A Read Disturbance Tolerant Phase Change Memory System for CNN Inference Workloads

Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory intensive, and the convolutional neural network (CNN) inference is widely known as a representative computation- intensive model. Therefore,...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductor technology and science Vol. 22; no. 4; pp. 216 - 223
Main Authors Lee, Hyokeun, Lee, Hyuk-Jae, Kim, Hyun
Format Journal Article
LanguageEnglish
Published 대한전자공학회 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory intensive, and the convolutional neural network (CNN) inference is widely known as a representative computation- intensive model. Therefore, CNN inference seems to be very suitable for a PCM-based system. However, the PCM suffers from the characteristic of being vulnerable to disturbance errors. In particular, read disturbance error (RDE) becomes a serious problem for workloads involving a large number of zeros, and unfortunately, matrices in CNN are sparse, which inevitably incurs a significant amount of RDEs. In this paper, we present an RDE-tolerant PCM-based system for CNN inference workloads. The proposed method restores vulnerable data words by leveraging a dedicated SRAM-based table. Furthermore, we also propose a replacement policy, which detects non-urgent entries, by utilizing the contents (i.e., counters) in the table. As a result, the proposed method significantly reduces RDEs with minor speed degradation. KCI Citation Count: 0
AbstractList Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory intensive, and the convolutional neural network (CNN) inference is widely known as a representative computation- intensive model. Therefore, CNN inference seems to be very suitable for a PCM-based system. However, the PCM suffers from the characteristic of being vulnerable to disturbance errors. In particular, read disturbance error (RDE) becomes a serious problem for workloads involving a large number of zeros, and unfortunately, matrices in CNN are sparse, which inevitably incurs a significant amount of RDEs. In this paper, we present an RDE-tolerant PCM-based system for CNN inference workloads. The proposed method restores vulnerable data words by leveraging a dedicated SRAM-based table. Furthermore, we also propose a replacement policy, which detects non-urgent entries, by utilizing the contents (i.e., counters) in the table. As a result, the proposed method significantly reduces RDEs with minor speed degradation. KCI Citation Count: 0
Author Hyokeun Lee
Hyuk-Jae Lee
Hyun Kim
Author_xml – sequence: 1
  givenname: Hyokeun
  surname: Lee
  fullname: Lee, Hyokeun
– sequence: 2
  givenname: Hyuk-Jae
  surname: Lee
  fullname: Lee, Hyuk-Jae
– sequence: 3
  givenname: Hyun
  surname: Kim
  fullname: Kim, Hyun
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002866802$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9kE1PAjEQhhuDiYD-AU-9eDFZ7Ne25UgAFYNgYI3HpnRnYQW2poUD_95dISaTvJfnnZk8HdSqfAUI3VPSS1PFn96W2bLHCGO9ekSPUXmF2oxxnggtZQu1adrXCZWpukGdGL8JkVr1VRstBngBNsejMh6OYWUrBzjzOwi2OuCPjY2AhxtbrQG_w96HE16e4gH2uPABD2czPKkKCNC0vnzY7rzN4y26Luwuwt0lu-jzeZwNX5Pp_GUyHEwTxyQ_JDblq1w5ypnO88KJVAlGXC6tUy4VGhR1CoTWDJhYgZaUp1QVjGguCC044V30eN5bhcJsXWm8Lf9y7c02mMEimxhKCGdS92uYnWEXfIwBCvMTyr0NpxoxjULTKDSNQlOPMLXCuvRwuXCsYchL-9-azUdjSimjpP7kF6O-cOg
ContentType Journal Article
DBID DBRKI
TDB
AAYXX
CITATION
ACYCR
DOI 10.5573/JSTS.2022.22.4.216
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-4866
EndPage 223
ExternalDocumentID oai_kci_go_kr_ARTI_10032689
10_5573_JSTS_2022_22_4_216
NODE11121030
GroupedDBID 9ZL
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
DBRKI
FRP
GW5
HH5
JDI
KVFHK
MZR
OK1
TDB
TR2
ZZE
AAYXX
CITATION
.UV
ACYCR
ID FETCH-LOGICAL-c263t-a53bd7c1328ddfc457420cd6ac7c548e71c7e4882e24be8613517f2083401f303
ISSN 1598-1657
IngestDate Tue Nov 21 21:19:32 EST 2023
Tue Jul 01 02:28:33 EDT 2025
Sun Mar 09 07:50:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords CNN inference
non-volatile memory
read disturbance error
Phase-change memory
reliability
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c263t-a53bd7c1328ddfc457420cd6ac7c548e71c7e4882e24be8613517f2083401f303
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10032689
crossref_primary_10_5573_JSTS_2022_22_4_216
nurimedia_primary_NODE11121030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of semiconductor technology and science
PublicationYear 2022
Publisher 대한전자공학회
Publisher_xml – name: 대한전자공학회
SSID ssj0068797
Score 2.2343063
Snippet Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory...
SourceID nrf
crossref
nurimedia
SourceType Open Website
Index Database
Publisher
StartPage 216
SubjectTerms 전기공학
Title A Read Disturbance Tolerant Phase Change Memory System for CNN Inference Workloads
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11121030
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002866802
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2022, 22(4), 106, pp.216-223
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QA8IK5aB0yWIE9VSus4jvOYZkFjsIKgk_YWJY4DU0cyleZh_BJ-LufETXDHJC5SlFpuLu05n87FPhdCXnp8UoKVzF1eTrXLeYHdAJlwSy28XOoQIIE7uidzcXTKj8_8s8HghxW11Kzzsfp-Y17J_3AV5oCvmCX7D5ztHwoTMAb-whk4DOe_4nHUxsBjBU1QHHkb_L-oLzSon_XowxfQT5vkgdEJxtNebcqTt5GF8XwOsqErMotL5hd1ZpJ-b7BVv2EIfV1hbViMSuyX49uth40S7QFyVS91U43eaWuqWbrHmb42V43enn-1lx3AY-2C3gxQnGTmyBijMZJDJ_SdMHaS2IkmjuQ4CBMnhK8iZ-Y5M7-7JmwHEdxoS9wQ3FhhqlSPdTsHJovncmnasXRimjELjnxL5gpLfTOTvnxdM_h-gBUqQNp9GuPfGcPBx_2tWxW35-8PE1ABDDuw7ZBbDBwQ1or83rESMjBte7ofb9Kx8CWvfn_FlsmzU63gfLtqsHsDiADLmlncJ_c2rKWRwdQDMtDVQ3LXKk75iHyMKKKLWuiiHbpoiy5q0EUNuqhBFwV0UUAX7dFFe3Q9Jqevk0V85G46cLiKCW_tZr6XF4GaekwWRam4H3A2UYXIVKDA1dXBVAUaVADTjOdaCmz3GJQMzHpw20uwjp6Q3aqu9B6hknM14UIzxRXnEnfry1IGssyY0JmUQzLqiJRemkIrKTioSNIUSZoiSVM4eAokHZIXQMd0qc5TrI-On5_rdLlKwQt8g3W4wSuR4ZAc9HTuH2pzd_9PFzwld36B_xnZXa8a_Rys0HV-0ALiJy8lez4
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Read+Disturbance+Tolerant+Phase+Change+Memory+System+for+CNN+Inference+Workloads&rft.jtitle=Journal+of+semiconductor+technology+and+science&rft.au=Hyokeun+Lee&rft.au=Hyuk-Jae+Lee&rft.au=Hyun+Kim&rft.date=2022-08-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1598-1657&rft.eissn=2233-4866&rft.volume=22&rft.issue=4&rft.spage=216&rft.epage=223&rft_id=info:doi/10.5573%2FJSTS.2022.22.4.216&rft.externalDocID=NODE11121030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-1657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-1657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-1657&client=summon