Lightweight design of tensegrity Michell truss subject to cantilever loads

This study introduces an analytical design approach for lightweight cantilever tensegrity structures based on the Michell truss pattern. The topological configuration is determined by generating the parameters of Michell spirals, including structural complexity and geometric parameters. The static e...

Full description

Saved in:
Bibliographic Details
Published inComposite structures Vol. 357; p. 118925
Main Authors Bai, Xiaolong, Chen, Muhao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0263-8223
DOI10.1016/j.compstruct.2025.118925

Cover

Loading…
Abstract This study introduces an analytical design approach for lightweight cantilever tensegrity structures based on the Michell truss pattern. The topological configuration is determined by generating the parameters of Michell spirals, including structural complexity and geometric parameters. The static equilibrium analysis reveals that the force per unit load for each member is determined by the direction angle of the load, the outer and inner radii of the spiral pattern, and the structural complexity. A minimal mass optimization algorithm is employed to compute the optimal complexity of the cantilevered system, subject to yielding and buckling failure constraints. Numerical calculations are conducted to verify the lightweight design theory for cantilevered structures in relation to load magnitude, load direction, lever arm distance, and material choices. The results not only validate the design methodology for tensegrity structures but also advocate for an innovative structural design approach that integrates parametric theoretical analysis and numerical optimizations for diverse loading scenarios.
AbstractList This study introduces an analytical design approach for lightweight cantilever tensegrity structures based on the Michell truss pattern. The topological configuration is determined by generating the parameters of Michell spirals, including structural complexity and geometric parameters. The static equilibrium analysis reveals that the force per unit load for each member is determined by the direction angle of the load, the outer and inner radii of the spiral pattern, and the structural complexity. A minimal mass optimization algorithm is employed to compute the optimal complexity of the cantilevered system, subject to yielding and buckling failure constraints. Numerical calculations are conducted to verify the lightweight design theory for cantilevered structures in relation to load magnitude, load direction, lever arm distance, and material choices. The results not only validate the design methodology for tensegrity structures but also advocate for an innovative structural design approach that integrates parametric theoretical analysis and numerical optimizations for diverse loading scenarios.
ArticleNumber 118925
Author Bai, Xiaolong
Chen, Muhao
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Bai
  fullname: Bai, Xiaolong
  organization: Department of Aerospace Engineering, Texas A&M University, College Station, 77840, TX, USA
– sequence: 2
  givenname: Muhao
  orcidid: 0000-0003-1812-6835
  surname: Chen
  fullname: Chen, Muhao
  email: muhaochen@uky.edu
  organization: Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, 40506, KY, USA
BookMark eNqFkM1OAjEUhbvAREDfoS8wY_8Zlkr8DcaNrptOewudDFPSFgxv7xBMXLq5Z3W-nPvN0GSIAyCEKakpoequq23c7XNJB1tqRpisKW2WTE7QlDDFq4Yxfo1mOXeEkEZQOkVv67DZlm84X-wgh82Ao8cFhgybFMoJvwe7hb7HIzVnnA9tB7bgErE1Qwk9HCHhPhqXb9CVN32G29-co6-nx8_VS7X-eH5d3a8rO24olZFUKc6XQlIrnBDCe0lab1rvlfMtZ04uGiKdF0LZdimsWCjrOOWgqG2o4XPUXLg2xZwTeL1PYWfSSVOizx50p_886LMHffEwVh8uVRj3HQMknW2AwYILafxKuxj-h_wAzqpxqA
Cites_doi 10.1016/j.compstruct.2024.118331
10.1016/j.cma.2022.115832
10.1007/s00158-021-02899-y
10.1260/0266-3511.30.3-4.221
10.1115/1.4056959
10.1063/1.5114261
10.1061/JSENDH.STENG-12190
10.1016/j.mechrescom.2024.104273
10.1016/j.ymssp.2024.111415
10.1108/EC-11-2022-0667
10.1016/j.mechrescom.2013.10.017
10.1016/j.compstruc.2023.107149
10.1016/j.mechrescom.2022.103995
10.1002/aisy.202200025
10.1016/j.mechrescom.2022.104026
10.1016/j.mechmachtheory.2023.105554
10.1007/s00158-004-0469-x
10.1016/j.compstruct.2020.112188
10.1016/j.cma.2023.116710
10.1089/soro.2018.0079
10.1016/j.compstruct.2020.112454
10.1016/j.compstruct.2018.10.108
10.1063/5.0160023
10.1007/BF01197364
10.1016/S0065-2156(09)43002-3
10.1016/j.cad.2022.103330
10.1016/j.engstruct.2021.111965
10.1016/j.compstruc.2024.107513
10.1016/j.ijsolstr.2023.112414
10.1089/soro.2019.0091
10.1007/s00158-016-1420-7
10.1016/j.engstruct.2023.116222
10.1016/j.compstruct.2021.115153
10.1115/1.2424718
10.1016/j.jfranklin.2009.10.009
10.1109/LRA.2022.3153700
10.1080/14786440409463229
10.1061/(ASCE)0893-1321(1998)11:2(37)
10.1061/JAEEEZ.ASENG-4364
10.1007/s11012-016-0493-0
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2025.118925
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compstruct_2025_118925
S026382232500090X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SMS
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c263t-a5166339451c4d444ff50bfabff6dfb32d57805df446cb94c476cd313e61c81a3
IEDL.DBID .~1
ISSN 0263-8223
IngestDate Sun Jul 06 05:07:06 EDT 2025
Sun Apr 06 06:53:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lightweight structure
Minimal mass
Cantilever load
Michell truss
Tensegrity
Cantilever structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-a5166339451c4d444ff50bfabff6dfb32d57805df446cb94c476cd313e61c81a3
ORCID 0000-0003-1812-6835
ParticipantIDs crossref_primary_10_1016_j_compstruct_2025_118925
elsevier_sciencedirect_doi_10_1016_j_compstruct_2025_118925
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Carpentieri, Modano, Fabbrocino, Feo, Fraternali (b40) 2017; 52
Wang, Senatore (b44) 2021; 64
Skelton, de Oliveira (b1) 2009
Song, Zhang, Li, Kan, Zhao, Peng (b11) 2024; 193
Fraternali, de Castro Motta (b26) 2023; 281
Michell (b49) 1904; 8
Graczykowski, Lewiński (b35) 2020; 27
Senatore, Wang (b48) 2024; 422
Habibi, Rhode-Barbarigos, Keller (b9) 2023; 288
Moored, Bart-Smith (b28) 2007; 74
He, Yin, Zhang, Gao, Xu (b5) 2022; 283
Altuzarra, Diez, Corral, Campa (b30) 2017
Zappetti, Sun, Gevers, Mintchev, Floreano (b16) 2022; 4
Ma, Yuan, Deng, Yang (b45) 2022; 125
Micheletti, dos Santos, Guest (b6) 2023; 123
Sigmund, Aage, Andreassen (b37) 2016; 54
Zhao, Wu, Yan, Zhan, Huang, Booth, Mehta, Bekris, Kramer-Bottiglio, Balkcom (b13) 2023
Placidi, de Castro Motta, Fraternali (b24) 2024; 137
Sabelhaus, Bruce, Caluwaerts, Manovi, Firoozi, Dobi, Agogino, SunSpiral (b17) 2015
Wang, Han, Xu, Luo (b52) 2024; 305
Wang, Xu, Luo (b43) 2021; 234
Roffman, Lesieutre (b12) 2021
Snelson (b4) 1965
Lewiński, Sokół, Graczykowski (b32) 2018
Chen, Skelton (b41) 2020; 248
Nagase, Skelton (b51) 2014
Chen, Jiang (b21) 2019; 6
Zappetti, Jeong, Shintake, Floreano (b10) 2020; 7
Fraddosio, Pavone, Piccioni (b46) 2019; 209
Chen, Fraddosio, Micheletti, Pavone, Piccioni, Skelton (b19) 2024
Fraternali, de Castro Motta, Germano, Babilio, Amendola (b25) 2024; 17
Rozvany (b33) 1996; 12
Djouadi, Motro, Pons, Crosnier (b29) 1998; 11
Chen, Bai, Skelton (b42) 2023; 404
Cao, Luo, Feng, Liu (b47) 2023; 40
Reksowardojo, Senatore (b53) 2023; 289
Amendola, Krushynska, De Piano, Daraio, Pugno, Fraternali (b15) 2019; Vol. 2116
Skelton, de Oliveira (b38) 2010; 347
Melchers (b34) 2005; 29
Yu, Dai, Shi (b36) 2022; 151
Yue, Yin, Sun, Liu, Wang, Xu, Cao, Zhang (b27) 2024; 344
Fuller (b3) 1959
Shen, Chen, Skelton (b14) 2024; 215
Carpentieri, Skelton, Fraternali (b2) 2015; 30
Feng, Lou, Lv, Su (b8) 2024; Vol. 65
Peck, Majji (b39) 2023; 36
Sultan (b7) 2009; 43
Woods, Vikas (b23) 2023; 15
Ma, Chen, Skelton (b31) 2020; 243
Fraddosio, Micheletti, Pavone, Piccioni (b20) 2024; 150
Chen, Fraddosio, Micheletti, Pavone, Piccioni, Skelton (b18) 2023; 127
Kobayashi, Nabae, Endo, Suzumori (b22) 2022; 7
Skelton, Fraternali, Carpentieri, Micheletti (b50) 2014; 58
Micheletti (10.1016/j.compstruct.2025.118925_b6) 2023; 123
Snelson (10.1016/j.compstruct.2025.118925_b4) 1965
Moored (10.1016/j.compstruct.2025.118925_b28) 2007; 74
Melchers (10.1016/j.compstruct.2025.118925_b34) 2005; 29
Senatore (10.1016/j.compstruct.2025.118925_b48) 2024; 422
Yu (10.1016/j.compstruct.2025.118925_b36) 2022; 151
Skelton (10.1016/j.compstruct.2025.118925_b50) 2014; 58
Shen (10.1016/j.compstruct.2025.118925_b14) 2024; 215
Sabelhaus (10.1016/j.compstruct.2025.118925_b17) 2015
Song (10.1016/j.compstruct.2025.118925_b11) 2024; 193
Chen (10.1016/j.compstruct.2025.118925_b21) 2019; 6
Skelton (10.1016/j.compstruct.2025.118925_b38) 2010; 347
Zappetti (10.1016/j.compstruct.2025.118925_b16) 2022; 4
Fraternali (10.1016/j.compstruct.2025.118925_b26) 2023; 281
Rozvany (10.1016/j.compstruct.2025.118925_b33) 1996; 12
Carpentieri (10.1016/j.compstruct.2025.118925_b2) 2015; 30
Altuzarra (10.1016/j.compstruct.2025.118925_b30) 2017
Peck (10.1016/j.compstruct.2025.118925_b39) 2023; 36
Wang (10.1016/j.compstruct.2025.118925_b43) 2021; 234
Carpentieri (10.1016/j.compstruct.2025.118925_b40) 2017; 52
Chen (10.1016/j.compstruct.2025.118925_b19) 2024
Graczykowski (10.1016/j.compstruct.2025.118925_b35) 2020; 27
Amendola (10.1016/j.compstruct.2025.118925_b15) 2019; Vol. 2116
Fraternali (10.1016/j.compstruct.2025.118925_b25) 2024; 17
Yue (10.1016/j.compstruct.2025.118925_b27) 2024; 344
Fraddosio (10.1016/j.compstruct.2025.118925_b46) 2019; 209
Cao (10.1016/j.compstruct.2025.118925_b47) 2023; 40
Chen (10.1016/j.compstruct.2025.118925_b18) 2023; 127
Chen (10.1016/j.compstruct.2025.118925_b41) 2020; 248
Ma (10.1016/j.compstruct.2025.118925_b45) 2022; 125
Placidi (10.1016/j.compstruct.2025.118925_b24) 2024; 137
Ma (10.1016/j.compstruct.2025.118925_b31) 2020; 243
He (10.1016/j.compstruct.2025.118925_b5) 2022; 283
Woods (10.1016/j.compstruct.2025.118925_b23) 2023; 15
Reksowardojo (10.1016/j.compstruct.2025.118925_b53) 2023; 289
Roffman (10.1016/j.compstruct.2025.118925_b12) 2021
Kobayashi (10.1016/j.compstruct.2025.118925_b22) 2022; 7
Sigmund (10.1016/j.compstruct.2025.118925_b37) 2016; 54
Wang (10.1016/j.compstruct.2025.118925_b44) 2021; 64
Fraddosio (10.1016/j.compstruct.2025.118925_b20) 2024; 150
Nagase (10.1016/j.compstruct.2025.118925_b51) 2014
Zappetti (10.1016/j.compstruct.2025.118925_b10) 2020; 7
Habibi (10.1016/j.compstruct.2025.118925_b9) 2023; 288
Sultan (10.1016/j.compstruct.2025.118925_b7) 2009; 43
Chen (10.1016/j.compstruct.2025.118925_b42) 2023; 404
Feng (10.1016/j.compstruct.2025.118925_b8) 2024; Vol. 65
Zhao (10.1016/j.compstruct.2025.118925_b13) 2023
Djouadi (10.1016/j.compstruct.2025.118925_b29) 1998; 11
Fuller (10.1016/j.compstruct.2025.118925_b3) 1959
Michell (10.1016/j.compstruct.2025.118925_b49) 1904; 8
Skelton (10.1016/j.compstruct.2025.118925_b1) 2009
Lewiński (10.1016/j.compstruct.2025.118925_b32) 2018
Wang (10.1016/j.compstruct.2025.118925_b52) 2024; 305
References_xml – year: 2014
  ident: b51
  article-title: Minimal mass design of tensegrity structures
  publication-title: Smart structures
– volume: 281
  year: 2023
  ident: b26
  article-title: Mechanics of superelastic tensegrity braces for timber frames equipped with buckling-restrained devices
  publication-title: Int J Solids Struct
– volume: 347
  start-page: 257
  year: 2010
  end-page: 283
  ident: b38
  article-title: Optimal tensegrity structures in bending: The discrete Michell truss
  publication-title: J Franklin Inst
– volume: 17
  year: 2024
  ident: b25
  article-title: Mechanical response of tensegrity-origami solar modules
  publication-title: Appl Eng Sci
– volume: 215
  year: 2024
  ident: b14
  article-title: Finite word-length optimal simulation for high-dimensional dynamical systems: Examples of tensegrity structures
  publication-title: Mech Syst Signal Process
– volume: 7
  start-page: 5349
  year: 2022
  end-page: 5356
  ident: b22
  article-title: Soft tensegrity robot driven by thin artificial muscles for the exploration of unknown spatial configurations
  publication-title: IEEE Robot Autom Lett
– year: 2023
  ident: b13
  article-title: StarBlocks: Soft actuated self-connecting blocks for building deformable lattice structures
  publication-title: IEEE Robot Autom Lett
– start-page: 0428
  year: 2021
  ident: b12
  article-title: Morphing tensegrity space platforms
  publication-title: AIAA scitech 2021 forum
– volume: 243
  year: 2020
  ident: b31
  article-title: Design of a new tensegrity cantilever structure
  publication-title: Compos Struct
– volume: 234
  year: 2021
  ident: b43
  article-title: Minimal mass design of active tensegrity structures
  publication-title: Eng Struct
– volume: 404
  year: 2023
  ident: b42
  article-title: Minimal mass design of clustered tensegrity structures
  publication-title: Comput Methods Appl Mech Engrg
– year: 2018
  ident: b32
  article-title: Michell structures
– volume: Vol. 2116
  start-page: 5
  year: 2019
  ident: b15
  article-title: Mechanical modeling of the bandgap response of tensegrity metamaterials
  publication-title: AIP conference proceedings
– volume: 305
  year: 2024
  ident: b52
  article-title: Topology optimization of active tensegrity structures
  publication-title: Comput Struct
– year: 1959
  ident: b3
  article-title: Tensile-integrity structures
  publication-title: Pat US3063521
– volume: 127
  year: 2023
  ident: b18
  article-title: Energy-efficient cable-actuation strategies of the V-Expander tensegrity structure subjected to five shape changes
  publication-title: Mech Res Commun
– volume: 7
  start-page: 362
  year: 2020
  end-page: 369
  ident: b10
  article-title: Phase changing materials-based variable-stiffness tensegrity structures
  publication-title: Soft Robot
– volume: 64
  start-page: 1079
  year: 2021
  end-page: 1110
  ident: b44
  article-title: Design of adaptive structures through energy minimization: extension to tensegrity
  publication-title: Struct Multidiscip Optim
– volume: 30
  start-page: 221
  year: 2015
  end-page: 243
  ident: b2
  article-title: Minimum mass and optimal complexity of planar tensegrity bridges
  publication-title: Int J Space Struct
– volume: 137
  year: 2024
  ident: b24
  article-title: Bandgap structure of tensegrity mass–spring chains equipped with internal resonators
  publication-title: Mech Res Commun
– volume: 4
  year: 2022
  ident: b16
  article-title: Dual stiffness tensegrity platform for resilient robotics
  publication-title: Adv Intell Syst
– volume: 15
  year: 2023
  ident: b23
  article-title: Design and modeling framework for DexTeR: Dexterous continuum tensegrity manipulator
  publication-title: J Mech Robot
– volume: 12
  start-page: 244
  year: 1996
  end-page: 250
  ident: b33
  article-title: Some shortcomings in Michell’s truss theory
  publication-title: Struct Optim
– year: 1965
  ident: b4
  article-title: Continuous tension, discontinuous compression structures
– volume: 193
  year: 2024
  ident: b11
  article-title: Dynamic research on winding and capturing of tensegrity flexible manipulator
  publication-title: Mech Mach Theory
– volume: 125
  year: 2022
  ident: b45
  article-title: Minimal mass design of a new cable truss in two states
  publication-title: Mech Res Commun
– year: 2009
  ident: b1
  article-title: Tensegrity systems
– volume: 123
  year: 2023
  ident: b6
  article-title: Prestrain-induced bistability in the design of tensegrity units for mechanical metamaterials
  publication-title: Appl Phys Lett
– volume: 40
  start-page: 1084
  year: 2023
  end-page: 1100
  ident: b47
  article-title: Minimal mass of prismatic tensegrity structures
  publication-title: Eng Comput
– volume: 52
  start-page: 1561
  year: 2017
  end-page: 1576
  ident: b40
  article-title: On the minimal mass reinforcement of masonry structures with arbitrary shapes
  publication-title: Meccanica
– start-page: 847
  year: 2024
  end-page: 856
  ident: b19
  article-title: Analysis of optimal deployment strategy for large deployable tensegrity space antennas
  publication-title: Shell and spacial structures
– volume: 74
  start-page: 668
  year: 2007
  end-page: 676
  ident: b28
  article-title: The analysis of tensegrity structures for the design of a morphing wing
  publication-title: J Appl Mech
– volume: 283
  year: 2022
  ident: b5
  article-title: Directional snapping instability in a bistable tensegrity under uniaxial loads
  publication-title: Compos Struct
– volume: 43
  start-page: 69
  year: 2009
  end-page: 145
  ident: b7
  article-title: Tensegrity: 60 years of art, science, and engineering
  publication-title: Adv Appl Mech
– volume: 29
  start-page: 85
  year: 2005
  end-page: 92
  ident: b34
  article-title: On extending the range of Michell-like optimal topology structures
  publication-title: Struct Multidiscip Optim
– volume: 150
  year: 2024
  ident: b20
  article-title: A fast strategy to determine efficient shape changes of adaptable V-Expander tensegrity columns
  publication-title: J Struct Eng
– volume: 27
  start-page: 133
  year: 2020
  end-page: 154
  ident: b35
  article-title: Applications of Michell’s theory in design of high-rise buildings, large-scale roofs and long-span bridges
  publication-title: Comput Assist Methods Eng Sci
– volume: 6
  start-page: 520
  year: 2019
  end-page: 531
  ident: b21
  article-title: Swimming performance of a tensegrity robotic fish
  publication-title: Soft Robot
– volume: 36
  year: 2023
  ident: b39
  article-title: A mass-optimal spatial tensegrity structure to support a cantilever load
  publication-title: J Aerosp Eng
– volume: Vol. 65
  year: 2024
  ident: b8
  article-title: Study on lightweight design of tensegrity structures with multi-self-stress modes
  publication-title: Structures
– volume: 422
  year: 2024
  ident: b48
  article-title: Topology optimization of adaptive structures: New limits of material economy
  publication-title: Comput Methods Appl Mech Engrg
– volume: 289
  year: 2023
  ident: b53
  article-title: Design of ultra-lightweight and energy-efficient civil structures through shape morphing
  publication-title: Comput Struct
– volume: 248
  year: 2020
  ident: b41
  article-title: A general approach to minimal mass tensegrity
  publication-title: Compos Struct
– volume: 344
  year: 2024
  ident: b27
  article-title: Flexible, lightweight, tunable robotic arms enabled by X-tensegrity inspired structures
  publication-title: Compos Struct
– start-page: 2867
  year: 2015
  end-page: 2873
  ident: b17
  article-title: System design and locomotion of superball, an untethered tensegrity robot
  publication-title: 2015 IEEE international conference on robotics and automation
– volume: 8
  start-page: 589
  year: 1904
  end-page: 597
  ident: b49
  article-title: The limits of economy of material in frame-structures
  publication-title: Lond Edinb Dublin Philos Mag J Sci
– start-page: 457
  year: 2017
  end-page: 464
  ident: b30
  article-title: Kinematic analysis of a flexible tensegrity robot
  publication-title: New advances in mechanisms, mechanical transmissions and robotics
– volume: 58
  start-page: 124
  year: 2014
  end-page: 132
  ident: b50
  article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity
  publication-title: Mech Res Commun
– volume: 54
  start-page: 361
  year: 2016
  end-page: 373
  ident: b37
  article-title: On the (non-) optimality of Michell structures
  publication-title: Struct Multidiscip Optim
– volume: 209
  start-page: 754
  year: 2019
  end-page: 774
  ident: b46
  article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells
  publication-title: Compos Struct
– volume: 151
  year: 2022
  ident: b36
  article-title: Designing truss in architecture: Method and applications based on clustering algorithms and principal stress lines
  publication-title: Comput- Aided Des
– volume: 288
  year: 2023
  ident: b9
  article-title: Effects of prestress implementation on self-stress state in large-scale tensegrity structure
  publication-title: Eng Struct
– volume: 11
  start-page: 37
  year: 1998
  end-page: 44
  ident: b29
  article-title: Active control of tensegrity systems
  publication-title: J Aerosp Eng
– year: 2018
  ident: 10.1016/j.compstruct.2025.118925_b32
– volume: 344
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b27
  article-title: Flexible, lightweight, tunable robotic arms enabled by X-tensegrity inspired structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2024.118331
– volume: 404
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b42
  article-title: Minimal mass design of clustered tensegrity structures
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2022.115832
– volume: 64
  start-page: 1079
  year: 2021
  ident: 10.1016/j.compstruct.2025.118925_b44
  article-title: Design of adaptive structures through energy minimization: extension to tensegrity
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-021-02899-y
– volume: 17
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b25
  article-title: Mechanical response of tensegrity-origami solar modules
  publication-title: Appl Eng Sci
– volume: 27
  start-page: 133
  issue: 2–3
  year: 2020
  ident: 10.1016/j.compstruct.2025.118925_b35
  article-title: Applications of Michell’s theory in design of high-rise buildings, large-scale roofs and long-span bridges
  publication-title: Comput Assist Methods Eng Sci
– volume: 30
  start-page: 221
  issue: 3–4
  year: 2015
  ident: 10.1016/j.compstruct.2025.118925_b2
  article-title: Minimum mass and optimal complexity of planar tensegrity bridges
  publication-title: Int J Space Struct
  doi: 10.1260/0266-3511.30.3-4.221
– volume: 15
  issue: 3
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b23
  article-title: Design and modeling framework for DexTeR: Dexterous continuum tensegrity manipulator
  publication-title: J Mech Robot
  doi: 10.1115/1.4056959
– volume: Vol. 2116
  start-page: 5
  year: 2019
  ident: 10.1016/j.compstruct.2025.118925_b15
  article-title: Mechanical modeling of the bandgap response of tensegrity metamaterials
  doi: 10.1063/1.5114261
– volume: 150
  issue: 4
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b20
  article-title: A fast strategy to determine efficient shape changes of adaptable V-Expander tensegrity columns
  publication-title: J Struct Eng
  doi: 10.1061/JSENDH.STENG-12190
– volume: 137
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b24
  article-title: Bandgap structure of tensegrity mass–spring chains equipped with internal resonators
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2024.104273
– volume: 215
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b14
  article-title: Finite word-length optimal simulation for high-dimensional dynamical systems: Examples of tensegrity structures
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2024.111415
– volume: Vol. 65
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b8
  article-title: Study on lightweight design of tensegrity structures with multi-self-stress modes
– year: 2009
  ident: 10.1016/j.compstruct.2025.118925_b1
– volume: 40
  start-page: 1084
  issue: 5
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b47
  article-title: Minimal mass of prismatic tensegrity structures
  publication-title: Eng Comput
  doi: 10.1108/EC-11-2022-0667
– start-page: 0428
  year: 2021
  ident: 10.1016/j.compstruct.2025.118925_b12
  article-title: Morphing tensegrity space platforms
– volume: 58
  start-page: 124
  year: 2014
  ident: 10.1016/j.compstruct.2025.118925_b50
  article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2013.10.017
– volume: 289
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b53
  article-title: Design of ultra-lightweight and energy-efficient civil structures through shape morphing
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2023.107149
– volume: 125
  year: 2022
  ident: 10.1016/j.compstruct.2025.118925_b45
  article-title: Minimal mass design of a new cable truss in two states
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2022.103995
– volume: 4
  issue: 7
  year: 2022
  ident: 10.1016/j.compstruct.2025.118925_b16
  article-title: Dual stiffness tensegrity platform for resilient robotics
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202200025
– volume: 127
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b18
  article-title: Energy-efficient cable-actuation strategies of the V-Expander tensegrity structure subjected to five shape changes
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2022.104026
– volume: 193
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b11
  article-title: Dynamic research on winding and capturing of tensegrity flexible manipulator
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2023.105554
– volume: 29
  start-page: 85
  year: 2005
  ident: 10.1016/j.compstruct.2025.118925_b34
  article-title: On extending the range of Michell-like optimal topology structures
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-004-0469-x
– year: 1959
  ident: 10.1016/j.compstruct.2025.118925_b3
  article-title: Tensile-integrity structures
  publication-title: Pat US3063521
– volume: 243
  year: 2020
  ident: 10.1016/j.compstruct.2025.118925_b31
  article-title: Design of a new tensegrity cantilever structure
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112188
– volume: 422
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b48
  article-title: Topology optimization of adaptive structures: New limits of material economy
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2023.116710
– volume: 6
  start-page: 520
  issue: 4
  year: 2019
  ident: 10.1016/j.compstruct.2025.118925_b21
  article-title: Swimming performance of a tensegrity robotic fish
  publication-title: Soft Robot
  doi: 10.1089/soro.2018.0079
– start-page: 457
  year: 2017
  ident: 10.1016/j.compstruct.2025.118925_b30
  article-title: Kinematic analysis of a flexible tensegrity robot
– volume: 248
  year: 2020
  ident: 10.1016/j.compstruct.2025.118925_b41
  article-title: A general approach to minimal mass tensegrity
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112454
– volume: 209
  start-page: 754
  year: 2019
  ident: 10.1016/j.compstruct.2025.118925_b46
  article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.10.108
– volume: 123
  issue: 12
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b6
  article-title: Prestrain-induced bistability in the design of tensegrity units for mechanical metamaterials
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0160023
– volume: 12
  start-page: 244
  year: 1996
  ident: 10.1016/j.compstruct.2025.118925_b33
  article-title: Some shortcomings in Michell’s truss theory
  publication-title: Struct Optim
  doi: 10.1007/BF01197364
– start-page: 847
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b19
  article-title: Analysis of optimal deployment strategy for large deployable tensegrity space antennas
– volume: 43
  start-page: 69
  year: 2009
  ident: 10.1016/j.compstruct.2025.118925_b7
  article-title: Tensegrity: 60 years of art, science, and engineering
  publication-title: Adv Appl Mech
  doi: 10.1016/S0065-2156(09)43002-3
– volume: 151
  year: 2022
  ident: 10.1016/j.compstruct.2025.118925_b36
  article-title: Designing truss in architecture: Method and applications based on clustering algorithms and principal stress lines
  publication-title: Comput- Aided Des
  doi: 10.1016/j.cad.2022.103330
– volume: 234
  year: 2021
  ident: 10.1016/j.compstruct.2025.118925_b43
  article-title: Minimal mass design of active tensegrity structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.111965
– year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b13
  article-title: StarBlocks: Soft actuated self-connecting blocks for building deformable lattice structures
  publication-title: IEEE Robot Autom Lett
– volume: 305
  year: 2024
  ident: 10.1016/j.compstruct.2025.118925_b52
  article-title: Topology optimization of active tensegrity structures
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2024.107513
– volume: 281
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b26
  article-title: Mechanics of superelastic tensegrity braces for timber frames equipped with buckling-restrained devices
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2023.112414
– volume: 7
  start-page: 362
  issue: 3
  year: 2020
  ident: 10.1016/j.compstruct.2025.118925_b10
  article-title: Phase changing materials-based variable-stiffness tensegrity structures
  publication-title: Soft Robot
  doi: 10.1089/soro.2019.0091
– volume: 54
  start-page: 361
  year: 2016
  ident: 10.1016/j.compstruct.2025.118925_b37
  article-title: On the (non-) optimality of Michell structures
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1420-7
– volume: 288
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b9
  article-title: Effects of prestress implementation on self-stress state in large-scale tensegrity structure
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116222
– volume: 283
  year: 2022
  ident: 10.1016/j.compstruct.2025.118925_b5
  article-title: Directional snapping instability in a bistable tensegrity under uniaxial loads
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.115153
– volume: 74
  start-page: 668
  issue: 4
  year: 2007
  ident: 10.1016/j.compstruct.2025.118925_b28
  article-title: The analysis of tensegrity structures for the design of a morphing wing
  publication-title: J Appl Mech
  doi: 10.1115/1.2424718
– volume: 347
  start-page: 257
  issue: 1
  year: 2010
  ident: 10.1016/j.compstruct.2025.118925_b38
  article-title: Optimal tensegrity structures in bending: The discrete Michell truss
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2009.10.009
– volume: 7
  start-page: 5349
  issue: 2
  year: 2022
  ident: 10.1016/j.compstruct.2025.118925_b22
  article-title: Soft tensegrity robot driven by thin artificial muscles for the exploration of unknown spatial configurations
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2022.3153700
– volume: 8
  start-page: 589
  issue: 47
  year: 1904
  ident: 10.1016/j.compstruct.2025.118925_b49
  article-title: The limits of economy of material in frame-structures
  publication-title: Lond Edinb Dublin Philos Mag J Sci
  doi: 10.1080/14786440409463229
– year: 2014
  ident: 10.1016/j.compstruct.2025.118925_b51
  article-title: Minimal mass design of tensegrity structures
– volume: 11
  start-page: 37
  issue: 2
  year: 1998
  ident: 10.1016/j.compstruct.2025.118925_b29
  article-title: Active control of tensegrity systems
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)0893-1321(1998)11:2(37)
– volume: 36
  issue: 4
  year: 2023
  ident: 10.1016/j.compstruct.2025.118925_b39
  article-title: A mass-optimal spatial tensegrity structure to support a cantilever load
  publication-title: J Aerosp Eng
  doi: 10.1061/JAEEEZ.ASENG-4364
– start-page: 2867
  year: 2015
  ident: 10.1016/j.compstruct.2025.118925_b17
  article-title: System design and locomotion of superball, an untethered tensegrity robot
– year: 1965
  ident: 10.1016/j.compstruct.2025.118925_b4
– volume: 52
  start-page: 1561
  issue: 7
  year: 2017
  ident: 10.1016/j.compstruct.2025.118925_b40
  article-title: On the minimal mass reinforcement of masonry structures with arbitrary shapes
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0493-0
SSID ssj0008411
Score 2.4425125
Snippet This study introduces an analytical design approach for lightweight cantilever tensegrity structures based on the Michell truss pattern. The topological...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 118925
SubjectTerms Cantilever load
Cantilever structure
Lightweight structure
Michell truss
Minimal mass
Tensegrity
Title Lightweight design of tensegrity Michell truss subject to cantilever loads
URI https://dx.doi.org/10.1016/j.compstruct.2025.118925
Volume 357
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvehBfGJ9lD14jU2yu0mDp1IstWovWugt7FMq0hZa8eZvdyYPWkHw4DFhd0m-Xb6ZWb6ZAbjmVjgeKhVIY1UgrDWUrGwwSiHjKJ3KNOUOP42T4USMpnLagH6dC0Oyyor7S04v2Lp606nQ7Cxns84zRg8czRuPi5r-4ZQy2EVKsr6br43MoyuKHrw0OKDRlZqn1HiRbLus04qRYiyRP7oZNc3-zURtmZ3BAexX_iLrlZ90CA03P4K9rSqCxzB6pAD7s7jjZLZQZLCFZyRNd6_Um45Vek9GCRYrtvrQdPnC1gtGuCIt4HFm7wtlVycwGdy99IdB1SIhMPhD60DJCF0GngkZGWGFEN7LUHulvU-s1zy2kpoWWI9Rn9GZMCJNjOURd0lkupHip9CcL-buDFjKE2nCmPw59JEcrhKn2jgupJEcV25BVKOSL8tKGHktEXvLN0jmhGReItmC2xq-_Meu5kjYf84-_9fsC9ilp1IvdglNHOCu0IFY63ZxQtqw07t_GI6_AcFlx-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrcw9eQ5PsbtrgqRRL-rzYQm9L9iUVaQqt-PfdyUMrCB68JrtL8u3yzczyzQzAA9XMUD9NPa506jGtFSYrKxeloHHkJo0l5g5PplEyZ8MFX9SgV-XCoKyy5P6C03O2Lp-0SjRb6-Wy9eyiB-rMGw3zmv7-Yg8aWJ2K1aHRHYyS6Rchd1jehhfHezihFPQUMi9UbhelWl2wGHJHIZ0Y-2b_ZqV2LE__GI5Kl5F0i686gZpZncLhTiHBMxiOMcb-yK85ic5FGSSzBNXp5gXb05FS8kkwx2JDNu8S71_INiMIrWMGd6LJW5bqzTnM-0-zXuKVXRI85X5o66U8cF4DjRkPFNOMMWu5L20qrY20lTTUHPsWaOsCPyVjplg7UpoG1ESB6gQpvYD6KluZSyBtGnHlh-jSOTfJuFXCtlSGMq44dSs3IahQEeuiGIaoVGKv4htJgUiKAskmPFbwiR8bKxxn_zn76l-z72E_mU3GYjyYjq7hAN8U8rEbqLvB5tb5E1t5V56XT6uAypk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+design+of+tensegrity+Michell+truss+subject+to+cantilever+loads&rft.jtitle=Composite+structures&rft.au=Bai%2C+Xiaolong&rft.au=Chen%2C+Muhao&rft.date=2025-03-01&rft.issn=0263-8223&rft.volume=357&rft.spage=118925&rft_id=info:doi/10.1016%2Fj.compstruct.2025.118925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruct_2025_118925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon