Classification with an edge: Improving semantic image segmentation with boundary detection

We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 135; pp. 158 - 172
Main Authors Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the segnet encoder-decoder architecture. Second, we also include boundary detection in fcn-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.
AbstractList We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the segnet encoder-decoder architecture. Second, we also include boundary detection in fcn-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.
Author Schindler, K.
Wegner, J.D.
Datcu, M.
Stilla, U.
Galliani, S.
Marmanis, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Marmanis
  fullname: Marmanis, D.
  email: dimitrios.marmanis@dlr.de
  organization: DLR-IMF Department, German Aerospace Center, Oberpfaffenhofen, Germany
– sequence: 2
  givenname: K.
  surname: Schindler
  fullname: Schindler, K.
  email: konrad.schindler@geod.baug.ethz.ch
  organization: Photogrammetry and Remote Sensing, ETH Zurich, Switzerland
– sequence: 3
  givenname: J.D.
  surname: Wegner
  fullname: Wegner, J.D.
  email: jan.wegner@geod.baug.ethz.ch
  organization: Photogrammetry and Remote Sensing, ETH Zurich, Switzerland
– sequence: 4
  givenname: S.
  surname: Galliani
  fullname: Galliani, S.
  email: silvano.galliani@geod.baug.ethz.ch
  organization: Photogrammetry and Remote Sensing, ETH Zurich, Switzerland
– sequence: 5
  givenname: M.
  surname: Datcu
  fullname: Datcu, M.
  email: mihai.datcu@dlr.de
  organization: DLR-IMF Department, German Aerospace Center, Oberpfaffenhofen, Germany
– sequence: 6
  givenname: U.
  surname: Stilla
  fullname: Stilla, U.
  email: stilla@tum.de
  organization: Photogrammetry and Remote Sensing, TU München, Germany
BookMark eNqNkM9LwzAUx4NMcJv-DfbopTVJ27QTPIzhj8HAi168hCR9qSltOpNusv_ejIqIFz2ERx7v8-W9zwxNbG8BoUuCE4IJu24S47fON-ElFJMiISTBeHGCpqQsaFzSNJ-gKV7QLKYFYWdo5n2DMSY5K6foddUK7402Sgymt9GHGd4iYSOoariJ1t3W9Xtj68hDJ-xgVGQ6UUP41h3Y4Qcj-52thDtEFQygjv1zdKpF6-Hiq87Ry_3d8-ox3jw9rFfLTawoS4d4IVkqINelDNcwRanOyjIPqxcEUsWkzDKNhagyWlFW4RxTDYRoKbGURQp5OkdXY27Y9X0HfuCd8QraVljod55TzELYguZpGL0dR5XrvXeguTLjEYMTpuUE86NT3vBvp_zolBPCg9PAF7_4rQtC3OEf5HIkIZjYG3DcKwNWQWVc0MWr3vyZ8Qk6Lptx
CitedBy_id crossref_primary_10_3390_rs16173248
crossref_primary_10_3390_rs14061353
crossref_primary_10_3390_s21051794
crossref_primary_10_1186_s12880_021_00650_z
crossref_primary_10_1109_ACCESS_2020_3028445
crossref_primary_10_1109_LGRS_2022_3199395
crossref_primary_10_3390_jmse8010023
crossref_primary_10_3390_rs13010119
crossref_primary_10_3390_s18113921
crossref_primary_10_1080_01431161_2021_1876272
crossref_primary_10_1109_TGRS_2021_3055950
crossref_primary_10_1016_j_rse_2018_11_032
crossref_primary_10_1109_TGRS_2023_3239042
crossref_primary_10_1111_jfr3_12827
crossref_primary_10_1155_2023_3301106
crossref_primary_10_1080_10106049_2020_1856199
crossref_primary_10_1109_TGRS_2021_3089623
crossref_primary_10_1016_j_rse_2019_111253
crossref_primary_10_1109_TGRS_2021_3108352
crossref_primary_10_1016_j_isprsjprs_2018_07_004
crossref_primary_10_1016_j_rse_2019_04_014
crossref_primary_10_1039_C9AN00964G
crossref_primary_10_1109_LGRS_2019_2947783
crossref_primary_10_1109_LGRS_2022_3143368
crossref_primary_10_1109_MGRS_2021_3136100
crossref_primary_10_1117_1_JRS_12_045008
crossref_primary_10_3390_rs11060684
crossref_primary_10_1109_JSTARS_2020_3043442
crossref_primary_10_1080_07038992_2021_1922880
crossref_primary_10_1016_j_isprsjprs_2019_01_015
crossref_primary_10_3390_rs11101158
crossref_primary_10_1109_TITS_2024_3492383
crossref_primary_10_1109_TGRS_2021_3110314
crossref_primary_10_1016_j_isprsjprs_2020_04_002
crossref_primary_10_3390_rs11131617
crossref_primary_10_1109_LGRS_2020_3036823
crossref_primary_10_1109_JSTARS_2024_3412369
crossref_primary_10_1016_j_isprsjprs_2020_12_009
crossref_primary_10_1109_LGRS_2020_3021210
crossref_primary_10_3390_rs11060690
crossref_primary_10_1088_1742_6596_2858_1_012008
crossref_primary_10_3390_rs13152986
crossref_primary_10_1109_TGRS_2020_2994150
crossref_primary_10_1080_01431161_2023_2292016
crossref_primary_10_3390_app14135443
crossref_primary_10_1016_j_eswa_2020_114417
crossref_primary_10_1109_JSTARS_2021_3071353
crossref_primary_10_1016_j_foreco_2020_118397
crossref_primary_10_1109_ACCESS_2020_2964111
crossref_primary_10_1016_j_autcon_2021_103685
crossref_primary_10_1016_j_eswa_2023_121999
crossref_primary_10_3390_ijgi10010023
crossref_primary_10_3390_rs10091440
crossref_primary_10_1109_LGRS_2021_3091284
crossref_primary_10_3390_rs17030496
crossref_primary_10_3390_rs12030513
crossref_primary_10_1016_j_adapen_2021_100057
crossref_primary_10_1002_mp_16467
crossref_primary_10_1007_s11277_021_08860_y
crossref_primary_10_1109_TGRS_2024_3443420
crossref_primary_10_1109_JSTARS_2024_3393531
crossref_primary_10_1016_j_isprsjprs_2019_02_006
crossref_primary_10_1109_LGRS_2022_3183828
crossref_primary_10_1016_j_isprsjprs_2023_04_019
crossref_primary_10_1117_1_JRS_15_028501
crossref_primary_10_1080_01431161_2021_1897185
crossref_primary_10_3390_rs11151774
crossref_primary_10_1109_TGRS_2021_3121471
crossref_primary_10_1109_TGRS_2018_2870871
crossref_primary_10_1109_JSTARS_2021_3073994
crossref_primary_10_1109_TGRS_2020_3006872
crossref_primary_10_3390_rs15133283
crossref_primary_10_1109_TGRS_2020_2973720
crossref_primary_10_1109_LGRS_2020_3031339
crossref_primary_10_1186_s13007_024_01208_0
crossref_primary_10_1016_j_isprsjprs_2019_02_019
crossref_primary_10_1109_TGRS_2022_3144165
crossref_primary_10_1016_j_patcog_2020_107705
crossref_primary_10_1117_1_JRS_17_034509
crossref_primary_10_1080_19479832_2019_1655489
crossref_primary_10_1109_LGRS_2024_3433034
crossref_primary_10_3389_fenvs_2022_991173
crossref_primary_10_1016_j_jenvman_2024_120773
crossref_primary_10_1109_ACCESS_2019_2935816
crossref_primary_10_1109_ACCESS_2019_2957825
crossref_primary_10_3390_rs15102585
crossref_primary_10_3390_rs16244701
crossref_primary_10_1587_transinf_2023EDP7279
crossref_primary_10_1080_15481603_2022_2101728
crossref_primary_10_1007_s00521_022_07894_y
crossref_primary_10_1109_ACCESS_2019_2908216
crossref_primary_10_1016_j_rse_2022_113014
crossref_primary_10_1007_s41064_024_00316_9
crossref_primary_10_3390_rs11111262
crossref_primary_10_3390_s24030730
crossref_primary_10_1080_15481603_2024_2356355
crossref_primary_10_1007_s12145_019_00380_5
crossref_primary_10_1109_JSTARS_2023_3346185
crossref_primary_10_3390_rs14112630
crossref_primary_10_3390_rs11242970
crossref_primary_10_1016_j_isprsjprs_2022_11_011
crossref_primary_10_1007_s12652_020_02025_8
crossref_primary_10_1080_01431161_2020_1871100
crossref_primary_10_1080_01431161_2023_2261153
crossref_primary_10_3390_ijgi11010023
crossref_primary_10_3390_rs14205133
crossref_primary_10_3390_rs11050597
crossref_primary_10_46932_sfjdv5n10_038
crossref_primary_10_1016_j_eswa_2021_115530
crossref_primary_10_1515_nanoph_2021_0823
crossref_primary_10_1109_TGRS_2021_3106697
crossref_primary_10_1109_TGRS_2021_3109844
crossref_primary_10_1080_20964471_2021_1964879
crossref_primary_10_1080_01431161_2024_2313991
crossref_primary_10_1109_ACCESS_2020_3028174
crossref_primary_10_1016_j_rse_2019_111411
crossref_primary_10_3390_rs11202380
crossref_primary_10_1109_TGRS_2020_3009143
crossref_primary_10_1109_JSTARS_2023_3316307
crossref_primary_10_3390_rs13183755
crossref_primary_10_1109_JSTARS_2022_3180558
crossref_primary_10_1109_TGRS_2021_3119537
crossref_primary_10_3390_rs13183630
crossref_primary_10_1016_j_jag_2021_102379
crossref_primary_10_1016_j_isprsjprs_2024_06_011
crossref_primary_10_1109_TGRS_2024_3396813
crossref_primary_10_1016_j_geoderma_2020_114552
crossref_primary_10_3390_s23041991
crossref_primary_10_3390_drones8070297
crossref_primary_10_1007_s00521_021_06564_9
crossref_primary_10_1109_LGRS_2020_2983464
crossref_primary_10_1109_TGRS_2022_3168697
crossref_primary_10_1109_TGRS_2021_3064606
crossref_primary_10_3390_rs14194722
crossref_primary_10_1109_JSTARS_2025_3538488
crossref_primary_10_1109_JSTARS_2022_3178470
crossref_primary_10_1016_j_catena_2021_105388
crossref_primary_10_1016_j_isprsjprs_2019_07_007
crossref_primary_10_3390_rs13030475
crossref_primary_10_1016_j_isprsjprs_2018_12_003
crossref_primary_10_1109_JSTARS_2018_2849363
crossref_primary_10_3390_rs13214361
crossref_primary_10_1007_s12145_018_00376_7
crossref_primary_10_2112_SI99_007_1
crossref_primary_10_1109_TGRS_2020_3034123
crossref_primary_10_1109_TGRS_2023_3251659
crossref_primary_10_1109_JSTARS_2020_3018862
crossref_primary_10_1109_TGRS_2022_3144894
crossref_primary_10_1117_1_JRS_14_016502
crossref_primary_10_1016_j_jag_2020_102237
crossref_primary_10_1109_TCSVT_2020_3001267
crossref_primary_10_1016_j_patrec_2024_07_011
crossref_primary_10_1177_1094342020945026
crossref_primary_10_3390_rs14112673
crossref_primary_10_1016_j_neucom_2020_09_016
crossref_primary_10_1109_TITS_2021_3098855
crossref_primary_10_1109_TGRS_2024_3453501
crossref_primary_10_3390_rs14030533
crossref_primary_10_3390_app10155364
crossref_primary_10_3390_w12061771
crossref_primary_10_1016_j_rse_2019_111347
crossref_primary_10_1109_ACCESS_2022_3182370
crossref_primary_10_1016_j_isprsjprs_2018_06_007
crossref_primary_10_1109_ACCESS_2020_2964760
crossref_primary_10_3390_rs15215123
crossref_primary_10_3390_rs13061176
crossref_primary_10_1109_JSTARS_2022_3221860
crossref_primary_10_1109_TGRS_2023_3285659
crossref_primary_10_3390_rs12020311
crossref_primary_10_1016_j_isprsjprs_2020_09_019
crossref_primary_10_1007_s42979_023_02531_4
crossref_primary_10_1109_TGRS_2020_2979552
crossref_primary_10_1109_JSTARS_2024_3424831
crossref_primary_10_3390_bioengineering11060575
crossref_primary_10_1007_s00500_023_08616_9
crossref_primary_10_1109_LGRS_2023_3315687
crossref_primary_10_1016_j_asoc_2025_113052
crossref_primary_10_1109_JSTARS_2018_2825099
crossref_primary_10_3390_rs13193836
crossref_primary_10_1016_j_isprsjprs_2020_01_023
crossref_primary_10_1016_j_neucom_2023_126469
crossref_primary_10_3390_rs13061049
crossref_primary_10_1016_j_isprsjprs_2023_06_014
crossref_primary_10_1109_TGRS_2022_3176028
crossref_primary_10_1145_3687918
crossref_primary_10_1109_TGRS_2021_3050885
crossref_primary_10_1016_j_compag_2021_106014
crossref_primary_10_1016_j_isprsjprs_2022_04_012
crossref_primary_10_1109_JSTARS_2025_3530714
crossref_primary_10_1109_TGRS_2019_2913861
crossref_primary_10_1155_2020_6854260
crossref_primary_10_3390_rs11171986
crossref_primary_10_1109_TGRS_2021_3117851
crossref_primary_10_3390_rs14010207
crossref_primary_10_4018_IJSWIS_342087
crossref_primary_10_1109_JSTARS_2021_3078631
crossref_primary_10_1016_j_mtcomm_2023_106397
crossref_primary_10_3390_rs14236057
crossref_primary_10_3390_rs13030528
crossref_primary_10_3390_rs11202427
crossref_primary_10_3390_rs14133059
crossref_primary_10_1109_TGRS_2021_3081582
crossref_primary_10_3390_rs10071119
crossref_primary_10_1080_00396265_2024_2338641
crossref_primary_10_1109_TGRS_2018_2841808
crossref_primary_10_3390_rs15082153
crossref_primary_10_1016_j_isprsjprs_2020_01_013
crossref_primary_10_1038_s41598_024_64231_0
crossref_primary_10_1109_JSTARS_2021_3052495
crossref_primary_10_1016_j_jobe_2025_112176
crossref_primary_10_1016_j_compag_2020_105446
crossref_primary_10_1016_j_asoc_2020_106452
crossref_primary_10_1109_JSTARS_2023_3346454
crossref_primary_10_3389_fevo_2023_1201125
crossref_primary_10_1109_TGRS_2022_3225843
crossref_primary_10_3390_rs14020265
crossref_primary_10_1063_1_5095557
crossref_primary_10_1109_JSTARS_2020_3021098
crossref_primary_10_1117_1_JRS_13_016522
crossref_primary_10_5194_essd_13_1829_2021
crossref_primary_10_1016_j_envsoft_2020_104665
crossref_primary_10_1007_s11036_020_01703_3
crossref_primary_10_1109_JSTARS_2023_3244207
crossref_primary_10_3390_rs14010102
crossref_primary_10_1007_s00521_020_05341_4
crossref_primary_10_1016_j_isprsjprs_2020_09_025
crossref_primary_10_1109_TVCG_2020_2973477
crossref_primary_10_1109_TGRS_2021_3095832
crossref_primary_10_3390_app10124207
crossref_primary_10_1016_j_commatsci_2022_111391
crossref_primary_10_1007_s10489_021_02542_9
crossref_primary_10_1016_j_cropro_2024_106762
crossref_primary_10_1007_s42979_023_02434_4
crossref_primary_10_3390_rs15082135
crossref_primary_10_1109_JSTARS_2019_2902375
crossref_primary_10_26833_ijeg_1587798
crossref_primary_10_1109_TGRS_2022_3174399
crossref_primary_10_3390_rs13163065
crossref_primary_10_1109_JSTARS_2022_3197937
crossref_primary_10_1080_01431161_2019_1643937
crossref_primary_10_1016_j_isprsjprs_2019_05_013
crossref_primary_10_1117_1_JRS_14_014507
crossref_primary_10_1109_TGRS_2024_3360701
crossref_primary_10_1016_j_rse_2021_112339
crossref_primary_10_1016_j_isprsjprs_2020_02_014
crossref_primary_10_1016_j_isprsjprs_2021_04_022
crossref_primary_10_3390_rs14081835
crossref_primary_10_1109_JSTARS_2020_3017934
crossref_primary_10_1016_j_isprsjprs_2021_09_005
crossref_primary_10_1016_j_asoc_2019_105714
crossref_primary_10_1109_TGRS_2024_3376352
crossref_primary_10_1007_s12145_019_00413_z
crossref_primary_10_1016_j_jobe_2023_107155
crossref_primary_10_1080_01431161_2022_2135410
crossref_primary_10_1016_j_jhydrol_2021_126371
crossref_primary_10_1002_ima_23011
crossref_primary_10_1088_1361_6501_abfbfd
crossref_primary_10_3390_rs11242916
crossref_primary_10_1109_ACCESS_2021_3085218
crossref_primary_10_1109_JSTARS_2023_3335891
crossref_primary_10_1109_TCSVT_2022_3227172
crossref_primary_10_1016_j_eij_2024_100500
crossref_primary_10_1016_j_compag_2023_107683
crossref_primary_10_1109_ACCESS_2019_2903543
crossref_primary_10_1007_s00506_019_0581_1
crossref_primary_10_3390_s19122792
crossref_primary_10_3390_s21217316
crossref_primary_10_1109_TGRS_2021_3119852
crossref_primary_10_1109_JSTARS_2021_3109439
crossref_primary_10_1080_17538947_2020_1831087
crossref_primary_10_3390_rs11121443
crossref_primary_10_1109_TGRS_2022_3176670
crossref_primary_10_3390_rs14215527
crossref_primary_10_3390_rs11242912
crossref_primary_10_1109_JSTARS_2018_2810320
crossref_primary_10_1016_j_isprsjprs_2021_04_006
crossref_primary_10_3390_rs14051294
crossref_primary_10_3390_rs13163275
crossref_primary_10_1016_j_isprsjprs_2018_11_011
crossref_primary_10_1109_TGRS_2019_2963364
crossref_primary_10_1111_phor_12275
crossref_primary_10_3390_ijgi11090494
crossref_primary_10_1016_j_eswa_2024_124751
crossref_primary_10_1016_j_inpa_2019_07_003
crossref_primary_10_1109_LGRS_2018_2868880
crossref_primary_10_1109_JSTARS_2021_3066791
crossref_primary_10_1049_ipr2_12444
crossref_primary_10_1016_j_isprsjprs_2024_01_022
crossref_primary_10_3390_rs14194770
crossref_primary_10_1016_j_isprsjprs_2024_01_026
crossref_primary_10_1016_j_cviu_2019_102795
crossref_primary_10_1109_JSTARS_2021_3055784
crossref_primary_10_1016_j_isprsjprs_2022_06_008
crossref_primary_10_1016_j_rsase_2021_100491
crossref_primary_10_1007_s11831_023_10000_7
crossref_primary_10_1109_TMM_2022_3197369
crossref_primary_10_3390_rs13163146
crossref_primary_10_1109_TGRS_2023_3268159
crossref_primary_10_1177_09544062221095687
crossref_primary_10_1109_TGRS_2024_3373033
crossref_primary_10_1016_j_jag_2022_103087
crossref_primary_10_1109_JSTARS_2021_3049905
crossref_primary_10_1109_TGRS_2020_2991006
crossref_primary_10_1109_TGRS_2021_3087159
crossref_primary_10_1080_01431161_2020_1788742
crossref_primary_10_3390_rs14092252
crossref_primary_10_3390_rs14235911
crossref_primary_10_1016_j_asoc_2024_112061
crossref_primary_10_21595_mme_2018_19840
crossref_primary_10_1007_s00170_022_09242_9
crossref_primary_10_1109_TGRS_2023_3300706
crossref_primary_10_1109_TGRS_2021_3133258
crossref_primary_10_1080_01431161_2019_1681604
crossref_primary_10_34133_remotesensing_0078
crossref_primary_10_1016_j_isprsjprs_2021_08_009
crossref_primary_10_1109_TGRS_2019_2906689
crossref_primary_10_1109_TGRS_2023_3276081
crossref_primary_10_1155_2022_6010912
crossref_primary_10_3390_rs10091487
crossref_primary_10_1109_TGRS_2020_2964675
crossref_primary_10_1109_TGRS_2021_3065112
crossref_primary_10_3390_rs12040739
crossref_primary_10_3390_s20216062
crossref_primary_10_1109_JSTARS_2021_3053067
crossref_primary_10_1109_ACCESS_2021_3111899
crossref_primary_10_1109_TGRS_2022_3174651
crossref_primary_10_1080_14498596_2022_2037473
crossref_primary_10_1109_TGRS_2023_3234549
crossref_primary_10_52547_jist_9_36_285
crossref_primary_10_1016_j_rse_2021_112480
crossref_primary_10_1007_s12530_019_09304_6
crossref_primary_10_1109_LGRS_2023_3234257
crossref_primary_10_12677_AIRR_2022_114048
crossref_primary_10_3390_rs10091339
crossref_primary_10_3390_rs12223764
crossref_primary_10_1016_j_rse_2021_112479
crossref_primary_10_1016_j_isprsjprs_2021_05_004
crossref_primary_10_3390_rs15010231
crossref_primary_10_1080_01431161_2021_1998716
crossref_primary_10_1016_j_engappai_2024_109540
crossref_primary_10_1016_j_isprsjprs_2021_12_007
crossref_primary_10_1109_JSTARS_2021_3076035
crossref_primary_10_1016_j_isprsjprs_2020_06_016
crossref_primary_10_1109_TVT_2022_3144358
crossref_primary_10_1155_2022_1420946
crossref_primary_10_1016_j_isprsjprs_2019_03_014
crossref_primary_10_3390_rs13142656
crossref_primary_10_1016_j_isprsjprs_2019_03_015
crossref_primary_10_1117_1_JEI_32_1_013001
crossref_primary_10_1007_s12065_024_01012_8
crossref_primary_10_1109_JSTARS_2021_3139017
crossref_primary_10_1109_ACCESS_2019_2923753
crossref_primary_10_3390_ijgi10100672
crossref_primary_10_1117_1_JRS_18_034504
crossref_primary_10_28979_jarnas_911130
crossref_primary_10_1016_j_isprsjprs_2022_07_001
crossref_primary_10_1109_TGRS_2023_3268362
crossref_primary_10_1007_s11042_020_09825_2
crossref_primary_10_1016_j_procs_2019_09_318
crossref_primary_10_1109_TGRS_2021_3103517
crossref_primary_10_1016_j_isprsjprs_2019_11_006
crossref_primary_10_1016_j_isprsjprs_2020_10_008
crossref_primary_10_1155_2022_4831223
crossref_primary_10_1016_j_srs_2022_100047
crossref_primary_10_1007_s11277_023_10628_5
crossref_primary_10_1109_ACCESS_2019_2955560
crossref_primary_10_1109_JSTARS_2022_3205609
crossref_primary_10_3390_rs13142788
crossref_primary_10_1007_s12145_024_01267_w
crossref_primary_10_1109_TGRS_2023_3273818
crossref_primary_10_1109_TGRS_2024_3425708
crossref_primary_10_1155_2022_7733196
crossref_primary_10_3390_rs14040818
crossref_primary_10_1007_s11269_024_04033_1
crossref_primary_10_1080_15481603_2018_1564499
crossref_primary_10_1109_JSTARS_2021_3070786
crossref_primary_10_1109_JSTARS_2021_3073935
crossref_primary_10_1080_10106049_2023_2190622
crossref_primary_10_1016_j_isprsjprs_2023_09_007
crossref_primary_10_3390_rs11141678
crossref_primary_10_3390_app14093712
crossref_primary_10_3390_rs12010174
crossref_primary_10_1007_s12524_024_02021_x
crossref_primary_10_3390_s23115323
crossref_primary_10_1016_j_rse_2024_114073
crossref_primary_10_1007_s10994_021_06027_1
crossref_primary_10_3390_rs12213501
crossref_primary_10_3390_s24227266
crossref_primary_10_3390_rs13040808
crossref_primary_10_1080_01431161_2022_2030071
crossref_primary_10_1021_acsphotonics_9b01465
crossref_primary_10_1109_TGRS_2020_3033816
crossref_primary_10_3390_rs12040701
crossref_primary_10_1109_JSTARS_2023_3342453
crossref_primary_10_3390_rs14071638
crossref_primary_10_3390_s25051380
crossref_primary_10_1109_TIP_2020_2992893
crossref_primary_10_1109_TGRS_2022_3161337
crossref_primary_10_3390_rs12050852
crossref_primary_10_1016_j_infrared_2020_103233
crossref_primary_10_3390_rs15245631
crossref_primary_10_1109_JSTARS_2023_3273726
crossref_primary_10_1109_LGRS_2022_3190507
crossref_primary_10_1109_JSTARS_2020_3023645
crossref_primary_10_3390_rs15071836
crossref_primary_10_1109_LGRS_2021_3070426
crossref_primary_10_1080_01431161_2023_2225710
crossref_primary_10_1109_TMI_2022_3203022
crossref_primary_10_1364_JOSAA_525577
crossref_primary_10_1109_JSTARS_2023_3286912
crossref_primary_10_3390_ijgi8060258
crossref_primary_10_1051_e3sconf_202126003012
crossref_primary_10_1016_j_eswa_2022_117346
crossref_primary_10_1109_TGRS_2023_3297092
crossref_primary_10_1016_j_jhydrol_2020_124631
crossref_primary_10_1109_ACCESS_2020_3024111
crossref_primary_10_1109_TGRS_2021_3074289
crossref_primary_10_1109_JSTARS_2019_2919317
Cites_doi 10.3390/rs8040329
10.1109/TGRS.2010.2048116
10.1109/CVPR.2016.343
10.2352/ISSN.2470-1173.2016.10.ROBVIS-392
10.1109/CVPR.2015.7298965
10.1109/PROC.1969.7019
10.1109/ISSPIT.2015.7394333
10.1109/TPAMI.2016.2644615
10.1007/978-3-642-15567-3_16
10.1109/36.142926
10.1109/CVPRW.2015.7301381
10.1109/ICCV.2015.65
10.1109/TGRS.2014.2321423
10.1109/CVPR.2016.28
10.1109/TPAMI.2012.231
10.1109/IGARSS.2017.8128163
10.1007/978-3-319-10590-1_53
10.1007/978-1-84882-935-0
10.1109/TGRS.2016.2616585
10.1109/CVPRW.2016.90
10.1109/ICCV.2015.164
10.1109/IGARSS.2016.7729468
10.1109/ICCV.2015.316
10.5194/isprsannals-III-3-473-2016
10.1109/ICCV.2015.178
10.1007/978-3-319-46448-0_5
10.1007/978-3-319-54181-5_12
10.1109/CVPR.2016.492
10.1080/01431169308954040
ContentType Journal Article
Copyright 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2017.11.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 172
ExternalDocumentID 10_1016_j_isprsjprs_2017_11_009
S092427161630572X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c263t-9b63ae5f8b0166c22f488587271e3c6bb44f0aad42d26d0502fe11fbb0bb73e53
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 12:25:17 EDT 2025
Tue Jul 01 03:46:38 EDT 2025
Thu Apr 24 23:13:14 EDT 2025
Fri Feb 23 02:28:02 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-9b63ae5f8b0166c22f488587271e3c6bb44f0aad42d26d0502fe11fbb0bb73e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2067279253
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2067279253
crossref_citationtrail_10_1016_j_isprsjprs_2017_11_009
crossref_primary_10_1016_j_isprsjprs_2017_11_009
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2017_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Farabet, Couprie, Najman, LeCun (b0060) 2013; 35
Bertasius, G., Shi, J., Torresani, L., 2015. High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 504–512.
Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the knowledge in a neural network. Available from: arXiv preprint arXiv
Malmgren-Hansen, D., Nobel-J, M., et al., 2015. Convolutional neural networks for sar image segmentation. In: 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE, pp. 231–236.
Pinheiro, P.O., Lin, T.Y., Collobert, R., Dollár, P., 2016. Learning to refine object segments. In: European Conference on Computer Vision, Springer, pp. 75–91.
Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L., 2016b. Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4545–4554.
Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528.
Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, Springer, pp. 818–833.
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z., 2015. Deeply-supervised nets. In: AISTATS.
Längkvist, Kiselev, Alirezaie, Loutfi (b0115) 2016; 8
Volpi, Tuia (b0225) 2017; 55
Audebert, N., Le Saux, B., Lefèvre, S., 2016. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Asian Conference on Computer Vision, Springer, pp. 180–196.
Barnsley, Barr (b0015) 1996; 62
Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., v.d. Smagt, P., Cremers, D., Brox, T., 2015. FlowNet: Learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision (ICCV).
Xie, S., Tu, Z., 2015. Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403.
Saito, Yamashita, Aoki (b0195) 2016; 2016
Paisitkriangkrai, S., Sherrah, J., Janney, P., Hengel, V.D., et al., 2015. Effective semantic pixel labelling with convolutional networks and conditional random fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 36–43.
.
Mayer, Hinz, Bacher, Baltsavias (b0150) 2006; 36
Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations (ICLR).
Szeliski, R., 2010. Computer Vision: Algorithms and Applications. Springer.
Socher, R., Huval, B., Bhat, B., Manning, C.D., Ng, A.Y., 2012. Convolutional-recursive deep learning for 3d object classification. In: Advances in Neural Information Processing Systems, 25.
Pinheiro, P., Collobert, R., 2014. Recurrent convolutional neural networks for scene labeling. In: International Conference on Machine Learning, pp. 82–90.
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. Available from: arXiv preprint arXiv
Fu, Landgrebe, Phillips (b0070) 1969; 57
Mou, L., Zhu, X., 2016. Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, pp. 4959–4962.
Russell, B., Efros, A., Sivic, J., Freeman, B., Zisserman, A., 2009. Segmenting scenes by matching image composites. In: Advances in Neural Information Processing Systems, pp. 1580–1588.
Badrinarayanan, Kendall, Cipolla (b0010) 2017
Tokarczyk, Wegner, Walk, Schindler (b0220) 2015; 53
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2016. High-resolution semantic labeling with convolutional neural networks. Available from: arXiv preprint arXiv
Gerke, M., 2014. Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen). Technical Report. ITC, University of Twente.
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Available from: arXiv preprint arXiv
Kampffmeyer, M., Salberg, A.B., Jenssen, R., 2016. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9.
Mnih, V., Hinton, G.E., 2010. Learning to detect roads in high-resolution aerial images. In: European Conference on Computer Vision, Springer, pp. 210–223.
Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics (AISTATS).
Dai, J., He, K., Sun, J., 2016. Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3150–3158.
Franklin, McDermid (b0065) 1993; 14
Bischof, Schneider, Pinz (b0025) 1992; 30
Grangier, D., Bottou, L., Collobert, R., 2009. Deep convolutional networks for scene parsing. In: ICML 2009 Deep Learning Workshop, Citeseer.
Krähenbühl, P., Koltun, V., 2011. Efficient inference in fully connected crfs with gaussian edge potentials. In: Advances in Neural Information Processing Systems.
Richards (b0185) 2013
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2016a. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR abs/1606.00915. Available from: arXiv
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A., 2015. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International Conference on Learning Representations, San Diego, United States.
Marcu, A., Leordeanu, M., 2016. Dual local-global contextual pathways for recognition in aerial imagery. Available from: arXiv preprint arXiv
Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H., 2016. Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202.
Dalla Mura, Benediktsson, Waske, Bruzzone (b0050) 2010; 48
Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059.
Kokkinos, I., 2016. Pushing the boundaries of boundary detection using deep learning. In: International Conference on Learning Representations (ICLR).
Marmanis, Wegner, Galliani, Schindler, Datcu, Stilla (b0145) 2016
10.1016/j.isprsjprs.2017.11.009_b0180
10.1016/j.isprsjprs.2017.11.009_b0020
Marmanis (10.1016/j.isprsjprs.2017.11.009_b0145) 2016
Saito (10.1016/j.isprsjprs.2017.11.009_b0195) 2016; 2016
10.1016/j.isprsjprs.2017.11.009_b0140
10.1016/j.isprsjprs.2017.11.009_b0100
Richards (10.1016/j.isprsjprs.2017.11.009_b0185) 2013
10.1016/j.isprsjprs.2017.11.009_b0105
Fu (10.1016/j.isprsjprs.2017.11.009_b0070) 1969; 57
Mayer (10.1016/j.isprsjprs.2017.11.009_b0150) 2006; 36
10.1016/j.isprsjprs.2017.11.009_b0190
10.1016/j.isprsjprs.2017.11.009_b0230
10.1016/j.isprsjprs.2017.11.009_b0075
10.1016/j.isprsjprs.2017.11.009_b0030
10.1016/j.isprsjprs.2017.11.009_b0035
10.1016/j.isprsjprs.2017.11.009_b0155
10.1016/j.isprsjprs.2017.11.009_b0110
10.1016/j.isprsjprs.2017.11.009_b0235
Franklin (10.1016/j.isprsjprs.2017.11.009_b0065) 1993; 14
Dalla Mura (10.1016/j.isprsjprs.2017.11.009_b0050) 2010; 48
Längkvist (10.1016/j.isprsjprs.2017.11.009_b0115) 2016; 8
Volpi (10.1016/j.isprsjprs.2017.11.009_b0225) 2017; 55
10.1016/j.isprsjprs.2017.11.009_b0160
10.1016/j.isprsjprs.2017.11.009_b0080
10.1016/j.isprsjprs.2017.11.009_b0120
10.1016/j.isprsjprs.2017.11.009_b0240
10.1016/j.isprsjprs.2017.11.009_b0085
10.1016/j.isprsjprs.2017.11.009_b0040
10.1016/j.isprsjprs.2017.11.009_b0245
10.1016/j.isprsjprs.2017.11.009_b0200
10.1016/j.isprsjprs.2017.11.009_b0045
10.1016/j.isprsjprs.2017.11.009_b0165
10.1016/j.isprsjprs.2017.11.009_b0205
10.1016/j.isprsjprs.2017.11.009_b0005
10.1016/j.isprsjprs.2017.11.009_b0125
Barnsley (10.1016/j.isprsjprs.2017.11.009_b0015) 1996; 62
Tokarczyk (10.1016/j.isprsjprs.2017.11.009_b0220) 2015; 53
10.1016/j.isprsjprs.2017.11.009_b0170
10.1016/j.isprsjprs.2017.11.009_b0175
10.1016/j.isprsjprs.2017.11.009_b0130
10.1016/j.isprsjprs.2017.11.009_b0095
10.1016/j.isprsjprs.2017.11.009_b0135
10.1016/j.isprsjprs.2017.11.009_b0210
10.1016/j.isprsjprs.2017.11.009_b0055
10.1016/j.isprsjprs.2017.11.009_b0215
Badrinarayanan (10.1016/j.isprsjprs.2017.11.009_b0010) 2017
Bischof (10.1016/j.isprsjprs.2017.11.009_b0025) 1992; 30
10.1016/j.isprsjprs.2017.11.009_b0090
Farabet (10.1016/j.isprsjprs.2017.11.009_b0060) 2013; 35
References_xml – start-page: 473
  year: 2016
  end-page: 480
  ident: b0145
  article-title: Semantic segmentation of aerial images with an ensemble of cnns
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
– reference: Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the knowledge in a neural network. Available from: arXiv preprint arXiv:
– reference: Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations (ICLR).
– reference: Paisitkriangkrai, S., Sherrah, J., Janney, P., Hengel, V.D., et al., 2015. Effective semantic pixel labelling with convolutional networks and conditional random fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 36–43.
– reference: Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528.
– reference: Pinheiro, P.O., Lin, T.Y., Collobert, R., Dollár, P., 2016. Learning to refine object segments. In: European Conference on Computer Vision, Springer, pp. 75–91.
– reference: Audebert, N., Le Saux, B., Lefèvre, S., 2016. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Asian Conference on Computer Vision, Springer, pp. 180–196.
– volume: 53
  start-page: 280
  year: 2015
  end-page: 295
  ident: b0220
  article-title: Features, color spaces, and boosting: new insights on semantic classification of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Malmgren-Hansen, D., Nobel-J, M., et al., 2015. Convolutional neural networks for sar image segmentation. In: 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE, pp. 231–236.
– reference: Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, Springer, pp. 818–833.
– reference: Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2016a. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR abs/1606.00915. Available from: arXiv:
– reference: Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059.
– reference: Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Available from: arXiv preprint arXiv:
– reference: Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H., 2016. Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202.
– volume: 48
  start-page: 3747
  year: 2010
  end-page: 3762
  ident: b0050
  article-title: Morphological attribute profiles for the analysis of very high resolution images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 329
  year: 2016
  ident: b0115
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sens.
– year: 2017
  ident: b0010
  article-title: Segnet: A deep convolutional encoder-decoder architecture for scene segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Grangier, D., Bottou, L., Collobert, R., 2009. Deep convolutional networks for scene parsing. In: ICML 2009 Deep Learning Workshop, Citeseer.
– volume: 14
  start-page: 2331
  year: 1993
  end-page: 2348
  ident: b0065
  article-title: Empirical relations between digital SPOT HRV and CASI spectral resonse and lodgepole pine (pinus contorta) forest stand parameters
  publication-title: Int. J. Remote Sens.
– reference: Krähenbühl, P., Koltun, V., 2011. Efficient inference in fully connected crfs with gaussian edge potentials. In: Advances in Neural Information Processing Systems.
– reference: Socher, R., Huval, B., Bhat, B., Manning, C.D., Ng, A.Y., 2012. Convolutional-recursive deep learning for 3d object classification. In: Advances in Neural Information Processing Systems, 25.
– reference: Xie, S., Tu, Z., 2015. Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403.
– reference: Mnih, V., Hinton, G.E., 2010. Learning to detect roads in high-resolution aerial images. In: European Conference on Computer Vision, Springer, pp. 210–223.
– reference: Bertasius, G., Shi, J., Torresani, L., 2015. High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 504–512.
– reference: Pinheiro, P., Collobert, R., 2014. Recurrent convolutional neural networks for scene labeling. In: International Conference on Machine Learning, pp. 82–90.
– reference: Russell, B., Efros, A., Sivic, J., Freeman, B., Zisserman, A., 2009. Segmenting scenes by matching image composites. In: Advances in Neural Information Processing Systems, pp. 1580–1588.
– reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics (AISTATS).
– volume: 55
  start-page: 881
  year: 2017
  end-page: 893
  ident: b0225
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Mou, L., Zhu, X., 2016. Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, pp. 4959–4962.
– volume: 30
  start-page: 482
  year: 1992
  end-page: 490
  ident: b0025
  article-title: Multispectral classification of landsat-images using neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Marcu, A., Leordeanu, M., 2016. Dual local-global contextual pathways for recognition in aerial imagery. Available from: arXiv preprint arXiv:
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 9
  ident: b0195
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks
  publication-title: Electron. Imag.
– reference: Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z., 2015. Deeply-supervised nets. In: AISTATS.
– reference: Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., v.d. Smagt, P., Cremers, D., Brox, T., 2015. FlowNet: Learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision (ICCV).
– year: 2013
  ident: b0185
  article-title: Remote Sensing Digital Image Analysis
– reference: Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A., 2015. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International Conference on Learning Representations, San Diego, United States.
– reference: Kokkinos, I., 2016. Pushing the boundaries of boundary detection using deep learning. In: International Conference on Learning Representations (ICLR).
– volume: 36
  start-page: 209
  year: 2006
  end-page: 214
  ident: b0150
  article-title: A test of automatic road extraction approaches
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 35
  start-page: 1915
  year: 2013
  end-page: 1929
  ident: b0060
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Szeliski, R., 2010. Computer Vision: Algorithms and Applications. Springer.
– volume: 62
  start-page: 949
  year: 1996
  end-page: 958
  ident: b0015
  article-title: Inferring urban land use from satellite sensor images using kernel-based spatial reclassification
  publication-title: Photogramm. Eng. Remote Sens.
– reference: Kampffmeyer, M., Salberg, A.B., Jenssen, R., 2016. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9.
– reference: Dai, J., He, K., Sun, J., 2016. Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3150–3158.
– reference: Gerke, M., 2014. Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen). Technical Report. ITC, University of Twente.
– reference: .
– reference: Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L., 2016b. Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4545–4554.
– reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. Available from: arXiv preprint arXiv:
– reference: Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2016. High-resolution semantic labeling with convolutional neural networks. Available from: arXiv preprint arXiv:
– volume: 57
  start-page: 639
  year: 1969
  end-page: 653
  ident: b0070
  article-title: Information processing of remotely sensed agricultural data
  publication-title: Proc. IEEE
– volume: 8
  start-page: 329
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.009_b0115
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs8040329
– ident: 10.1016/j.isprsjprs.2017.11.009_b0240
– volume: 48
  start-page: 3747
  year: 2010
  ident: 10.1016/j.isprsjprs.2017.11.009_b0050
  article-title: Morphological attribute profiles for the analysis of very high resolution images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2048116
– ident: 10.1016/j.isprsjprs.2017.11.009_b0045
  doi: 10.1109/CVPR.2016.343
– ident: 10.1016/j.isprsjprs.2017.11.009_b0080
– ident: 10.1016/j.isprsjprs.2017.11.009_b0205
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.009_b0195
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks
  publication-title: Electron. Imag.
  doi: 10.2352/ISSN.2470-1173.2016.10.ROBVIS-392
– ident: 10.1016/j.isprsjprs.2017.11.009_b0125
  doi: 10.1109/CVPR.2015.7298965
– volume: 57
  start-page: 639
  year: 1969
  ident: 10.1016/j.isprsjprs.2017.11.009_b0070
  article-title: Information processing of remotely sensed agricultural data
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1969.7019
– ident: 10.1016/j.isprsjprs.2017.11.009_b0090
– ident: 10.1016/j.isprsjprs.2017.11.009_b0135
  doi: 10.1109/ISSPIT.2015.7394333
– volume: 36
  start-page: 209
  year: 2006
  ident: 10.1016/j.isprsjprs.2017.11.009_b0150
  article-title: A test of automatic road extraction approaches
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– ident: 10.1016/j.isprsjprs.2017.11.009_b0190
– ident: 10.1016/j.isprsjprs.2017.11.009_b0085
– year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.009_b0010
  article-title: Segnet: A deep convolutional encoder-decoder architecture for scene segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.isprsjprs.2017.11.009_b0155
  doi: 10.1007/978-3-642-15567-3_16
– volume: 30
  start-page: 482
  year: 1992
  ident: 10.1016/j.isprsjprs.2017.11.009_b0025
  article-title: Multispectral classification of landsat-images using neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.142926
– ident: 10.1016/j.isprsjprs.2017.11.009_b0120
– ident: 10.1016/j.isprsjprs.2017.11.009_b0170
  doi: 10.1109/CVPRW.2015.7301381
– ident: 10.1016/j.isprsjprs.2017.11.009_b0020
  doi: 10.1109/ICCV.2015.65
– ident: 10.1016/j.isprsjprs.2017.11.009_b0095
– volume: 53
  start-page: 280
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.11.009_b0220
  article-title: Features, color spaces, and boosting: new insights on semantic classification of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2321423
– ident: 10.1016/j.isprsjprs.2017.11.009_b0110
– ident: 10.1016/j.isprsjprs.2017.11.009_b0235
  doi: 10.1109/CVPR.2016.28
– ident: 10.1016/j.isprsjprs.2017.11.009_b0030
– volume: 35
  start-page: 1915
  year: 2013
  ident: 10.1016/j.isprsjprs.2017.11.009_b0060
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.231
– ident: 10.1016/j.isprsjprs.2017.11.009_b0130
  doi: 10.1109/IGARSS.2017.8128163
– ident: 10.1016/j.isprsjprs.2017.11.009_b0245
  doi: 10.1007/978-3-319-10590-1_53
– ident: 10.1016/j.isprsjprs.2017.11.009_b0175
– year: 2013
  ident: 10.1016/j.isprsjprs.2017.11.009_b0185
– ident: 10.1016/j.isprsjprs.2017.11.009_b0215
  doi: 10.1007/978-1-84882-935-0
– volume: 55
  start-page: 881
  year: 2017
  ident: 10.1016/j.isprsjprs.2017.11.009_b0225
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– ident: 10.1016/j.isprsjprs.2017.11.009_b0040
– ident: 10.1016/j.isprsjprs.2017.11.009_b0100
  doi: 10.1109/CVPRW.2016.90
– ident: 10.1016/j.isprsjprs.2017.11.009_b0230
  doi: 10.1109/ICCV.2015.164
– ident: 10.1016/j.isprsjprs.2017.11.009_b0075
– ident: 10.1016/j.isprsjprs.2017.11.009_b0160
  doi: 10.1109/IGARSS.2016.7729468
– ident: 10.1016/j.isprsjprs.2017.11.009_b0055
  doi: 10.1109/ICCV.2015.316
– start-page: 473
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.11.009_b0145
  article-title: Semantic segmentation of aerial images with an ensemble of cnns
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprsannals-III-3-473-2016
– ident: 10.1016/j.isprsjprs.2017.11.009_b0165
  doi: 10.1109/ICCV.2015.178
– ident: 10.1016/j.isprsjprs.2017.11.009_b0180
  doi: 10.1007/978-3-319-46448-0_5
– ident: 10.1016/j.isprsjprs.2017.11.009_b0005
  doi: 10.1007/978-3-319-54181-5_12
– ident: 10.1016/j.isprsjprs.2017.11.009_b0105
– ident: 10.1016/j.isprsjprs.2017.11.009_b0140
– volume: 62
  start-page: 949
  year: 1996
  ident: 10.1016/j.isprsjprs.2017.11.009_b0015
  article-title: Inferring urban land use from satellite sensor images using kernel-based spatial reclassification
  publication-title: Photogramm. Eng. Remote Sens.
– ident: 10.1016/j.isprsjprs.2017.11.009_b0035
  doi: 10.1109/CVPR.2016.492
– ident: 10.1016/j.isprsjprs.2017.11.009_b0210
– volume: 14
  start-page: 2331
  year: 1993
  ident: 10.1016/j.isprsjprs.2017.11.009_b0065
  article-title: Empirical relations between digital SPOT HRV and CASI spectral resonse and lodgepole pine (pinus contorta) forest stand parameters
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169308954040
– ident: 10.1016/j.isprsjprs.2017.11.009_b0200
SSID ssj0001568
Score 2.6611042
Snippet We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 158
SubjectTerms accuracy
artificial intelligence
classification
image analysis
neural networks
remote sensing
Title Classification with an edge: Improving semantic image segmentation with boundary detection
URI https://dx.doi.org/10.1016/j.isprsjprs.2017.11.009
https://www.proquest.com/docview/2067279253
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIABQQFRXjISa6jjxI7LhhCogGABpIolshMHUtG06mPowm_nLnHKQ0gMDBkc-ZTkYp8_n7-7I-SkEzJtuWYeT632wsRwT3MpPKUyqbTREVMYO3x3L7tP4U1P9Brkoo6FQVqls_2VTS-ttbvTdtpsj_K8_cBg68AB7gOiANDBexjBHkY4yk_fP2kefhUOh5097P2N45VPRuNJHy7keEWnmM4TmYm_r1A_bHW5AF1tkHWHHOl59XKbpGGLJln7kk-wSVZcSfPX-RZ5LstdIhGo1D1FhyvVBUX_2Rld-BLoxA5AuXlC8wGYFmi-DFw4kpMxZeGl8Zymdlrytopt8nR1-XjR9VwhBS_hMph6HSMDbUWmDHy2TDjPYNoKBdDFt0EijQnDjGmdhjzlMmWC8cz6fmYMMyYKrAh2yFIxLOwuoUok1qR-JtJQwt5KGQUQzo8iqXmmYW63iKyVFycuyzgWu3iLazpZP15oPUatwx4kBq23CFsIjqpEG3-LnNV_J_42ZmJYDv4WPq7_ZwwzCo9JdGGHM-yEp9MdLoK9_zxgn6xCS1XumgOyNB3P7CEAmKk5KkfoEVk-v77t3n8A9SDzsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RRvjMQa6jix47IhBCqvLoBUsVh24kAQDVVbBv4958SpACExMGRI4lOSz_H58_keAEedmGrLNA1YZnUQp4YFmgkeSJkLqY1OqHSxw7c90X2Ir_q8PwNnTSyMc6v0ur_W6ZW29lfaHs32sCjadxSXDgzpPjIKJB2sPwtzLjsVb8Hc6eV1tzdVyGEdEefaB07gm5tXMR6Oxi94ODev5Nhl9HTOib9PUj_UdTUHXSzDkieP5LR-vxWYseUqLH5JKbgK876q-fPHGjxWFS-dL1AFP3E2V6JL4kxoJ2RqTiBjO0B8i5QUA9QuePo08BFJXsZUtZdGHySzk8p1q1yHh4vz-7Nu4GspBCkT0SToGBFpy3Np8LNFyliOI5dLZC-hjVJhTBznVOssZhkTGeWU5TYMc2OoMUlkebQBrfKttJtAJE-tycKcZ7HA5ZU0EllcmCRCs1zj8N4C0YCnUp9o3NW7eFWNR9mLmqKuHOq4DFGI-hbQqeCwzrXxt8hJ0zvq22-jcEb4W_iw6U-Fg8rtlOjSvr27Rm6DusN4tP2fBxzAfPf-9kbdXPaud2AB78jaerMLrcno3e4hn5mYff-_fgJICvZj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+with+an+edge%3A+Improving+semantic+image+segmentation+with+boundary+detection&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Marmanis%2C+D.&rft.au=Schindler%2C+K.&rft.au=Wegner%2C+J.D.&rft.au=Galliani%2C+S.&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=135&rft.spage=158&rft.epage=172&rft_id=info:doi/10.1016%2Fj.isprsjprs.2017.11.009&rft.externalDocID=S092427161630572X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon