A BDF2 characteristic-Galerkin isogeometric analysis for the miscible displacement of incompressible fluids in porous media

Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during displacement. These problems are usually subject to some complicated features related to the dominance of convection. Therefore, the multiph...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 298; p. 106675
Main Authors Asmouh, Ilham, Ouardghi, Abdelouahed
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2025
Subjects
Online AccessGet full text
ISSN0045-7930
DOI10.1016/j.compfluid.2025.106675

Cover

Loading…
Abstract Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during displacement. These problems are usually subject to some complicated features related to the dominance of convection. Therefore, the multiphysical scales in these problems represent a challenging endeavor. In this study, we propose a NURBS-based isogeometric analysis (IgA) combined with an L2-projection characteristic Galerkin method to deal with this class of equations. The advection part is treated in a characteristic Galerkin framework where high-order nonuniform rational B-spline functions are used to interpolate the solution. The resulting semi-discrete equation is solved using an efficient backward differentiation time-stepping algorithm. The accuracy of the method is analyzed through several Darcy’s flow problems with analytical solutions on differently shaped computational domains, including a miscible displacement of an incompressible fluid, and a real problem with a viscous fingering in porous media. The numerical results presented in this study demonstrate the potential of the proposed IgA characteristic Galerkin method to allow for large time steps in the computations without deteriorating the accuracy of the obtained solutions, and to accurately maintain the shape of the solution in the presence of complex patterns on complex geometries. •IgA with semi-Lagrangian approach efficiently handles advection-dominated miscible flows.•The semi-Lagrangian approach ensures stability for accurate long-term simulations.•Using L2-projection in semi-Lagrangian reduces diffusion in the simulation.•IgA’s geometric tools allow complex porous geometries to be well represented.•Coupled Darcy and convection-dispersion equations can be solved with fewer DOFs.
AbstractList Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during displacement. These problems are usually subject to some complicated features related to the dominance of convection. Therefore, the multiphysical scales in these problems represent a challenging endeavor. In this study, we propose a NURBS-based isogeometric analysis (IgA) combined with an L2-projection characteristic Galerkin method to deal with this class of equations. The advection part is treated in a characteristic Galerkin framework where high-order nonuniform rational B-spline functions are used to interpolate the solution. The resulting semi-discrete equation is solved using an efficient backward differentiation time-stepping algorithm. The accuracy of the method is analyzed through several Darcy’s flow problems with analytical solutions on differently shaped computational domains, including a miscible displacement of an incompressible fluid, and a real problem with a viscous fingering in porous media. The numerical results presented in this study demonstrate the potential of the proposed IgA characteristic Galerkin method to allow for large time steps in the computations without deteriorating the accuracy of the obtained solutions, and to accurately maintain the shape of the solution in the presence of complex patterns on complex geometries. •IgA with semi-Lagrangian approach efficiently handles advection-dominated miscible flows.•The semi-Lagrangian approach ensures stability for accurate long-term simulations.•Using L2-projection in semi-Lagrangian reduces diffusion in the simulation.•IgA’s geometric tools allow complex porous geometries to be well represented.•Coupled Darcy and convection-dispersion equations can be solved with fewer DOFs.
ArticleNumber 106675
Author Asmouh, Ilham
Ouardghi, Abdelouahed
Author_xml – sequence: 1
  givenname: Ilham
  orcidid: 0009-0001-9930-9555
  surname: Asmouh
  fullname: Asmouh, Ilham
  email: ilham.asmouh@uibk.ac.at
  organization: Institut für Mathematik, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria
– sequence: 2
  givenname: Abdelouahed
  orcidid: 0000-0003-3471-7424
  surname: Ouardghi
  fullname: Ouardghi, Abdelouahed
  email: a.ouardghi@fz-juelich.de
  organization: Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre, Wilhelm-Johnen-Strße, Jülich, 52428, Germany
BookMark eNqFkMFOwzAQRH0oEm3hG_APpDh27KTHUmhBqsQFzpaz3lCXJI7sFKni50laxJXTamc1o9k3I5PWt0jIXcoWKUvV_WEBvumq-ujsgjMuB1WpXE7IlLFMJvlSsGsyi_HAhl3wbEq-V_ThccMp7E0w0GNwsXeQbE2N4dO11EX_gb7BPjigpjX1KbpIKx9ov0fauAiurJFaF7vaADbY9tRX1LVjkYAxns_nRnFQaeeDP0baoHXmhlxVpo54-zvn5H3z9LZ-Tnav25f1apcAV6JPcsutRASpVIkgZJZVDJhiFoXiVpSiAMHTQi1RCptXYIuysJlKJQAyACbmJL_kQvAxBqx0F1xjwkmnTI_c9EH_cdMjN33hNjhXFycO9b4cBj38iy0M7QNCr613_2b8ACykgkI
Cites_doi 10.1137/1.9781611971071.ch2
10.1007/s11075-018-0575-2
10.1016/j.cma.2014.10.048
10.1006/jcph.1996.5604
10.1137/080737009
10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2
10.1016/j.jcp.2014.07.001
10.1145/356044.356047
10.1016/j.jcp.2018.01.001
10.1002/nag.2195
10.1016/j.cma.2004.10.008
10.1007/s00211-010-0338-z
10.1016/j.jcp.2008.05.028
10.1137/080722953
10.1016/j.cageo.2015.12.014
10.1016/j.cma.2016.03.005
10.1016/j.camwa.2015.05.018
10.4208/cicp.scpde14.46s
10.1016/j.ijheatmasstransfer.2016.04.095
10.1137/20M1318766
10.1002/nme.2639
10.1016/j.matcom.2014.07.005
10.1002/cnm.464
10.1002/nme.5242
10.1016/j.cam.2016.06.021
10.1007/s10915-020-01316-8
10.1137/0909073
10.1016/j.apnum.2018.08.013
10.1137/S0895479899358194
10.1016/j.jcp.2016.07.021
10.1016/j.cma.2021.114550
10.1002/num.21913
10.1016/j.jocs.2024.102434
10.1142/S0218202506001455
10.1016/j.cam.2016.01.052
10.1007/s10596-015-9541-4
10.1137/060657236
10.1016/j.cam.2008.09.029
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compfluid.2025.106675
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compfluid_2025_106675
S0045793025001355
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSH
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AFFNX
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
R2-
RIG
SBC
SET
T9H
VH1
WUQ
ID FETCH-LOGICAL-c263t-7d2d5eec566bec3544f0c060de362d3b38c321869e53d7fcd8b8d4615cce0cc03
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Thu Jul 03 08:34:14 EDT 2025
Sat Jul 05 17:12:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Isogeometric analysis
Convection-Dispersion problems
Characteristic-Galerkin
Incompressible miscible displacement
L2-projection
Darcy flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-7d2d5eec566bec3544f0c060de362d3b38c321869e53d7fcd8b8d4615cce0cc03
ORCID 0000-0003-3471-7424
0009-0001-9930-9555
ParticipantIDs crossref_primary_10_1016_j_compfluid_2025_106675
elsevier_sciencedirect_doi_10_1016_j_compfluid_2025_106675
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & fluids
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Amestoy, Duff, L’Excellent, Koster (b32) 2001; 23
Edwards, Zheng (b40) 2008; 227
Ewing (b5) 1983
Liang, Wang, Cheng (b19) 2009; 80
Joshaghani, Rivière, Sekachev (b20) 2022; 391
Berardi, Difonzo, Notarnicola, Vurro (b2) 2019; 135
Cai, Qiu, Qiu (b36) 2016; 323
Sun (b13) 2021; 59
Liu, Tavener, Wang (b38) 2018; 359
Sun, Liu (b4) 2009; 31
Duff, Reid (b31) 1983; 9
Hughes, Cottrell, Bazilevs (b34) 2005; 194
Chainais-Hillairet, Droniou (b8) 2007; 45
Xia (b42) 2016; 88
Feng, Neilan (b16) 2009; 47
Vignollet, May, Borst (b25) 2016; 108
Li, Riviere (b22) 2015; 292
Shu (b29) 1988; 9
da Veiga, Pichler, Vacca (b10) 2021; 375
Irzal, Remmers, Verhoosel, de Borst (b26) 2013; 37
Chainais-Hillairet, Krell, Mouton (b7) 2015; 31
Li, Rui, Xu (b11) 2016; 302
Hu, Fu, Zhou (b41) 2019; 81
Vuong, Ager, Wall (b24) 2016; 305
Yabe, Tanaka, Nakamura, Xiao (b35) 2001; 129
Booth (b6) 2008
Sun, Yuan (b15) 2015; 107
Lin, Liu, Mu, Ye (b39) 2014; 276
Rivière, Wheeler (b21) 2002; 18
Bazilevs, da Veiga, Cottrell, Hughes, Sangalli (b27) 2006; 16
Veiga, Rivas, Sangalli (b43) 2011; 118
Kumar, Yadav (b17) 2014; 2014
Asmouh, Ostermann (b28) 2024; 83
Allievi, Bermejo (b30) 1997; 132
Li, Rui (b9) 2015; 70
Sun, Yuan (b18) 2009; 228
Zhang, Zhu, Zhang, Yang, Loula (b12) 2017; 309
Russell, Wheeler (b1) 1983
Hosseini, Möller, Turek (b33) 2015; 267
Asmouh, El-Amrani, Seaid, Yebari (b37) 2020; 85
Li, Riviere (b23) 2015; 19
Meng, Guo (b3) 2016; 100
Chen, Hu (b14) 2016; 19
Vignollet (10.1016/j.compfluid.2025.106675_b25) 2016; 108
Zhang (10.1016/j.compfluid.2025.106675_b12) 2017; 309
Hu (10.1016/j.compfluid.2025.106675_b41) 2019; 81
Sun (10.1016/j.compfluid.2025.106675_b4) 2009; 31
Ewing (10.1016/j.compfluid.2025.106675_b5) 1983
Bazilevs (10.1016/j.compfluid.2025.106675_b27) 2006; 16
Liang (10.1016/j.compfluid.2025.106675_b19) 2009; 80
Duff (10.1016/j.compfluid.2025.106675_b31) 1983; 9
Chainais-Hillairet (10.1016/j.compfluid.2025.106675_b8) 2007; 45
Sun (10.1016/j.compfluid.2025.106675_b18) 2009; 228
Hughes (10.1016/j.compfluid.2025.106675_b34) 2005; 194
Chainais-Hillairet (10.1016/j.compfluid.2025.106675_b7) 2015; 31
Rivière (10.1016/j.compfluid.2025.106675_b21) 2002; 18
Liu (10.1016/j.compfluid.2025.106675_b38) 2018; 359
Li (10.1016/j.compfluid.2025.106675_b9) 2015; 70
Allievi (10.1016/j.compfluid.2025.106675_b30) 1997; 132
Amestoy (10.1016/j.compfluid.2025.106675_b32) 2001; 23
Sun (10.1016/j.compfluid.2025.106675_b13) 2021; 59
Russell (10.1016/j.compfluid.2025.106675_b1) 1983
da Veiga (10.1016/j.compfluid.2025.106675_b10) 2021; 375
Irzal (10.1016/j.compfluid.2025.106675_b26) 2013; 37
Chen (10.1016/j.compfluid.2025.106675_b14) 2016; 19
Asmouh (10.1016/j.compfluid.2025.106675_b28) 2024; 83
Hosseini (10.1016/j.compfluid.2025.106675_b33) 2015; 267
Cai (10.1016/j.compfluid.2025.106675_b36) 2016; 323
Asmouh (10.1016/j.compfluid.2025.106675_b37) 2020; 85
Li (10.1016/j.compfluid.2025.106675_b22) 2015; 292
Berardi (10.1016/j.compfluid.2025.106675_b2) 2019; 135
Booth (10.1016/j.compfluid.2025.106675_b6) 2008
Xia (10.1016/j.compfluid.2025.106675_b42) 2016; 88
Kumar (10.1016/j.compfluid.2025.106675_b17) 2014; 2014
Li (10.1016/j.compfluid.2025.106675_b23) 2015; 19
Veiga (10.1016/j.compfluid.2025.106675_b43) 2011; 118
Sun (10.1016/j.compfluid.2025.106675_b15) 2015; 107
Lin (10.1016/j.compfluid.2025.106675_b39) 2014; 276
Meng (10.1016/j.compfluid.2025.106675_b3) 2016; 100
Yabe (10.1016/j.compfluid.2025.106675_b35) 2001; 129
Edwards (10.1016/j.compfluid.2025.106675_b40) 2008; 227
Shu (10.1016/j.compfluid.2025.106675_b29) 1988; 9
Li (10.1016/j.compfluid.2025.106675_b11) 2016; 302
Feng (10.1016/j.compfluid.2025.106675_b16) 2009; 47
Joshaghani (10.1016/j.compfluid.2025.106675_b20) 2022; 391
Vuong (10.1016/j.compfluid.2025.106675_b24) 2016; 305
References_xml – volume: 135
  start-page: 264
  year: 2019
  end-page: 275
  ident: b2
  article-title: A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone
  publication-title: Appl Numer Math
– volume: 59
  start-page: 1875
  year: 2021
  end-page: 1895
  ident: b13
  article-title: Analysis of lowest-order characteristics-mixed FEMs for incompressible miscible flow in porous media
  publication-title: SIAM J Numer Anal
– volume: 80
  start-page: 338
  year: 2009
  end-page: 354
  ident: b19
  article-title: An efficient second-order characteristic finite element method for non-linear aerosol dynamic equations
  publication-title: Internat J Numer Methods Engrg
– volume: 129
  start-page: 332
  year: 2001
  end-page: 344
  ident: b35
  article-title: An exactly conservative semi-Lagrangian scheme (CIP–CSL) in one dimension
  publication-title: Mon Weather Rev
– volume: 323
  start-page: 95
  year: 2016
  end-page: 114
  ident: b36
  article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation
  publication-title: J Comput Phys
– volume: 19
  start-page: 1503
  year: 2016
  end-page: 1528
  ident: b14
  article-title: Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics
  publication-title: Commun Comput Phys
– volume: 85
  start-page: 1
  year: 2020
  end-page: 25
  ident: b37
  article-title: A conservative semi-Lagrangian finite volume method for convection–diffusion problems on unstructured grids
  publication-title: J Sci Comput
– volume: 100
  start-page: 767
  year: 2016
  end-page: 778
  ident: b3
  article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media
  publication-title: Int J Heat Mass Transfer
– start-page: 35
  year: 1983
  end-page: 106
  ident: b1
  article-title: Finite element and finite difference methods for continuous flows in porous media
  publication-title: Math Reserv Simul
– volume: 107
  start-page: 24
  year: 2015
  end-page: 45
  ident: b15
  article-title: Mixed finite element method and the characteristics-mixed finite element method for a slightly compressible miscible displacement problem in porous media
  publication-title: Math Comput Simulation
– volume: 18
  start-page: 63
  year: 2002
  end-page: 68
  ident: b21
  article-title: Discontinuous Galerkin methods for flow and transport problems in porous media
  publication-title: Commun Numer Methods Eng
– year: 1983
  ident: b5
  article-title: The mathematics of reservoir simulation
– volume: 132
  start-page: 157
  year: 1997
  end-page: 166
  ident: b30
  article-title: A generalized particle search–locate algorithm for arbitrary grids
  publication-title: J Comput Phys
– volume: 47
  start-page: 2952
  year: 2009
  end-page: 2981
  ident: b16
  article-title: A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations
  publication-title: SIAM J Numer Anal
– volume: 31
  start-page: 723
  year: 2015
  end-page: 760
  ident: b7
  article-title: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media
  publication-title: Numer Methods Partial Differential Equations
– volume: 292
  start-page: 107
  year: 2015
  end-page: 121
  ident: b22
  article-title: Numerical solutions of the incompressible miscible displacement equations in heterogeneous media
  publication-title: Comput Methods Appl Mech Engrg
– volume: 2014
  year: 2014
  ident: b17
  article-title: Modified method of characteristics combined with finite volume element methods for incompressible miscible displacement problems in porous media
  publication-title: Int J Partial Differ Equ
– volume: 305
  start-page: 634
  year: 2016
  end-page: 657
  ident: b24
  article-title: Two finite element approaches for Darcy and Darcy–Brinkman flow through deformable porous media-Mixed method vs NURBS based (isogeometric) continuity
  publication-title: Comput Methods Appl Mech Engrg
– volume: 228
  start-page: 391
  year: 2009
  end-page: 411
  ident: b18
  article-title: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method
  publication-title: J Comput Appl Math
– volume: 88
  start-page: 30
  year: 2016
  end-page: 40
  ident: b42
  article-title: Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method
  publication-title: Comput Geosci
– volume: 309
  start-page: 44
  year: 2017
  end-page: 55
  ident: b12
  article-title: A combined discontinuous Galerkin finite element method for miscible displacement problem
  publication-title: J Comput Appl Math
– volume: 267
  start-page: 264
  year: 2015
  end-page: 281
  ident: b33
  article-title: Isogeometric analysis of the Navier–Stokes equations with Taylor–Hood B-spline elements
  publication-title: Appl Math Comput
– volume: 81
  start-page: 879
  year: 2019
  end-page: 914
  ident: b41
  article-title: Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach
  publication-title: Numer Algorithms
– volume: 118
  start-page: 271
  year: 2011
  end-page: 305
  ident: b43
  article-title: Some estimates for
  publication-title: Numer Math
– volume: 302
  start-page: 139
  year: 2016
  end-page: 156
  ident: b11
  article-title: A new MCC–MFE method for compressible miscible displacement in porous media
  publication-title: J Comput Appl Math
– volume: 9
  start-page: 1073
  year: 1988
  end-page: 1084
  ident: b29
  article-title: Total variation diminishing time discretizations
  publication-title: SIAM J Sci Stat Comput
– volume: 19
  start-page: 1251
  year: 2015
  end-page: 1268
  ident: b23
  article-title: High order discontinuous Galerkin method for simulating miscible flooding in porous media
  publication-title: Comput Geosci
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: b34
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput Methods Appl Mech Engrg
– volume: 375
  year: 2021
  ident: b10
  article-title: A virtual element method for the miscible displacement of incompressible fluids in porous media
  publication-title: Comput Methods Appl Mech Engrg
– volume: 23
  start-page: 15
  year: 2001
  end-page: 41
  ident: b32
  article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling
  publication-title: SIAM J Matrix Anal Appl
– volume: 359
  start-page: 312
  year: 2018
  end-page: 330
  ident: b38
  article-title: The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes
  publication-title: J Comput Phys
– volume: 70
  start-page: 750
  year: 2015
  end-page: 764
  ident: b9
  article-title: A MCC finite element approximation of incompressible miscible displacement in porous media
  publication-title: Comput Math Appl
– volume: 37
  start-page: 1891
  year: 2013
  end-page: 1907
  ident: b26
  article-title: Isogeometric finite element analysis of poroelasticity
  publication-title: Int J Numer Anal Methods Geomech
– volume: 227
  start-page: 9333
  year: 2008
  end-page: 9364
  ident: b40
  article-title: A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support
  publication-title: J Comput Phys
– volume: 9
  start-page: 302
  year: 1983
  end-page: 325
  ident: b31
  article-title: The multifrontal solution of indefinite sparse symmetric linear
  publication-title: ACM Trans Math Softw (TOMS)
– volume: 45
  start-page: 2228
  year: 2007
  end-page: 2258
  ident: b8
  article-title: Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media
  publication-title: SIAM J Numer Anal
– volume: 16
  start-page: 1031
  year: 2006
  end-page: 1090
  ident: b27
  article-title: Isogeometric analysis: approximation, stability and error estimates for
  publication-title: Math Models Methods Appl Sci
– volume: 391
  year: 2022
  ident: b20
  article-title: Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow
  publication-title: Comput Methods Appl Mech Engrg
– volume: 31
  start-page: 2528
  year: 2009
  end-page: 2548
  ident: b4
  article-title: A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method
  publication-title: SIAM J Sci Comput
– volume: 108
  start-page: 990
  year: 2016
  end-page: 1006
  ident: b25
  article-title: Isogeometric analysis of fluid-saturated porous media including flow in the cracks
  publication-title: Internat J Numer Methods Engrg
– year: 2008
  ident: b6
  article-title: Miscible flow through porous media
– volume: 276
  start-page: 422
  year: 2014
  end-page: 437
  ident: b39
  article-title: Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
  publication-title: J Comput Phys
– volume: 83
  year: 2024
  ident: b28
  article-title: Highly efficient NURBS-based isogeometric analysis for coupled nonlinear diffusion–reaction equations with and without advection
  publication-title: J Comput Sci
– start-page: 35
  year: 1983
  ident: 10.1016/j.compfluid.2025.106675_b1
  article-title: Finite element and finite difference methods for continuous flows in porous media
  publication-title: Math Reserv Simul
  doi: 10.1137/1.9781611971071.ch2
– volume: 81
  start-page: 879
  year: 2019
  ident: 10.1016/j.compfluid.2025.106675_b41
  article-title: Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-018-0575-2
– volume: 267
  start-page: 264
  year: 2015
  ident: 10.1016/j.compfluid.2025.106675_b33
  article-title: Isogeometric analysis of the Navier–Stokes equations with Taylor–Hood B-spline elements
  publication-title: Appl Math Comput
– volume: 292
  start-page: 107
  year: 2015
  ident: 10.1016/j.compfluid.2025.106675_b22
  article-title: Numerical solutions of the incompressible miscible displacement equations in heterogeneous media
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2014.10.048
– volume: 132
  start-page: 157
  issue: 2
  year: 1997
  ident: 10.1016/j.compfluid.2025.106675_b30
  article-title: A generalized particle search–locate algorithm for arbitrary grids
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1996.5604
– year: 2008
  ident: 10.1016/j.compfluid.2025.106675_b6
– volume: 47
  start-page: 2952
  issue: 4
  year: 2009
  ident: 10.1016/j.compfluid.2025.106675_b16
  article-title: A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations
  publication-title: SIAM J Numer Anal
  doi: 10.1137/080737009
– volume: 129
  start-page: 332
  issue: 2
  year: 2001
  ident: 10.1016/j.compfluid.2025.106675_b35
  article-title: An exactly conservative semi-Lagrangian scheme (CIP–CSL) in one dimension
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2
– volume: 2014
  year: 2014
  ident: 10.1016/j.compfluid.2025.106675_b17
  article-title: Modified method of characteristics combined with finite volume element methods for incompressible miscible displacement problems in porous media
  publication-title: Int J Partial Differ Equ
– volume: 276
  start-page: 422
  year: 2014
  ident: 10.1016/j.compfluid.2025.106675_b39
  article-title: Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.07.001
– volume: 9
  start-page: 302
  issue: 3
  year: 1983
  ident: 10.1016/j.compfluid.2025.106675_b31
  article-title: The multifrontal solution of indefinite sparse symmetric linear
  publication-title: ACM Trans Math Softw (TOMS)
  doi: 10.1145/356044.356047
– volume: 359
  start-page: 312
  year: 2018
  ident: 10.1016/j.compfluid.2025.106675_b38
  article-title: The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.01.001
– volume: 37
  start-page: 1891
  issue: 12
  year: 2013
  ident: 10.1016/j.compfluid.2025.106675_b26
  article-title: Isogeometric finite element analysis of poroelasticity
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2195
– volume: 194
  start-page: 4135
  issue: 39–41
  year: 2005
  ident: 10.1016/j.compfluid.2025.106675_b34
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2004.10.008
– volume: 118
  start-page: 271
  issue: 2
  year: 2011
  ident: 10.1016/j.compfluid.2025.106675_b43
  article-title: Some estimates for h–p–k-refinement in Isogeometric Analysis
  publication-title: Numer Math
  doi: 10.1007/s00211-010-0338-z
– volume: 227
  start-page: 9333
  issue: 22
  year: 2008
  ident: 10.1016/j.compfluid.2025.106675_b40
  article-title: A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2008.05.028
– volume: 31
  start-page: 2528
  issue: 4
  year: 2009
  ident: 10.1016/j.compfluid.2025.106675_b4
  article-title: A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method
  publication-title: SIAM J Sci Comput
  doi: 10.1137/080722953
– year: 1983
  ident: 10.1016/j.compfluid.2025.106675_b5
– volume: 88
  start-page: 30
  year: 2016
  ident: 10.1016/j.compfluid.2025.106675_b42
  article-title: Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.12.014
– volume: 305
  start-page: 634
  year: 2016
  ident: 10.1016/j.compfluid.2025.106675_b24
  article-title: Two finite element approaches for Darcy and Darcy–Brinkman flow through deformable porous media-Mixed method vs NURBS based (isogeometric) continuity
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2016.03.005
– volume: 70
  start-page: 750
  issue: 5
  year: 2015
  ident: 10.1016/j.compfluid.2025.106675_b9
  article-title: A MCC finite element approximation of incompressible miscible displacement in porous media
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2015.05.018
– volume: 19
  start-page: 1503
  issue: 5
  year: 2016
  ident: 10.1016/j.compfluid.2025.106675_b14
  article-title: Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics
  publication-title: Commun Comput Phys
  doi: 10.4208/cicp.scpde14.46s
– volume: 100
  start-page: 767
  year: 2016
  ident: 10.1016/j.compfluid.2025.106675_b3
  article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.04.095
– volume: 59
  start-page: 1875
  issue: 4
  year: 2021
  ident: 10.1016/j.compfluid.2025.106675_b13
  article-title: Analysis of lowest-order characteristics-mixed FEMs for incompressible miscible flow in porous media
  publication-title: SIAM J Numer Anal
  doi: 10.1137/20M1318766
– volume: 80
  start-page: 338
  issue: 3
  year: 2009
  ident: 10.1016/j.compfluid.2025.106675_b19
  article-title: An efficient second-order characteristic finite element method for non-linear aerosol dynamic equations
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.2639
– volume: 107
  start-page: 24
  year: 2015
  ident: 10.1016/j.compfluid.2025.106675_b15
  article-title: Mixed finite element method and the characteristics-mixed finite element method for a slightly compressible miscible displacement problem in porous media
  publication-title: Math Comput Simulation
  doi: 10.1016/j.matcom.2014.07.005
– volume: 18
  start-page: 63
  issue: 1
  year: 2002
  ident: 10.1016/j.compfluid.2025.106675_b21
  article-title: Discontinuous Galerkin methods for flow and transport problems in porous media
  publication-title: Commun Numer Methods Eng
  doi: 10.1002/cnm.464
– volume: 108
  start-page: 990
  issue: 9
  year: 2016
  ident: 10.1016/j.compfluid.2025.106675_b25
  article-title: Isogeometric analysis of fluid-saturated porous media including flow in the cracks
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.5242
– volume: 309
  start-page: 44
  year: 2017
  ident: 10.1016/j.compfluid.2025.106675_b12
  article-title: A combined discontinuous Galerkin finite element method for miscible displacement problem
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2016.06.021
– volume: 85
  start-page: 1
  year: 2020
  ident: 10.1016/j.compfluid.2025.106675_b37
  article-title: A conservative semi-Lagrangian finite volume method for convection–diffusion problems on unstructured grids
  publication-title: J Sci Comput
  doi: 10.1007/s10915-020-01316-8
– volume: 9
  start-page: 1073
  year: 1988
  ident: 10.1016/j.compfluid.2025.106675_b29
  article-title: Total variation diminishing time discretizations
  publication-title: SIAM J Sci Stat Comput
  doi: 10.1137/0909073
– volume: 135
  start-page: 264
  year: 2019
  ident: 10.1016/j.compfluid.2025.106675_b2
  article-title: A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2018.08.013
– volume: 23
  start-page: 15
  issue: 1
  year: 2001
  ident: 10.1016/j.compfluid.2025.106675_b32
  article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/S0895479899358194
– volume: 323
  start-page: 95
  year: 2016
  ident: 10.1016/j.compfluid.2025.106675_b36
  article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.07.021
– volume: 391
  year: 2022
  ident: 10.1016/j.compfluid.2025.106675_b20
  article-title: Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2021.114550
– volume: 31
  start-page: 723
  issue: 3
  year: 2015
  ident: 10.1016/j.compfluid.2025.106675_b7
  article-title: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.21913
– volume: 83
  year: 2024
  ident: 10.1016/j.compfluid.2025.106675_b28
  article-title: Highly efficient NURBS-based isogeometric analysis for coupled nonlinear diffusion–reaction equations with and without advection
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2024.102434
– volume: 16
  start-page: 1031
  issue: 07
  year: 2006
  ident: 10.1016/j.compfluid.2025.106675_b27
  article-title: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202506001455
– volume: 302
  start-page: 139
  year: 2016
  ident: 10.1016/j.compfluid.2025.106675_b11
  article-title: A new MCC–MFE method for compressible miscible displacement in porous media
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2016.01.052
– volume: 19
  start-page: 1251
  issue: 6
  year: 2015
  ident: 10.1016/j.compfluid.2025.106675_b23
  article-title: High order discontinuous Galerkin method for simulating miscible flooding in porous media
  publication-title: Comput Geosci
  doi: 10.1007/s10596-015-9541-4
– volume: 375
  year: 2021
  ident: 10.1016/j.compfluid.2025.106675_b10
  article-title: A virtual element method for the miscible displacement of incompressible fluids in porous media
  publication-title: Comput Methods Appl Mech Engrg
– volume: 45
  start-page: 2228
  issue: 5
  year: 2007
  ident: 10.1016/j.compfluid.2025.106675_b8
  article-title: Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media
  publication-title: SIAM J Numer Anal
  doi: 10.1137/060657236
– volume: 228
  start-page: 391
  issue: 1
  year: 2009
  ident: 10.1016/j.compfluid.2025.106675_b18
  article-title: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.09.029
SSID ssj0004324
Score 2.4354484
Snippet Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106675
SubjectTerms Characteristic-Galerkin
Convection-Dispersion problems
Darcy flow
Incompressible miscible displacement
Isogeometric analysis
L2-projection
Title A BDF2 characteristic-Galerkin isogeometric analysis for the miscible displacement of incompressible fluids in porous media
URI https://dx.doi.org/10.1016/j.compfluid.2025.106675
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jd1kd_PwVqu1KvZkobfQfUQibVNMexL87c7koS0IHjxmwsIyGWa-3XzzDSGXTEWJa1ztTEQ4cQRAWEdxOKxAKfUDzUPjRtiN_Dz0ByPxOJbjBunVvTBIq6xyf5nTi2xdWTqVNzuLNMUeXyEhurCIA46R2GguRIBRfvX5Q_NAxbnyLzNKM3K2wfFC2nYyXaUoGepJsPo-Eg5_q1BrVae_R3YruEi75Y72ScPOD8jOmojgIfno0pvbvkf1hvSycw-ZH-_BaZpnrzab4eQsTSeVBgkFrEoB-9EZduWqqaUmzQt-Ft4W0iyhqNowK1my-LrYfw5WCoA9W-W0aDk5IqP-3Utv4FQjFRzt-XzpBMYz0loNIA4-HpdCJEwznxkLhcxwxUPNiylVVnITJNqEKjQCUI_WlmnN-DFpzrO5PSE0nBjNuVaQTeGI53FlpSe0Gxkbeca4rEVY7cZ4USpnxDWl7C3-9nyMno9Lz7fIde3ueCMIYsjvfy0-_c_iM7KNT3hZ7Mpz0ly-r-wFoI2lahfh1CZb3YenwfALPlPXow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFOUpwfWCCe204StFEpLoVOR2KLGdlAQbRBtJ_48d3lAKyExsJ5lyTpbd59P330HcMHjMHGNq52xDMaORAjrxAI_K5hK_ZYWgXFD6kZ-HPq9J3n_rJ5r0Kl6YYhWWcb-Iqbn0bq0XJbevHxPU-rxlQpfFyVxxDFKrUGD1KlUHRrt_qA3_GmPFF4hxixJnVHwFZoXMbeTt0VKqqGeQqvvE-fwtyS1lHi627BVIkbWLg61AzU73YXNJR3BPfhss-ubrsf0ivqyc4fBn0rhLJ1lLzab0PAszcalDAlDuMoQ_rEJNebGb5aZdJZTtKhgyLKEkXDDpCDK0nJ-_hlaGWL2bDFjedfJPjx1b0ednlNOVXC054u50zKeUdZqxHF4f0JJmXDNfW4s5jIjYhFokQ-qskqYVqJNEAdGIvDR2nKtuTiA-jSb2kNgwdhoIXSMARV_eZ6IrfKkdkNjQ88YlzeBV26M3gvxjKhilb1G356PyPNR4fkmXFXujlbeQYQh_q_NR__ZfA7rvdHjQ_TQHw6OYYNWqHbsqhOozz8W9hTBxzw-Kx_XF6XC2lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+BDF2+characteristic-Galerkin+isogeometric+analysis+for+the+miscible+displacement+of+incompressible+fluids+in+porous+media&rft.jtitle=Computers+%26+fluids&rft.au=Asmouh%2C+Ilham&rft.au=Ouardghi%2C+Abdelouahed&rft.date=2025-08-15&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.volume=298&rft_id=info:doi/10.1016%2Fj.compfluid.2025.106675&rft.externalDocID=S0045793025001355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon