Structural, electrical and optical properties of Co3O4 nanoparticles
•Co3O4 nanoparticles have been prepared by chemical precipitation method.•The XRD particle sizes are in a good agreement with those obtained by TEM.•The particles size and porosity depend on the calcination temperature.•Electrical measurements were done in a wide temperature range as functions of pa...
Saved in:
Published in | Superlattices and microstructures Vol. 64; pp. 107 - 117 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Co3O4 nanoparticles have been prepared by chemical precipitation method.•The XRD particle sizes are in a good agreement with those obtained by TEM.•The particles size and porosity depend on the calcination temperature.•Electrical measurements were done in a wide temperature range as functions of particle size.•Optical properties indicate a red shift of the absorption peaks relative to bulk Co3O4.
Co3O4 nanoparticles were prepared by chemical precipitation followed by heat treatment at different temperatures. The structure and morphology of Co3O4 nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Transmission electron microscopy and the N2 adsorption–desorption techniques. The results indicate the formation of a single crystalline Co3O4 phase with a high surface area, mesoporous structure and particles size that depends on the calcination temperature. DC electrical conductivity was investigated in the temperature range 160–470K. Variation of the electrical conductivity with temperature reveals double-valued activation energy, and the data was discussed in view of the structural and morphological properties. The temperature dependence of the AC conductivity and dielectric constant was also investigated in the same temperature range. In addition, analysis of the optical properties indicates a red shift of the absorption peaks relative to bulk Co3O4. |
---|---|
AbstractList | •Co3O4 nanoparticles have been prepared by chemical precipitation method.•The XRD particle sizes are in a good agreement with those obtained by TEM.•The particles size and porosity depend on the calcination temperature.•Electrical measurements were done in a wide temperature range as functions of particle size.•Optical properties indicate a red shift of the absorption peaks relative to bulk Co3O4.
Co3O4 nanoparticles were prepared by chemical precipitation followed by heat treatment at different temperatures. The structure and morphology of Co3O4 nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Transmission electron microscopy and the N2 adsorption–desorption techniques. The results indicate the formation of a single crystalline Co3O4 phase with a high surface area, mesoporous structure and particles size that depends on the calcination temperature. DC electrical conductivity was investigated in the temperature range 160–470K. Variation of the electrical conductivity with temperature reveals double-valued activation energy, and the data was discussed in view of the structural and morphological properties. The temperature dependence of the AC conductivity and dielectric constant was also investigated in the same temperature range. In addition, analysis of the optical properties indicates a red shift of the absorption peaks relative to bulk Co3O4. Co3O4 nanoparticles were prepared by chemical precipitation followed by heat treatment at different temperatures. The structure and morphology of Co3O4 nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Transmission electron microscopy and the N2 adsorption-desorption techniques. The results indicate the formation of a single crystalline Co3O4 phase with a high surface area, mesoporous structure and particles size that depends on the calcination temperature. DC electrical conductivity was investigated in the temperature range 160-470 K. Variation of the electrical conductivity with temperature reveals double-valued activation energy, and the data was discussed in view of the structural and morphological properties. The temperature dependence of the AC conductivity and dielectric constant was also investigated in the same temperature range. In addition, analysis of the optical properties indicates a red shift of the absorption peaks relative to bulk Co3O4. |
Author | Bakr, Zinab H. Aly, Kamal I. Makhlouf, Salah A. Moustafa, M.S. |
Author_xml | – sequence: 1 givenname: Salah A. surname: Makhlouf fullname: Makhlouf, Salah A. email: smakhlouf@gmail.com, smakhlouf@assiut.edu.eg organization: Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt – sequence: 2 givenname: Zinab H. surname: Bakr fullname: Bakr, Zinab H. organization: Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt – sequence: 3 givenname: Kamal I. surname: Aly fullname: Aly, Kamal I. organization: Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt – sequence: 4 givenname: M.S. surname: Moustafa fullname: Moustafa, M.S. organization: Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt |
BookMark | eNp9kD1PwzAQhi0EEm3hDzBlZCDBH4ldSyyofEqVOgCz5dgXyZUbB9tB4t-TUiaGTnc6vc_p7pmj0z70gNAVwRXBhN9uqzTsXEUxYRWWFabsBM0IlrxkXIhTNMOiliXHjJ-jeUpbjLGsiZihh7ccR5PHqP1NAR5Mjs5oX-jeFmHIv_0QwwAxO0hF6IpVYJu66HUfBj0NjYd0gc467RNc_tUF-nh6fF-9lOvN8-vqfl0aylkul61tiTXLBjNKJa0b2Vhu25YvwVoCXMsOWqKJaAXtGg2ac6YpkQK3VAtB2AJdH_ZOF32OkLLauWTAe91DGJMiDSOYSjZxC7Q8RE0MKUXolHFZZxf6HLXzimC1F6e2ai9O7cUpLNUkbkLpP3SIbqfj93Ho7gDB9P-Xg6iScdAbsC5OUpUN7hj-A8duidg |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_2c06837 crossref_primary_10_1021_acs_jpclett_2c02596 crossref_primary_10_1039_D4NJ03712J crossref_primary_10_1016_j_surfin_2025_106236 crossref_primary_10_1039_D3NA00249G crossref_primary_10_1016_j_jmmm_2019_166000 crossref_primary_10_1016_j_matchemphys_2023_128802 crossref_primary_10_1039_D2RA04823J crossref_primary_10_1016_j_jchromb_2020_122090 crossref_primary_10_1016_j_jics_2024_101479 crossref_primary_10_1007_s13538_022_01108_5 crossref_primary_10_1016_j_surfin_2020_100535 crossref_primary_10_1016_S1003_6326_19_65143_5 crossref_primary_10_1007_s10854_020_02894_x crossref_primary_10_1016_j_jallcom_2020_153952 crossref_primary_10_1016_j_apcatb_2015_08_045 crossref_primary_10_1134_S0965545X16060055 crossref_primary_10_1088_1361_6463_ab00d3 crossref_primary_10_1021_acs_jpcc_2c01034 crossref_primary_10_1007_s10854_021_06586_y crossref_primary_10_1016_j_nanoso_2020_100504 crossref_primary_10_1142_S0218625X25500131 crossref_primary_10_1016_j_matchemphys_2023_128776 crossref_primary_10_1007_s42452_019_0342_6 crossref_primary_10_1002_batt_201800127 crossref_primary_10_1016_j_cej_2023_144569 crossref_primary_10_1016_j_cej_2021_131544 crossref_primary_10_1016_j_jallcom_2016_05_298 crossref_primary_10_1007_s11051_022_05509_0 crossref_primary_10_1088_2053_1591_ab1354 crossref_primary_10_1016_j_jallcom_2022_164056 crossref_primary_10_1016_j_clay_2020_105590 crossref_primary_10_1016_j_rio_2024_100742 crossref_primary_10_1007_s10876_023_02514_8 crossref_primary_10_1016_j_physb_2021_412898 crossref_primary_10_1002_anie_202214830 crossref_primary_10_1007_s10854_020_03769_x crossref_primary_10_1016_j_apcatb_2020_119549 crossref_primary_10_1007_s00339_023_07099_7 crossref_primary_10_1016_j_envres_2023_116316 crossref_primary_10_1016_j_jmmm_2019_166306 crossref_primary_10_1007_s00339_019_2492_1 crossref_primary_10_1002_slct_202301785 crossref_primary_10_1007_s11664_022_09744_y crossref_primary_10_1016_j_matchar_2021_111160 crossref_primary_10_1039_D4RA00343H crossref_primary_10_1002_ange_202214830 crossref_primary_10_1021_acsanm_2c03468 crossref_primary_10_1039_D3MA01054F crossref_primary_10_1016_j_mcat_2020_110882 crossref_primary_10_1007_s10853_015_9023_z crossref_primary_10_1016_j_inoche_2022_109698 crossref_primary_10_1080_00387010_2019_1686396 crossref_primary_10_1016_j_jpowsour_2025_236790 crossref_primary_10_1038_s41467_022_35623_5 crossref_primary_10_1007_s10854_025_14216_0 crossref_primary_10_1007_s12668_024_01655_y crossref_primary_10_1016_j_nxmate_2025_100573 crossref_primary_10_3390_nano11123356 crossref_primary_10_1016_j_matpr_2019_06_618 crossref_primary_10_20290_aubtdb_461920 crossref_primary_10_1016_j_jwpe_2024_105116 crossref_primary_10_1016_j_ceramint_2019_02_167 crossref_primary_10_1016_j_ijhydene_2023_06_110 crossref_primary_10_1007_s12039_024_02269_3 crossref_primary_10_1002_cnma_202300264 crossref_primary_10_1007_s10876_022_02369_5 crossref_primary_10_1016_j_ijleo_2023_171428 crossref_primary_10_1016_j_mssp_2015_10_019 crossref_primary_10_1007_s00339_022_06312_3 crossref_primary_10_1016_j_apsusc_2021_151847 crossref_primary_10_1016_j_ceramint_2019_10_261 crossref_primary_10_1016_j_optmat_2023_113629 crossref_primary_10_1007_s10924_017_1151_x crossref_primary_10_1016_j_ceramint_2023_03_255 crossref_primary_10_1039_C5CP00649J crossref_primary_10_1039_D0TC01521K crossref_primary_10_1016_j_ceramint_2015_03_238 crossref_primary_10_1016_j_apsusc_2016_12_194 crossref_primary_10_1016_j_biortech_2022_127032 crossref_primary_10_1016_j_est_2021_103361 crossref_primary_10_1016_j_tsf_2019_137632 crossref_primary_10_1007_s10854_021_05949_9 crossref_primary_10_1016_j_optmat_2023_114785 crossref_primary_10_1007_s00339_022_06108_5 crossref_primary_10_1007_s12034_022_02886_z crossref_primary_10_1016_j_electacta_2018_07_056 crossref_primary_10_1016_j_ultsonch_2016_08_016 crossref_primary_10_1016_j_apsusc_2024_161940 crossref_primary_10_1016_j_jfluchem_2020_109638 crossref_primary_10_1016_j_ssi_2024_116745 crossref_primary_10_1002_aoc_7835 crossref_primary_10_1039_D2RA08060E crossref_primary_10_1016_j_mseb_2023_116293 crossref_primary_10_1140_epjb_s10051_025_00889_3 crossref_primary_10_1002_elan_202060052 crossref_primary_10_1016_j_spmi_2014_09_006 crossref_primary_10_1016_j_matdes_2022_111095 crossref_primary_10_1007_s10904_018_0945_1 crossref_primary_10_1021_acs_cgd_3c00065 crossref_primary_10_1002_smll_202307284 crossref_primary_10_1016_j_ecoenv_2024_117257 crossref_primary_10_1016_j_micron_2025_103786 crossref_primary_10_1039_C7RA11849J crossref_primary_10_1016_j_matchemphys_2019_122059 crossref_primary_10_1149_1945_7111_ad2cbe crossref_primary_10_1007_s00339_024_07830_y crossref_primary_10_1016_j_ceramint_2017_12_029 crossref_primary_10_1016_j_cplett_2023_140551 crossref_primary_10_1016_j_snb_2020_128956 crossref_primary_10_1016_j_inoche_2020_108417 crossref_primary_10_1016_j_jtice_2017_08_030 crossref_primary_10_1134_S0022476619070059 crossref_primary_10_1515_zpch_2019_1524 crossref_primary_10_1007_s00449_021_02518_6 crossref_primary_10_1039_C7NR03810K crossref_primary_10_1007_s10965_015_0732_4 crossref_primary_10_1007_s10854_021_07526_6 crossref_primary_10_1016_j_catcom_2022_106597 crossref_primary_10_1007_s10854_022_08804_7 crossref_primary_10_1016_j_jallcom_2025_178707 crossref_primary_10_1039_C7NR08289D crossref_primary_10_3390_coatings13020328 crossref_primary_10_1016_j_ceramint_2025_01_001 crossref_primary_10_1080_03067319_2022_2038589 crossref_primary_10_1007_s13738_023_02914_7 crossref_primary_10_1016_j_inoche_2024_112301 crossref_primary_10_1016_j_heliyon_2024_e37802 crossref_primary_10_1007_s10948_016_3834_2 crossref_primary_10_1016_j_jece_2022_107858 crossref_primary_10_1038_s41598_024_55085_7 crossref_primary_10_1155_2020_4593054 crossref_primary_10_1039_D2RA05154K crossref_primary_10_1016_j_matchemphys_2019_01_043 crossref_primary_10_3390_physchem5010011 crossref_primary_10_1007_s42247_024_00839_2 crossref_primary_10_1142_S0217979223501011 crossref_primary_10_1016_j_optmat_2023_114001 crossref_primary_10_1016_j_ceramint_2018_06_024 crossref_primary_10_1016_j_ceramint_2024_08_012 crossref_primary_10_1039_C7TA08736E crossref_primary_10_1016_j_jelechem_2023_117298 crossref_primary_10_1039_D0NA00912A crossref_primary_10_1039_D3NA00032J crossref_primary_10_1016_j_jes_2020_03_002 crossref_primary_10_1016_j_seta_2019_100598 crossref_primary_10_1016_j_jnoncrysol_2019_01_011 crossref_primary_10_1016_j_mssp_2025_109459 crossref_primary_10_1007_s10948_019_05296_1 crossref_primary_10_1007_s10971_024_06343_7 crossref_primary_10_1007_s13204_018_0726_8 crossref_primary_10_1016_j_jpowsour_2019_227260 crossref_primary_10_12693_APhysPolA_133_7 crossref_primary_10_2174_0115734137265230231020181833 crossref_primary_10_1016_j_solener_2019_02_056 crossref_primary_10_30799_jnst_144_18040504 crossref_primary_10_1016_j_mtla_2022_101554 crossref_primary_10_1007_s10854_019_02381_y crossref_primary_10_1016_j_ceramint_2024_10_138 crossref_primary_10_1016_j_apcata_2024_119874 crossref_primary_10_3390_ijms21186767 crossref_primary_10_1007_s11837_023_05823_5 crossref_primary_10_1016_j_ceramint_2022_07_138 crossref_primary_10_1088_2053_1591_abe65a crossref_primary_10_1007_s13204_020_01606_5 crossref_primary_10_1016_j_snb_2024_135533 |
Cites_doi | 10.1016/S0304-8853(02)00050-1 10.1016/j.micromeso.2008.01.011 10.1063/1.3594709 10.1016/j.matchar.2010.02.017 10.1016/0079-6425(89)90001-7 10.1016/j.matchemphys.2011.02.072 10.1016/j.msec.2005.09.013 10.1146/annurev.ms.21.080191.003015 10.1016/j.ica.2009.07.023 10.1149/1.2086682 10.1021/jp048016p 10.1016/0040-6090(82)90289-9 10.1016/j.mseb.2009.06.002 10.1016/0022-3093(86)90156-0 10.1016/j.mseb.2006.12.002 10.1016/j.cap.2010.05.007 10.1016/j.mseb.2013.01.012 10.1149/1.1836646 10.1080/14786437708238517 10.1166/jnn.2012.5760 10.1016/S0304-8853(99)00347-9 10.1021/cm001041x 10.1016/j.matlet.2009.01.026 10.1149/1.1837710 10.1111/j.1151-2916.1997.tb02824.x 10.1016/j.jeurceramsoc.2005.03.220 10.1016/0040-6090(95)06907-0 10.1016/j.jcrysgro.2007.03.040 10.1016/S1003-6326(07)60272-6 10.1016/j.apsusc.2006.08.026 10.1103/PhysRevB.44.5927 10.1016/S0378-7753(01)00864-3 10.1016/j.matlet.2007.10.056 10.1016/S0254-0584(98)00044-3 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.spmi.2013.09.023 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 117 |
ExternalDocumentID | 10_1016_j_spmi_2013_09_023 S0749603613003042 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c263t-8bdb1dc850322924595d6dbb68edd1e6a9feb1a17b72f5aea663a21970b2a7713 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Fri Jul 11 03:37:05 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Tue Jul 01 01:34:54 EDT 2025 Fri Feb 23 02:23:01 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Nanoparticles Cobalt oxide Electrical conductivity Optical properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-8bdb1dc850322924595d6dbb68edd1e6a9feb1a17b72f5aea663a21970b2a7713 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1531029366 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1531029366 crossref_citationtrail_10_1016_j_spmi_2013_09_023 crossref_primary_10_1016_j_spmi_2013_09_023 elsevier_sciencedirect_doi_10_1016_j_spmi_2013_09_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2013 2013-12-00 20131201 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gleiter (b0005) 1989; 33 Raveau (b0020) 2005; 25 Siegel (b0010) 1991; 21 Makhlouf, Bakr, Al-Attar, Moustafa (b0030) 2013; 178 Singh, Lotey, Verma (b0195) 2011; 6 Barreca, Massignan, Daolio, Fabrizio, Piccirillo, Armelao, Tondello (b0075) 2001; 13 Maruyama, Arai (b0065) 1996; 143 Lou, Han, Chu, Wang, Cheng (b0040) 2007; 137 Zou, Xu, Luo, Wang, Ying (b0130) 2008; 62 Fernández, Mattei, Sada, Battaglin, Mazzoldi (b0200) 2006; 26 Shakir, Singh, Gaur, Kumar, Bhacavannarayana, Wahab (b0145) 2009; 6 Kodama (b0015) 1999; 200 Fouad, Ali, El-Erian, Makhlouf (b0035) 2012; 7 Pal, Chauhan (b0115) 2010; 61 Patil, Kadam, Lokhande (b0175) 1996; 272 Fouad, Makhlouf, Ali, El-Sayed (b0120) 2011; 128 You-ping, Ren-sheng, Ke-long, Li-ping, Su-qin, Wen-wen (b0105) 2007; 17 Gu, Li, Hu, Zhang (b0110) 2007; 304 Lunkenheimer, Loidl (b0155) 1991; 44 Yamaura, Tamaki, Moriya, Miura, Yamazoe (b0045) 1997; 144 Wang, Chen, Gao, Zheng, Zhang, Qian (b0180) 2004; 108 Kim, Seong, Lim, Cho, Yoon (b0055) 2001; 102 Duran, Fernandez Navarro, Casariego, Joglar (b0170) 1986; 82 Singh, Koenig, Poillerat, Chartier (b0095) 1990; 137 Cheng, Serizawa, Sakata, Hirayama (b0025) 1998; 53 Makhlouf (b0060) 2002; 246 Chidambaram, Malhotra, Chopra (b0050) 1982; 87 Mehta, Kumar, Kumar, Kumar (b0160) 2005; 2 Kandalkar, Lokhande, Mane, Han (b0135) 2007; 253 Granquist (b0070) 1995 Niu, Wang, Cheng, Chen, Cui (b0090) 2009; 63 Elliott (b0165) 1977; 36 Thota, Kumar, Kumar (b0100) 2009; 164 Sakamoto, Yoshinaka, Hirota, Yamaguchi (b0140) 1997; 80 Wang, Liu, Wang, Yang, Lu (b0085) 2010; 10 Tharayil, Raveendran, Vaidyan, Chithra (b0185) 2008; 15 Zhang, Chen, Wang, Zhou, Zhao (b0080) 2008; 114 Salavati–Niasari, Khansari, Davar (b0125) 2009; 362 Yogamalar, Venkateswaran, Benzigar, Ariga, Vinu, Chandra Bose (b0190) 2012; 12 Soosen, Chandran, Koshy, George (b0150) 2011; 109 Zhang (10.1016/j.spmi.2013.09.023_b0080) 2008; 114 Soosen (10.1016/j.spmi.2013.09.023_b0150) 2011; 109 Zou (10.1016/j.spmi.2013.09.023_b0130) 2008; 62 Fouad (10.1016/j.spmi.2013.09.023_b0120) 2011; 128 Lunkenheimer (10.1016/j.spmi.2013.09.023_b0155) 1991; 44 Yogamalar (10.1016/j.spmi.2013.09.023_b0190) 2012; 12 Barreca (10.1016/j.spmi.2013.09.023_b0075) 2001; 13 Singh (10.1016/j.spmi.2013.09.023_b0195) 2011; 6 Wang (10.1016/j.spmi.2013.09.023_b0180) 2004; 108 Gleiter (10.1016/j.spmi.2013.09.023_b0005) 1989; 33 Siegel (10.1016/j.spmi.2013.09.023_b0010) 1991; 21 Makhlouf (10.1016/j.spmi.2013.09.023_b0060) 2002; 246 You-ping (10.1016/j.spmi.2013.09.023_b0105) 2007; 17 Pal (10.1016/j.spmi.2013.09.023_b0115) 2010; 61 Kodama (10.1016/j.spmi.2013.09.023_b0015) 1999; 200 Sakamoto (10.1016/j.spmi.2013.09.023_b0140) 1997; 80 Mehta (10.1016/j.spmi.2013.09.023_b0160) 2005; 2 Maruyama (10.1016/j.spmi.2013.09.023_b0065) 1996; 143 Raveau (10.1016/j.spmi.2013.09.023_b0020) 2005; 25 Shakir (10.1016/j.spmi.2013.09.023_b0145) 2009; 6 Elliott (10.1016/j.spmi.2013.09.023_b0165) 1977; 36 Yamaura (10.1016/j.spmi.2013.09.023_b0045) 1997; 144 Makhlouf (10.1016/j.spmi.2013.09.023_b0030) 2013; 178 Fouad (10.1016/j.spmi.2013.09.023_b0035) 2012; 7 Kim (10.1016/j.spmi.2013.09.023_b0055) 2001; 102 Lou (10.1016/j.spmi.2013.09.023_b0040) 2007; 137 Granquist (10.1016/j.spmi.2013.09.023_b0070) 1995 Duran (10.1016/j.spmi.2013.09.023_b0170) 1986; 82 Chidambaram (10.1016/j.spmi.2013.09.023_b0050) 1982; 87 Gu (10.1016/j.spmi.2013.09.023_b0110) 2007; 304 Tharayil (10.1016/j.spmi.2013.09.023_b0185) 2008; 15 Singh (10.1016/j.spmi.2013.09.023_b0095) 1990; 137 Thota (10.1016/j.spmi.2013.09.023_b0100) 2009; 164 Patil (10.1016/j.spmi.2013.09.023_b0175) 1996; 272 Cheng (10.1016/j.spmi.2013.09.023_b0025) 1998; 53 Wang (10.1016/j.spmi.2013.09.023_b0085) 2010; 10 Niu (10.1016/j.spmi.2013.09.023_b0090) 2009; 63 Fernández (10.1016/j.spmi.2013.09.023_b0200) 2006; 26 Salavati–Niasari (10.1016/j.spmi.2013.09.023_b0125) 2009; 362 Kandalkar (10.1016/j.spmi.2013.09.023_b0135) 2007; 253 |
References_xml | – volume: 253 start-page: 3952 year: 2007 end-page: 3956 ident: b0135 publication-title: Appl. Surf. Sci. – volume: 53 start-page: 225 year: 1998 end-page: 230 ident: b0025 publication-title: Mater. Chem. Phys. – volume: 246 start-page: 184 year: 2002 end-page: 190 ident: b0060 publication-title: J. Magn. Magn. Mater. – volume: 80 start-page: 267 year: 1997 end-page: 268 ident: b0140 publication-title: J. Am. Ceram. Soc. – volume: 109 start-page: 113702 year: 2011 end-page: 113706 ident: b0150 publication-title: Appl. Phys. – volume: 137 start-page: 1408 year: 1990 end-page: 1413 ident: b0095 publication-title: J. Electrochem. Soc – volume: 144 start-page: L158 year: 1997 end-page: L160 ident: b0045 publication-title: J. Electrochem. Soc – volume: 108 start-page: 16401 year: 2004 end-page: 16404 ident: b0180 publication-title: J. Phys. Chem. B – volume: 13 start-page: 588 year: 2001 end-page: 593 ident: b0075 publication-title: Chem. Mater. – volume: 362 start-page: 4937 year: 2009 end-page: 4942 ident: b0125 publication-title: Inorg. Chim. Acta – volume: 304 start-page: 369 year: 2007 end-page: 373 ident: b0110 publication-title: J. Cryst. Growth – volume: 63 start-page: 837 year: 2009 end-page: 839 ident: b0090 publication-title: Mater. Lett. – volume: 36 start-page: 1291 year: 1977 end-page: 1304 ident: b0165 publication-title: Phil. Mag. – volume: 7 start-page: 1250038 year: 2012 ident: b0035 publication-title: Nano Brief Rep. Rev. – volume: 2 start-page: 103 year: 2005 end-page: 109 ident: b0160 publication-title: Chalcogenide Lett. – volume: 12 start-page: 75 year: 2012 end-page: 83 ident: b0190 publication-title: J. Nanosci. Nanotechnol. – volume: 200 start-page: 359 year: 1999 end-page: 372 ident: b0015 publication-title: J. Magn. Magn. Mater. – volume: 26 start-page: 987 year: 2006 end-page: 991 ident: b0200 publication-title: Mater. Sci. Eng. C – volume: 62 start-page: 1976 year: 2008 end-page: 1978 ident: b0130 publication-title: Mater. Lett. – volume: 17 start-page: 1334 year: 2007 end-page: 1338 ident: b0105 publication-title: Trans. Nonferrous Met. Soc. China – volume: 114 start-page: 257 year: 2008 end-page: 261 ident: b0080 publication-title: Micropor. Mesopor. Mater. – volume: 6 start-page: 655 year: 2009 end-page: 660 ident: b0145 publication-title: Chalcogenide Lett. – volume: 15 start-page: 489 year: 2008 end-page: 496 ident: b0185 publication-title: Indian J. Eng. Mater. Sci. – volume: 128 start-page: 70 year: 2011 end-page: 76 ident: b0120 publication-title: Mater. Chem. Phys. – volume: 6 start-page: 1733 year: 2011 end-page: 1740 ident: b0195 publication-title: Digest J. Nanomater. Biostruct. – volume: 33 start-page: 223 year: 1989 end-page: 315 ident: b0005 publication-title: Prog. Mater. Sci. – volume: 143 start-page: 1383 year: 1996 end-page: 1386 ident: b0065 publication-title: J. Electrochem. Soc – volume: 21 start-page: 559 year: 1991 end-page: 578 ident: b0010 publication-title: Annu. Rev. Mater. Sci. – volume: 102 start-page: 167 year: 2001 end-page: 170 ident: b0055 publication-title: J. Power Sources – volume: 272 start-page: 29 year: 1996 end-page: 32 ident: b0175 publication-title: Thin Solid Films – volume: 61 start-page: 575 year: 2010 end-page: 579 ident: b0115 publication-title: Mater. Charact. – volume: 82 start-page: 391 year: 1986 end-page: 399 ident: b0170 publication-title: J. Non-Cryst. Solids – year: 1995 ident: b0070 article-title: In Handbook of Inorganic Electrochromic Materials – volume: 87 start-page: 365 year: 1982 end-page: 371 ident: b0050 publication-title: Thin Solid Films – volume: 25 start-page: 1965 year: 2005 end-page: 1969 ident: b0020 publication-title: J. Euro. Ceram. Soc. – volume: 178 start-page: 337 year: 2013 end-page: 343 ident: b0030 publication-title: Mater. Sci. Eng. B – volume: 44 start-page: 5927 year: 1991 end-page: 5930 ident: b0155 publication-title: Phys. Rev. B – volume: 164 start-page: 30 year: 2009 end-page: 37 ident: b0100 publication-title: Mater. Sci. Eng. B – volume: 137 start-page: 268 year: 2007 end-page: 271 ident: b0040 publication-title: Mater. Sci. Eng. B – volume: 10 start-page: 1422 year: 2010 end-page: 1426 ident: b0085 publication-title: Curr. Appl. Phys. – volume: 246 start-page: 184 year: 2002 ident: 10.1016/j.spmi.2013.09.023_b0060 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(02)00050-1 – volume: 114 start-page: 257 year: 2008 ident: 10.1016/j.spmi.2013.09.023_b0080 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2008.01.011 – volume: 109 start-page: 113702 year: 2011 ident: 10.1016/j.spmi.2013.09.023_b0150 publication-title: Appl. Phys. doi: 10.1063/1.3594709 – volume: 61 start-page: 575 year: 2010 ident: 10.1016/j.spmi.2013.09.023_b0115 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2010.02.017 – volume: 33 start-page: 223 year: 1989 ident: 10.1016/j.spmi.2013.09.023_b0005 publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(89)90001-7 – volume: 128 start-page: 70 year: 2011 ident: 10.1016/j.spmi.2013.09.023_b0120 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.02.072 – volume: 6 start-page: 1733 year: 2011 ident: 10.1016/j.spmi.2013.09.023_b0195 publication-title: Digest J. Nanomater. Biostruct. – volume: 26 start-page: 987 year: 2006 ident: 10.1016/j.spmi.2013.09.023_b0200 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2005.09.013 – volume: 21 start-page: 559 year: 1991 ident: 10.1016/j.spmi.2013.09.023_b0010 publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.ms.21.080191.003015 – volume: 7 start-page: 1250038 year: 2012 ident: 10.1016/j.spmi.2013.09.023_b0035 publication-title: Nano Brief Rep. Rev. – volume: 362 start-page: 4937 year: 2009 ident: 10.1016/j.spmi.2013.09.023_b0125 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2009.07.023 – volume: 137 start-page: 1408 year: 1990 ident: 10.1016/j.spmi.2013.09.023_b0095 publication-title: J. Electrochem. Soc doi: 10.1149/1.2086682 – volume: 6 start-page: 655 year: 2009 ident: 10.1016/j.spmi.2013.09.023_b0145 publication-title: Chalcogenide Lett. – volume: 108 start-page: 16401 year: 2004 ident: 10.1016/j.spmi.2013.09.023_b0180 publication-title: J. Phys. Chem. B doi: 10.1021/jp048016p – volume: 87 start-page: 365 year: 1982 ident: 10.1016/j.spmi.2013.09.023_b0050 publication-title: Thin Solid Films doi: 10.1016/0040-6090(82)90289-9 – volume: 164 start-page: 30 year: 2009 ident: 10.1016/j.spmi.2013.09.023_b0100 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2009.06.002 – volume: 82 start-page: 391 year: 1986 ident: 10.1016/j.spmi.2013.09.023_b0170 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(86)90156-0 – volume: 137 start-page: 268 year: 2007 ident: 10.1016/j.spmi.2013.09.023_b0040 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2006.12.002 – volume: 10 start-page: 1422 year: 2010 ident: 10.1016/j.spmi.2013.09.023_b0085 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2010.05.007 – volume: 178 start-page: 337 year: 2013 ident: 10.1016/j.spmi.2013.09.023_b0030 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2013.01.012 – volume: 143 start-page: 1383 year: 1996 ident: 10.1016/j.spmi.2013.09.023_b0065 publication-title: J. Electrochem. Soc doi: 10.1149/1.1836646 – volume: 36 start-page: 1291 year: 1977 ident: 10.1016/j.spmi.2013.09.023_b0165 publication-title: Phil. Mag. doi: 10.1080/14786437708238517 – volume: 12 start-page: 75 year: 2012 ident: 10.1016/j.spmi.2013.09.023_b0190 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2012.5760 – volume: 2 start-page: 103 year: 2005 ident: 10.1016/j.spmi.2013.09.023_b0160 publication-title: Chalcogenide Lett. – volume: 200 start-page: 359 year: 1999 ident: 10.1016/j.spmi.2013.09.023_b0015 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(99)00347-9 – year: 1995 ident: 10.1016/j.spmi.2013.09.023_b0070 – volume: 13 start-page: 588 year: 2001 ident: 10.1016/j.spmi.2013.09.023_b0075 publication-title: Chem. Mater. doi: 10.1021/cm001041x – volume: 63 start-page: 837 year: 2009 ident: 10.1016/j.spmi.2013.09.023_b0090 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.01.026 – volume: 144 start-page: L158 year: 1997 ident: 10.1016/j.spmi.2013.09.023_b0045 publication-title: J. Electrochem. Soc doi: 10.1149/1.1837710 – volume: 80 start-page: 267 year: 1997 ident: 10.1016/j.spmi.2013.09.023_b0140 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb02824.x – volume: 25 start-page: 1965 year: 2005 ident: 10.1016/j.spmi.2013.09.023_b0020 publication-title: J. Euro. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2005.03.220 – volume: 272 start-page: 29 year: 1996 ident: 10.1016/j.spmi.2013.09.023_b0175 publication-title: Thin Solid Films doi: 10.1016/0040-6090(95)06907-0 – volume: 15 start-page: 489 year: 2008 ident: 10.1016/j.spmi.2013.09.023_b0185 publication-title: Indian J. Eng. Mater. Sci. – volume: 304 start-page: 369 year: 2007 ident: 10.1016/j.spmi.2013.09.023_b0110 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2007.03.040 – volume: 17 start-page: 1334 year: 2007 ident: 10.1016/j.spmi.2013.09.023_b0105 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(07)60272-6 – volume: 253 start-page: 3952 year: 2007 ident: 10.1016/j.spmi.2013.09.023_b0135 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.08.026 – volume: 44 start-page: 5927 year: 1991 ident: 10.1016/j.spmi.2013.09.023_b0155 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.5927 – volume: 102 start-page: 167 year: 2001 ident: 10.1016/j.spmi.2013.09.023_b0055 publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00864-3 – volume: 62 start-page: 1976 year: 2008 ident: 10.1016/j.spmi.2013.09.023_b0130 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.10.056 – volume: 53 start-page: 225 year: 1998 ident: 10.1016/j.spmi.2013.09.023_b0025 publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(98)00044-3 |
SSID | ssj0009417 |
Score | 2.0994067 |
Snippet | •Co3O4 nanoparticles have been prepared by chemical precipitation method.•The XRD particle sizes are in a good agreement with those obtained by TEM.•The... Co3O4 nanoparticles were prepared by chemical precipitation followed by heat treatment at different temperatures. The structure and morphology of Co3O4... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107 |
SubjectTerms | Cobalt oxide Doppler effect Electrical conductivity Electrical resistivity Nanoparticles Optical properties Resistivity Superlattices Temperature dependence |
Title | Structural, electrical and optical properties of Co3O4 nanoparticles |
URI | https://dx.doi.org/10.1016/j.spmi.2013.09.023 https://www.proquest.com/docview/1531029366 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEb2ITsX5Y0TwpnVd2rTNcVTHVJyHOdgtJG0KE22Lm1f_dt9LW0XBHTy2pKV8ef3yXvK99wg5F1xrJaLEMWnkOj4zuNGkXUcwJvzEZg5g7vDDOBhN_bsZn7VI3OTCoKyy5v6K0y1b13d6NZq9cj7vTWDxA_fbQwcYz_eQh30_RCu_-viWeQjfdt3FwQ6OrhNnKo3Xonydo7zLs7VOmffX4vSLpu3aM9wh27XTSAfVd-2SlsnbZDNuerW1yYYVciaLPXI9sQVhsZjGJa163OA0UJWntCjtxjUtcQP-DSup0iKjceE9-jRXOYTPtUpun0yHN0_xyKk7JTgJC7ylE-lU99Mk4i78nxBRccGxUZQOIpOmfRMokQEnq36oQ5ZxZRT4GQq4KnQ1UyHEqQdkLS9yc0iop7NAhUKlTENkFuIpW-YqiKK4YGB1qkP6DUQyqcuIYzeLF9noxZ4lwioRVukKCbB2yMXXM2VVRGPlaN4gL3-YggSWX_ncWTNNEuDHgw-Vm-J9IYHVwY8SXhAc_fPdx2QLryodywlZg6k0p-CNLHXXmluXrA9u70fjT_j33dQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB1kRfQiuip-G8Gblu2mTdscZVVWV9eDu-AtJG0KK9oWV_-_M22qKOjBa5uU8pK8zCQzbwBOpDBGyyT1bJb4XsgtHTQZ35OcyzCtMwcod_huHA2n4c2jeFyAQZsLQ2GVjvsbTq_Z2j3pOTR71WzWe8DND83vgAxgut9DHl4kdSrRgcXz69Fw_KW9G9aFd6m9Rx1c7kwT5jWvXmYU4RXUcqc8-G1_-sHU9fZztQarzm5k582vrcOCLbqwPGjLtXVhqY7lTOcbcPFQa8KSnsYZa8rc0EgwXWSsrOqza1bRGfwriamyMmeDMrgPWaEL9KBdoNwmTK8uJ4Oh54oleCmPgjcvMZnpZ2kifFyi6FQJKahWlIkSm2V9G2mZIy3rfmxingttNZoaGukq9g3XMbqqW9ApysJuAwtMHulY6owbdM5iumjLfY2OlJAcJ57egX4LkUqdkjgVtHhWbcjYkyJYFcGqfKkQ1h04_exTNToaf7YWLfLq22xQSPR_9jtuh0kh_HT3oQtbvs8VEjuaUjKIot1_fvsIloeTu1t1ez0e7cEKvWnCWvahg8NqD9A4eTOHbvJ9AJ8E4IU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural%2C+electrical+and+optical+properties+of+Co3O4+nanoparticles&rft.jtitle=Superlattices+and+microstructures&rft.au=Makhlouf%2C+Salah+A.&rft.au=Bakr%2C+Zinab+H.&rft.au=Aly%2C+Kamal+I.&rft.au=Moustafa%2C+M.S.&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=64&rft.spage=107&rft.epage=117&rft_id=info:doi/10.1016%2Fj.spmi.2013.09.023&rft.externalDocID=S0749603613003042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |