A Read Disturbance Tolerant Phase Change Memory System for CNN Inference Workloads
Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory intensive, and the convolutional neural network (CNN) inference is widely known as a representative computation- intensive model. Therefore,...
Saved in:
Published in | Journal of semiconductor technology and science Vol. 22; no. 4; pp. 216 - 223 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
대한전자공학회
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory intensive, and the convolutional neural network (CNN) inference is widely known as a representative computation- intensive model. Therefore, CNN inference seems to be very suitable for a PCM-based system. However, the PCM suffers from the characteristic of being vulnerable to disturbance errors. In particular, read disturbance error (RDE) becomes a serious problem for workloads involving a large number of zeros, and unfortunately, matrices in CNN are sparse, which inevitably incurs a significant amount of RDEs. In this paper, we present an RDE-tolerant PCM-based system for CNN inference workloads. The proposed method restores vulnerable data words by leveraging a dedicated SRAM-based table. Furthermore, we also propose a replacement policy, which detects non-urgent entries, by utilizing the contents (i.e., counters) in the table. As a result, the proposed method significantly reduces RDEs with minor speed degradation. KCI Citation Count: 0 |
---|---|
AbstractList | Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory intensive, and the convolutional neural network (CNN) inference is widely known as a representative computation- intensive model. Therefore, CNN inference seems to be very suitable for a PCM-based system. However, the PCM suffers from the characteristic of being vulnerable to disturbance errors. In particular, read disturbance error (RDE) becomes a serious problem for workloads involving a large number of zeros, and unfortunately, matrices in CNN are sparse, which inevitably incurs a significant amount of RDEs. In this paper, we present an RDE-tolerant PCM-based system for CNN inference workloads. The proposed method restores vulnerable data words by leveraging a dedicated SRAM-based table. Furthermore, we also propose a replacement policy, which detects non-urgent entries, by utilizing the contents (i.e., counters) in the table. As a result, the proposed method significantly reduces RDEs with minor speed degradation. KCI Citation Count: 0 |
Author | Hyokeun Lee Hyuk-Jae Lee Hyun Kim |
Author_xml | – sequence: 1 givenname: Hyokeun surname: Lee fullname: Lee, Hyokeun – sequence: 2 givenname: Hyuk-Jae surname: Lee fullname: Lee, Hyuk-Jae – sequence: 3 givenname: Hyun surname: Kim fullname: Kim, Hyun |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002866802$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNo9kE1PAjEQhhuDiYD-AU-9eDFZ7Ne25UgAFYNgYI3HpnRnYQW2poUD_95dISaTvJfnnZk8HdSqfAUI3VPSS1PFn96W2bLHCGO9ekSPUXmF2oxxnggtZQu1adrXCZWpukGdGL8JkVr1VRstBngBNsejMh6OYWUrBzjzOwi2OuCPjY2AhxtbrQG_w96HE16e4gH2uPABD2czPKkKCNC0vnzY7rzN4y26Luwuwt0lu-jzeZwNX5Pp_GUyHEwTxyQ_JDblq1w5ypnO88KJVAlGXC6tUy4VGhR1CoTWDJhYgZaUp1QVjGguCC044V30eN5bhcJsXWm8Lf9y7c02mMEimxhKCGdS92uYnWEXfIwBCvMTyr0NpxoxjULTKDSNQlOPMLXCuvRwuXCsYchL-9-azUdjSimjpP7kF6O-cOg |
ContentType | Journal Article |
DBID | DBRKI TDB AAYXX CITATION ACYCR |
DOI | 10.5573/JSTS.2022.22.4.216 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2233-4866 |
EndPage | 223 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10032689 10_5573_JSTS_2022_22_4_216 NODE11121030 |
GroupedDBID | 9ZL ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS C1A DBRKI FRP GW5 HH5 JDI KVFHK MZR OK1 TDB TR2 ZZE AAYXX CITATION .UV ACYCR |
ID | FETCH-LOGICAL-c263t-a53bd7c1328ddfc457420cd6ac7c548e71c7e4882e24be8613517f2083401f303 |
ISSN | 1598-1657 |
IngestDate | Tue Nov 21 21:19:32 EST 2023 Tue Jul 01 02:28:33 EDT 2025 Sun Mar 09 07:50:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | CNN inference non-volatile memory read disturbance error Phase-change memory reliability |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c263t-a53bd7c1328ddfc457420cd6ac7c548e71c7e4882e24be8613517f2083401f303 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10032689 crossref_primary_10_5573_JSTS_2022_22_4_216 nurimedia_primary_NODE11121030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of semiconductor technology and science |
PublicationYear | 2022 |
Publisher | 대한전자공학회 |
Publisher_xml | – name: 대한전자공학회 |
SSID | ssj0068797 |
Score | 2.2343063 |
Snippet | Phase-change memory (PCM) garners attention as the most promising nonvolatile memory (NVM). In particular, PCM is suitable for applications that are not memory... |
SourceID | nrf crossref nurimedia |
SourceType | Open Website Index Database Publisher |
StartPage | 216 |
SubjectTerms | 전기공학 |
Title | A Read Disturbance Tolerant Phase Change Memory System for CNN Inference Workloads |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11121030 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002866802 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2022, 22(4), 106, pp.216-223 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QA8IK5aB0yWIE9VSus4jvOYZkFjsIKgk_YWJY4DU0cyleZh_BJ-LufETXDHJC5SlFpuLu05n87FPhdCXnp8UoKVzF1eTrXLeYHdAJlwSy28XOoQIIE7uidzcXTKj8_8s8HghxW11Kzzsfp-Y17J_3AV5oCvmCX7D5ztHwoTMAb-whk4DOe_4nHUxsBjBU1QHHkb_L-oLzSon_XowxfQT5vkgdEJxtNebcqTt5GF8XwOsqErMotL5hd1ZpJ-b7BVv2EIfV1hbViMSuyX49uth40S7QFyVS91U43eaWuqWbrHmb42V43enn-1lx3AY-2C3gxQnGTmyBijMZJDJ_SdMHaS2IkmjuQ4CBMnhK8iZ-Y5M7-7JmwHEdxoS9wQ3FhhqlSPdTsHJovncmnasXRimjELjnxL5gpLfTOTvnxdM_h-gBUqQNp9GuPfGcPBx_2tWxW35-8PE1ABDDuw7ZBbDBwQ1or83rESMjBte7ofb9Kx8CWvfn_FlsmzU63gfLtqsHsDiADLmlncJ_c2rKWRwdQDMtDVQ3LXKk75iHyMKKKLWuiiHbpoiy5q0EUNuqhBFwV0UUAX7dFFe3Q9Jqevk0V85G46cLiKCW_tZr6XF4GaekwWRam4H3A2UYXIVKDA1dXBVAUaVADTjOdaCmz3GJQMzHpw20uwjp6Q3aqu9B6hknM14UIzxRXnEnfry1IGssyY0JmUQzLqiJRemkIrKTioSNIUSZoiSVM4eAokHZIXQMd0qc5TrI-On5_rdLlKwQt8g3W4wSuR4ZAc9HTuH2pzd_9PFzwld36B_xnZXa8a_Rys0HV-0ALiJy8lez4 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Read+Disturbance+Tolerant+Phase+Change+Memory+System+for+CNN+Inference+Workloads&rft.jtitle=Journal+of+semiconductor+technology+and+science&rft.au=Hyokeun+Lee&rft.au=Hyuk-Jae+Lee&rft.au=Hyun+Kim&rft.date=2022-08-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1598-1657&rft.eissn=2233-4866&rft.volume=22&rft.issue=4&rft.spage=216&rft.epage=223&rft_id=info:doi/10.5573%2FJSTS.2022.22.4.216&rft.externalDocID=NODE11121030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-1657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-1657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-1657&client=summon |