2020_125419 crossref_primary_10_1016_j_apenergy_2021_117658 crossref_primary_10_1016_j_energy_2020_119224 crossref_primary_10_1109_TCSI_2024_3351942 crossref_primary_10_1109_TEM_2021_3093472 crossref_primary_10_1109_TSG_2019_2939817 crossref_primary_10_3390_en13030547 crossref_primary_10_3390_electronics11182816 crossref_primary_10_1016_j_dcan_2022_06_001 crossref_primary_10_1049_esi2_12107 crossref_primary_10_1109_TPWRS_2017_2650683 crossref_primary_10_1186_s41601_023_00308_8 crossref_primary_10_3390_electronics11040554 crossref_primary_10_1016_j_ijepes_2024_109816 crossref_primary_10_1063_1_5039747 crossref_primary_10_1109_TSG_2018_2875727 crossref_primary_10_1109_ACCESS_2019_2913898 crossref_primary_10_3390_en15239202 crossref_primary_10_1109_TPWRS_2018_2835464 crossref_primary_10_1109_TSTE_2021_3103444 crossref_primary_10_1016_j_energy_2021_121840 crossref_primary_10_1109_JPETS_2018_2878329 crossref_primary_10_1016_j_comnet_2024_110872 crossref_primary_10_1109_JPETS_2019_2935703 crossref_primary_10_1109_TSTE_2023_3251099 crossref_primary_10_1016_j_apenergy_2021_116761 crossref_primary_10_1109_TSTE_2017_2740433 crossref_primary_10_3390_su13169301 crossref_primary_10_1049_rpg2_12223 crossref_primary_10_1016_j_apenergy_2020_114579 crossref_primary_10_1109_TII_2019_2895080 crossref_primary_10_1016_j_eswa_2022_117471 crossref_primary_10_1049_iet_rpg_2019_0297 crossref_primary_10_1109_ACCESS_2022_3156079 crossref_primary_10_1177_18479790211032920 crossref_primary_10_3390_en17112605 crossref_primary_10_1016_j_seta_2020_100832 crossref_primary_10_1109_ACCESS_2020_3008747 crossref_primary_10_1186_s41601_022_00252_z crossref_primary_10_3390_en15051932 crossref_primary_10_1016_j_energy_2019_116553 crossref_primary_10_1016_j_est_2023_107141 crossref_primary_10_1016_j_ijepes_2018_03_007 crossref_primary_10_1049_iet_gtd_2018_6321 crossref_primary_10_1007_s00202_020_01047_x crossref_primary_10_1049_iet_pel_2017_0883 crossref_primary_10_1002_2050_7038_12328 crossref_primary_10_3390_en16145503 crossref_primary_10_1109_ACCESS_2020_3035791 crossref_primary_10_1016_j_energy_2020_117269 crossref_primary_10_1016_j_energy_2019_02_145 crossref_primary_10_1109_TIA_2017_2757902 crossref_primary_10_3390_electronics8080898 crossref_primary_10_3390_en18030464 crossref_primary_10_1063_1_5118926 crossref_primary_10_1109_ACCESS_2021_3104354 crossref_primary_10_1109_TSTE_2020_2989793 crossref_primary_10_3390_en15030825 crossref_primary_10_1016_j_energy_2021_122036 crossref_primary_10_1049_iet_gtd_2018_6594 crossref_primary_10_1109_TSG_2019_2892201 crossref_primary_10_1109_TSG_2023_3290191 crossref_primary_10_1109_ACCESS_2021_3131502 crossref_primary_10_3390_en12061019 crossref_primary_10_1109_ACCESS_2019_2924288 crossref_primary_10_1016_j_energy_2018_06_185 |
Cites_doi | 10.1145/2465529.2465551 10.1109/TSG.2014.2373150 10.3390/en7042027 10.1023/A:1019248506301 10.1109/TCST.2013.2295737 10.1109/TPAS.1978.354719 10.1109/TSG.2014.2359004 10.1109/TPWRS.2005.857016 10.1038/nclimate2564 10.1109/TPWRS.2005.857015 10.1109/TPWRS.2012.2205021 10.1109/TPWRS.2006.876672 10.1109/TSTE.2014.2300864 10.1016/j.apenergy.2015.09.049 10.1137/080734510 10.1109/59.744542 10.1109/ISGTEurope.2014.7028735 10.1007/BF01580665 10.1109/TSG.2013.2282823 10.1016/j.ejor.2013.09.028 10.1007/978-3-031-79995-2 10.1109/MPE.2008.918702 10.1109/TSTE.2013.2255135 10.1109/TSG.2013.2295514 10.1109/TSTE.2013.2279837 10.1287/opre.2015.1456 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TSG.2016.2580575 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1949-3061 |
EndPage | 1174 |
ExternalDocumentID | 10_1109_TSG_2016_2580575 7491274 |
Genre | orig-research |
GrantInformation_xml | – fundername: Energy Innovation Programme Office through the National Research Foundation and Singapore Economic Development Board grantid: NRF2013EWT-EIRP003-013 funderid: 10.13039/501100001446 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c263t-a7abe89e22fd6dbacb41930ba96a556afea4c7a0bfdfc07c385828b2cbfd359a3 |
IEDL.DBID | RIE |
ISSN | 1949-3053 |
IngestDate | Tue Jul 01 02:28:59 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Wed Aug 27 02:52:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-a7abe89e22fd6dbacb41930ba96a556afea4c7a0bfdfc07c385828b2cbfd359a3 |
ORCID | 0000-0002-5983-2181 0000-0002-1599-5480 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TSG_2016_2580575 ieee_primary_7491274 crossref_citationtrail_10_1109_TSG_2016_2580575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on smart grid |
PublicationTitleAbbrev | TSG |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | (ref33) 2002 ref12 ref15 ref14 ref31 ref11 ref10 (ref28) 2004 ref2 ref1 ref16 zhang (ref13) 2009 ref19 ref18 sun (ref8) 2015 ref24 ref23 ref26 ref25 ref20 ref22 ref21 neely (ref27) 2010 ref29 luo (ref17) 2015 ref7 ref9 ref4 ref3 ref6 ref5 (ref32) 2013 moomaw (ref30) 2011 |
References_xml | – ident: ref4 doi: 10.1145/2465529.2465551 – ident: ref9 doi: 10.1109/TSG.2014.2373150 – ident: ref3 doi: 10.3390/en7042027 – ident: ref22 doi: 10.1023/A:1019248506301 – ident: ref6 doi: 10.1109/TCST.2013.2295737 – ident: ref24 doi: 10.1109/TPAS.1978.354719 – start-page: 1 year: 2015 ident: ref17 article-title: A two-stage energy management strategy for CCHP microgrid considering house characteristics publication-title: Proc IEEE Power Energy Soc Gen Meeting – ident: ref29 doi: 10.1109/TSG.2014.2359004 – ident: ref11 doi: 10.1109/TPWRS.2005.857016 – ident: ref31 doi: 10.1038/nclimate2564 – ident: ref12 doi: 10.1109/TPWRS.2005.857015 – year: 2013 ident: ref32 publication-title: Pacific Gas and Electric Company – ident: ref14 doi: 10.1109/TPWRS.2012.2205021 – ident: ref23 doi: 10.1109/TPWRS.2006.876672 – year: 2009 ident: ref13 publication-title: Two-Stage Robust Unit Commitment Problem – ident: ref19 doi: 10.1109/TSTE.2014.2300864 – year: 2002 ident: ref33 publication-title: California Commercial End-Use Survey – year: 2011 ident: ref30 publication-title: 2011 Annex II Methodology In IPCC special report on renewable energy sources and climate change mitigation – ident: ref16 doi: 10.1016/j.apenergy.2015.09.049 – year: 2004 ident: ref28 publication-title: National Renewable Energy Laboratory – ident: ref20 doi: 10.1137/080734510 – ident: ref25 doi: 10.1109/59.744542 – year: 2015 ident: ref8 article-title: Distributed real-time power balancing in renewable-integrated power grids with storage and flexible loads publication-title: IEEE Trans Smart Grid – ident: ref10 doi: 10.1109/ISGTEurope.2014.7028735 – ident: ref21 doi: 10.1007/BF01580665 – ident: ref7 doi: 10.1109/TSG.2013.2282823 – ident: ref15 doi: 10.1016/j.ejor.2013.09.028 – year: 2010 ident: ref27 publication-title: Stochastic Network Optimization with Application to Communication and Queueing Systems doi: 10.1007/978-3-031-79995-2 – ident: ref1 doi: 10.1109/MPE.2008.918702 – ident: ref5 doi: 10.1109/TSTE.2013.2255135 – ident: ref2 doi: 10.1109/TSG.2013.2295514 – ident: ref18 doi: 10.1109/TSTE.2013.2279837 – ident: ref26 doi: 10.1287/opre.2015.1456 |
SSID | ssj0000333629 |
Score | 2.5255978 |
Snippet | This paper considers energy management in a grid-connected microgrid which has multiple conventional generators (CGs), renewable generators and energy storage... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1161 |
SubjectTerms | Cost function economic dispatch Economics Load modeling Lyapunov optimization Microgrid Microgrids Quality of service Uncertainty unit commitment |
Title | Toward Optimal Energy Management of Microgrids via Robust Two-Stage Optimization |
URI | https://ieeexplore.ieee.org/document/7491274 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ui3rw0SrWF3vwIpg2TTaPPYpYi1AVbaG3MLuZlKI20iYK_np3k7Q-EPEWlh1YZja73858MwNwIhSGnpSoLYDc4ugIC8kXlr5quQbQhKW_o3fjdwf8eugNl-BskQtDRAX5jJrms4jlx6nKjausFXDR1q-oZVjW26zM1Vr4U2zX1WexKILI3ITzPXcelbRFq_9wZWhcftPxQoNQvt1CX9qqFLdKZxN68_WUZJLHZp7Jpnr_Uarxvwvego0KXrLzcj9swxJNarA6zz6e1WD9SwHCOtz1C9Ysu9UHx7OWuywyAdknJ4alCesZzt5oOo5n7HWM7D6V-Sxj_bfU0kh1RKVwlc65A4POZf-ia1U9Fizl-G5mYYCSQkGOk5jWUqgk15DOlih89DwfE0KuArRlEifKDpSJIzqhdJQecD2B7i6sTNIJ7QGjwEb9D2McSOJttFEmKiBCLyalQYxoQGuu80hVBchNH4ynqHiI2CLSVoqMlaLKSg04XUi8lMU3_phbN_pfzKtUv__78AGsaeGwJJMdwko2zelIo4tMHhfb6gMhEM0U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb_FtDl4Eu9ttk7Y5iqjrY1W0grcySaci6lbcroK_3qTtrg9EvJWQKSGTZL5kvpkB2JYaI6EUGg0gdzh60kEKpGNMLTcAmrB67-icB-0bfnIrbkdgdxgLQ0Ql-Ywa9rP05ae57tunsmbIZcvcokZh3Nh9LqporeGLiuv75jSWpRuZW4e-8Ad-SVc24-sjS-QKGp6ILEb5Zoe-FFYp7crhDHQGI6roJA-NfqEa-v1Hssb_DnkWpmuAyfaqFTEHI9Sdh4lB_HFvHqa-pCBcgMu45M2yC3N0PBm5gzIWkH2yYliesY5l7d293Kc99nqP7CpX_V7B4rfcMVj1jirhOqBzEW4OD-L9tlNXWXC0F_iFgyEqiiR5XmaLS6FW3IA6V6EMUIgAM0KuQ3RVlmbaDbX1JHqR8rRp8IVEfwnGunmXloFR6KLZxZiGingLXVSZDolQpKQNjJEr0BzMeaLrFOS2EsZjUl5FXJkYLSVWS0mtpRXYGUo8V-k3_ui7YOd_2K-e-tXfm7dgoh13zpKz4_PTNZg0P4oqatk6jBUvfdowWKNQm-US-wAHfdBh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Optimal+Energy+Management+of+Microgrids+via+Robust+Two-Stage+Optimization&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Hu%2C+Wuhua&rft.au=Wang%2C+Ping&rft.au=Gooi%2C+Hoay+Beng&rft.date=2018-03-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=9&rft.issue=2&rft.spage=1161&rft.epage=1174&rft_id=info:doi/10.1109%2FTSG.2016.2580575&rft.externalDocID=7491274 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |