A BDF2 characteristic-Galerkin isogeometric analysis for the miscible displacement of incompressible fluids in porous media
Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during displacement. These problems are usually subject to some complicated features related to the dominance of convection. Therefore, the multiph...
Saved in:
Published in | Computers & fluids Vol. 298; p. 106675 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-7930 |
DOI | 10.1016/j.compfluid.2025.106675 |
Cover
Loading…
Abstract | Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during displacement. These problems are usually subject to some complicated features related to the dominance of convection. Therefore, the multiphysical scales in these problems represent a challenging endeavor. In this study, we propose a NURBS-based isogeometric analysis (IgA) combined with an L2-projection characteristic Galerkin method to deal with this class of equations. The advection part is treated in a characteristic Galerkin framework where high-order nonuniform rational B-spline functions are used to interpolate the solution. The resulting semi-discrete equation is solved using an efficient backward differentiation time-stepping algorithm. The accuracy of the method is analyzed through several Darcy’s flow problems with analytical solutions on differently shaped computational domains, including a miscible displacement of an incompressible fluid, and a real problem with a viscous fingering in porous media. The numerical results presented in this study demonstrate the potential of the proposed IgA characteristic Galerkin method to allow for large time steps in the computations without deteriorating the accuracy of the obtained solutions, and to accurately maintain the shape of the solution in the presence of complex patterns on complex geometries.
•IgA with semi-Lagrangian approach efficiently handles advection-dominated miscible flows.•The semi-Lagrangian approach ensures stability for accurate long-term simulations.•Using L2-projection in semi-Lagrangian reduces diffusion in the simulation.•IgA’s geometric tools allow complex porous geometries to be well represented.•Coupled Darcy and convection-dispersion equations can be solved with fewer DOFs. |
---|---|
AbstractList | Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during displacement. These problems are usually subject to some complicated features related to the dominance of convection. Therefore, the multiphysical scales in these problems represent a challenging endeavor. In this study, we propose a NURBS-based isogeometric analysis (IgA) combined with an L2-projection characteristic Galerkin method to deal with this class of equations. The advection part is treated in a characteristic Galerkin framework where high-order nonuniform rational B-spline functions are used to interpolate the solution. The resulting semi-discrete equation is solved using an efficient backward differentiation time-stepping algorithm. The accuracy of the method is analyzed through several Darcy’s flow problems with analytical solutions on differently shaped computational domains, including a miscible displacement of an incompressible fluid, and a real problem with a viscous fingering in porous media. The numerical results presented in this study demonstrate the potential of the proposed IgA characteristic Galerkin method to allow for large time steps in the computations without deteriorating the accuracy of the obtained solutions, and to accurately maintain the shape of the solution in the presence of complex patterns on complex geometries.
•IgA with semi-Lagrangian approach efficiently handles advection-dominated miscible flows.•The semi-Lagrangian approach ensures stability for accurate long-term simulations.•Using L2-projection in semi-Lagrangian reduces diffusion in the simulation.•IgA’s geometric tools allow complex porous geometries to be well represented.•Coupled Darcy and convection-dispersion equations can be solved with fewer DOFs. |
ArticleNumber | 106675 |
Author | Asmouh, Ilham Ouardghi, Abdelouahed |
Author_xml | – sequence: 1 givenname: Ilham orcidid: 0009-0001-9930-9555 surname: Asmouh fullname: Asmouh, Ilham email: ilham.asmouh@uibk.ac.at organization: Institut für Mathematik, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria – sequence: 2 givenname: Abdelouahed orcidid: 0000-0003-3471-7424 surname: Ouardghi fullname: Ouardghi, Abdelouahed email: a.ouardghi@fz-juelich.de organization: Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre, Wilhelm-Johnen-Strße, Jülich, 52428, Germany |
BookMark | eNqFkMFOwzAQRH0oEm3hG_APpDh27KTHUmhBqsQFzpaz3lCXJI7sFKni50laxJXTamc1o9k3I5PWt0jIXcoWKUvV_WEBvumq-ujsgjMuB1WpXE7IlLFMJvlSsGsyi_HAhl3wbEq-V_ThccMp7E0w0GNwsXeQbE2N4dO11EX_gb7BPjigpjX1KbpIKx9ov0fauAiurJFaF7vaADbY9tRX1LVjkYAxns_nRnFQaeeDP0baoHXmhlxVpo54-zvn5H3z9LZ-Tnav25f1apcAV6JPcsutRASpVIkgZJZVDJhiFoXiVpSiAMHTQi1RCptXYIuysJlKJQAyACbmJL_kQvAxBqx0F1xjwkmnTI_c9EH_cdMjN33hNjhXFycO9b4cBj38iy0M7QNCr613_2b8ACykgkI |
Cites_doi | 10.1137/1.9781611971071.ch2 10.1007/s11075-018-0575-2 10.1016/j.cma.2014.10.048 10.1006/jcph.1996.5604 10.1137/080737009 10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2 10.1016/j.jcp.2014.07.001 10.1145/356044.356047 10.1016/j.jcp.2018.01.001 10.1002/nag.2195 10.1016/j.cma.2004.10.008 10.1007/s00211-010-0338-z 10.1016/j.jcp.2008.05.028 10.1137/080722953 10.1016/j.cageo.2015.12.014 10.1016/j.cma.2016.03.005 10.1016/j.camwa.2015.05.018 10.4208/cicp.scpde14.46s 10.1016/j.ijheatmasstransfer.2016.04.095 10.1137/20M1318766 10.1002/nme.2639 10.1016/j.matcom.2014.07.005 10.1002/cnm.464 10.1002/nme.5242 10.1016/j.cam.2016.06.021 10.1007/s10915-020-01316-8 10.1137/0909073 10.1016/j.apnum.2018.08.013 10.1137/S0895479899358194 10.1016/j.jcp.2016.07.021 10.1016/j.cma.2021.114550 10.1002/num.21913 10.1016/j.jocs.2024.102434 10.1142/S0218202506001455 10.1016/j.cam.2016.01.052 10.1007/s10596-015-9541-4 10.1137/060657236 10.1016/j.cam.2008.09.029 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compfluid.2025.106675 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compfluid_2025_106675 S0045793025001355 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABAOU ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSH SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ AAQXK AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ADIYS ADMUD ADNMO AFFNX AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 R2- RIG SBC SET T9H VH1 WUQ |
ID | FETCH-LOGICAL-c263t-7d2d5eec566bec3544f0c060de362d3b38c321869e53d7fcd8b8d4615cce0cc03 |
IEDL.DBID | .~1 |
ISSN | 0045-7930 |
IngestDate | Thu Jul 03 08:34:14 EDT 2025 Sat Jul 05 17:12:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Isogeometric analysis Convection-Dispersion problems Characteristic-Galerkin Incompressible miscible displacement L2-projection Darcy flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-7d2d5eec566bec3544f0c060de362d3b38c321869e53d7fcd8b8d4615cce0cc03 |
ORCID | 0000-0003-3471-7424 0009-0001-9930-9555 |
ParticipantIDs | crossref_primary_10_1016_j_compfluid_2025_106675 elsevier_sciencedirect_doi_10_1016_j_compfluid_2025_106675 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-15 |
PublicationDateYYYYMMDD | 2025-08-15 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Computers & fluids |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Amestoy, Duff, L’Excellent, Koster (b32) 2001; 23 Edwards, Zheng (b40) 2008; 227 Ewing (b5) 1983 Liang, Wang, Cheng (b19) 2009; 80 Joshaghani, Rivière, Sekachev (b20) 2022; 391 Berardi, Difonzo, Notarnicola, Vurro (b2) 2019; 135 Cai, Qiu, Qiu (b36) 2016; 323 Sun (b13) 2021; 59 Liu, Tavener, Wang (b38) 2018; 359 Sun, Liu (b4) 2009; 31 Duff, Reid (b31) 1983; 9 Hughes, Cottrell, Bazilevs (b34) 2005; 194 Chainais-Hillairet, Droniou (b8) 2007; 45 Xia (b42) 2016; 88 Feng, Neilan (b16) 2009; 47 Vignollet, May, Borst (b25) 2016; 108 Li, Riviere (b22) 2015; 292 Shu (b29) 1988; 9 da Veiga, Pichler, Vacca (b10) 2021; 375 Irzal, Remmers, Verhoosel, de Borst (b26) 2013; 37 Chainais-Hillairet, Krell, Mouton (b7) 2015; 31 Li, Rui, Xu (b11) 2016; 302 Hu, Fu, Zhou (b41) 2019; 81 Vuong, Ager, Wall (b24) 2016; 305 Yabe, Tanaka, Nakamura, Xiao (b35) 2001; 129 Booth (b6) 2008 Sun, Yuan (b15) 2015; 107 Lin, Liu, Mu, Ye (b39) 2014; 276 Rivière, Wheeler (b21) 2002; 18 Bazilevs, da Veiga, Cottrell, Hughes, Sangalli (b27) 2006; 16 Veiga, Rivas, Sangalli (b43) 2011; 118 Kumar, Yadav (b17) 2014; 2014 Asmouh, Ostermann (b28) 2024; 83 Allievi, Bermejo (b30) 1997; 132 Li, Rui (b9) 2015; 70 Sun, Yuan (b18) 2009; 228 Zhang, Zhu, Zhang, Yang, Loula (b12) 2017; 309 Russell, Wheeler (b1) 1983 Hosseini, Möller, Turek (b33) 2015; 267 Asmouh, El-Amrani, Seaid, Yebari (b37) 2020; 85 Li, Riviere (b23) 2015; 19 Meng, Guo (b3) 2016; 100 Chen, Hu (b14) 2016; 19 Vignollet (10.1016/j.compfluid.2025.106675_b25) 2016; 108 Zhang (10.1016/j.compfluid.2025.106675_b12) 2017; 309 Hu (10.1016/j.compfluid.2025.106675_b41) 2019; 81 Sun (10.1016/j.compfluid.2025.106675_b4) 2009; 31 Ewing (10.1016/j.compfluid.2025.106675_b5) 1983 Bazilevs (10.1016/j.compfluid.2025.106675_b27) 2006; 16 Liang (10.1016/j.compfluid.2025.106675_b19) 2009; 80 Duff (10.1016/j.compfluid.2025.106675_b31) 1983; 9 Chainais-Hillairet (10.1016/j.compfluid.2025.106675_b8) 2007; 45 Sun (10.1016/j.compfluid.2025.106675_b18) 2009; 228 Hughes (10.1016/j.compfluid.2025.106675_b34) 2005; 194 Chainais-Hillairet (10.1016/j.compfluid.2025.106675_b7) 2015; 31 Rivière (10.1016/j.compfluid.2025.106675_b21) 2002; 18 Liu (10.1016/j.compfluid.2025.106675_b38) 2018; 359 Li (10.1016/j.compfluid.2025.106675_b9) 2015; 70 Allievi (10.1016/j.compfluid.2025.106675_b30) 1997; 132 Amestoy (10.1016/j.compfluid.2025.106675_b32) 2001; 23 Sun (10.1016/j.compfluid.2025.106675_b13) 2021; 59 Russell (10.1016/j.compfluid.2025.106675_b1) 1983 da Veiga (10.1016/j.compfluid.2025.106675_b10) 2021; 375 Irzal (10.1016/j.compfluid.2025.106675_b26) 2013; 37 Chen (10.1016/j.compfluid.2025.106675_b14) 2016; 19 Asmouh (10.1016/j.compfluid.2025.106675_b28) 2024; 83 Hosseini (10.1016/j.compfluid.2025.106675_b33) 2015; 267 Cai (10.1016/j.compfluid.2025.106675_b36) 2016; 323 Asmouh (10.1016/j.compfluid.2025.106675_b37) 2020; 85 Li (10.1016/j.compfluid.2025.106675_b22) 2015; 292 Berardi (10.1016/j.compfluid.2025.106675_b2) 2019; 135 Booth (10.1016/j.compfluid.2025.106675_b6) 2008 Xia (10.1016/j.compfluid.2025.106675_b42) 2016; 88 Kumar (10.1016/j.compfluid.2025.106675_b17) 2014; 2014 Li (10.1016/j.compfluid.2025.106675_b23) 2015; 19 Veiga (10.1016/j.compfluid.2025.106675_b43) 2011; 118 Sun (10.1016/j.compfluid.2025.106675_b15) 2015; 107 Lin (10.1016/j.compfluid.2025.106675_b39) 2014; 276 Meng (10.1016/j.compfluid.2025.106675_b3) 2016; 100 Yabe (10.1016/j.compfluid.2025.106675_b35) 2001; 129 Edwards (10.1016/j.compfluid.2025.106675_b40) 2008; 227 Shu (10.1016/j.compfluid.2025.106675_b29) 1988; 9 Li (10.1016/j.compfluid.2025.106675_b11) 2016; 302 Feng (10.1016/j.compfluid.2025.106675_b16) 2009; 47 Joshaghani (10.1016/j.compfluid.2025.106675_b20) 2022; 391 Vuong (10.1016/j.compfluid.2025.106675_b24) 2016; 305 |
References_xml | – volume: 135 start-page: 264 year: 2019 end-page: 275 ident: b2 article-title: A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone publication-title: Appl Numer Math – volume: 59 start-page: 1875 year: 2021 end-page: 1895 ident: b13 article-title: Analysis of lowest-order characteristics-mixed FEMs for incompressible miscible flow in porous media publication-title: SIAM J Numer Anal – volume: 80 start-page: 338 year: 2009 end-page: 354 ident: b19 article-title: An efficient second-order characteristic finite element method for non-linear aerosol dynamic equations publication-title: Internat J Numer Methods Engrg – volume: 129 start-page: 332 year: 2001 end-page: 344 ident: b35 article-title: An exactly conservative semi-Lagrangian scheme (CIP–CSL) in one dimension publication-title: Mon Weather Rev – volume: 323 start-page: 95 year: 2016 end-page: 114 ident: b36 article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation publication-title: J Comput Phys – volume: 19 start-page: 1503 year: 2016 end-page: 1528 ident: b14 article-title: Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics publication-title: Commun Comput Phys – volume: 85 start-page: 1 year: 2020 end-page: 25 ident: b37 article-title: A conservative semi-Lagrangian finite volume method for convection–diffusion problems on unstructured grids publication-title: J Sci Comput – volume: 100 start-page: 767 year: 2016 end-page: 778 ident: b3 article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media publication-title: Int J Heat Mass Transfer – start-page: 35 year: 1983 end-page: 106 ident: b1 article-title: Finite element and finite difference methods for continuous flows in porous media publication-title: Math Reserv Simul – volume: 107 start-page: 24 year: 2015 end-page: 45 ident: b15 article-title: Mixed finite element method and the characteristics-mixed finite element method for a slightly compressible miscible displacement problem in porous media publication-title: Math Comput Simulation – volume: 18 start-page: 63 year: 2002 end-page: 68 ident: b21 article-title: Discontinuous Galerkin methods for flow and transport problems in porous media publication-title: Commun Numer Methods Eng – year: 1983 ident: b5 article-title: The mathematics of reservoir simulation – volume: 132 start-page: 157 year: 1997 end-page: 166 ident: b30 article-title: A generalized particle search–locate algorithm for arbitrary grids publication-title: J Comput Phys – volume: 47 start-page: 2952 year: 2009 end-page: 2981 ident: b16 article-title: A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations publication-title: SIAM J Numer Anal – volume: 31 start-page: 723 year: 2015 end-page: 760 ident: b7 article-title: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media publication-title: Numer Methods Partial Differential Equations – volume: 292 start-page: 107 year: 2015 end-page: 121 ident: b22 article-title: Numerical solutions of the incompressible miscible displacement equations in heterogeneous media publication-title: Comput Methods Appl Mech Engrg – volume: 2014 year: 2014 ident: b17 article-title: Modified method of characteristics combined with finite volume element methods for incompressible miscible displacement problems in porous media publication-title: Int J Partial Differ Equ – volume: 305 start-page: 634 year: 2016 end-page: 657 ident: b24 article-title: Two finite element approaches for Darcy and Darcy–Brinkman flow through deformable porous media-Mixed method vs NURBS based (isogeometric) continuity publication-title: Comput Methods Appl Mech Engrg – volume: 228 start-page: 391 year: 2009 end-page: 411 ident: b18 article-title: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method publication-title: J Comput Appl Math – volume: 88 start-page: 30 year: 2016 end-page: 40 ident: b42 article-title: Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method publication-title: Comput Geosci – volume: 309 start-page: 44 year: 2017 end-page: 55 ident: b12 article-title: A combined discontinuous Galerkin finite element method for miscible displacement problem publication-title: J Comput Appl Math – volume: 267 start-page: 264 year: 2015 end-page: 281 ident: b33 article-title: Isogeometric analysis of the Navier–Stokes equations with Taylor–Hood B-spline elements publication-title: Appl Math Comput – volume: 81 start-page: 879 year: 2019 end-page: 914 ident: b41 article-title: Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach publication-title: Numer Algorithms – volume: 118 start-page: 271 year: 2011 end-page: 305 ident: b43 article-title: Some estimates for publication-title: Numer Math – volume: 302 start-page: 139 year: 2016 end-page: 156 ident: b11 article-title: A new MCC–MFE method for compressible miscible displacement in porous media publication-title: J Comput Appl Math – volume: 9 start-page: 1073 year: 1988 end-page: 1084 ident: b29 article-title: Total variation diminishing time discretizations publication-title: SIAM J Sci Stat Comput – volume: 19 start-page: 1251 year: 2015 end-page: 1268 ident: b23 article-title: High order discontinuous Galerkin method for simulating miscible flooding in porous media publication-title: Comput Geosci – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: b34 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput Methods Appl Mech Engrg – volume: 375 year: 2021 ident: b10 article-title: A virtual element method for the miscible displacement of incompressible fluids in porous media publication-title: Comput Methods Appl Mech Engrg – volume: 23 start-page: 15 year: 2001 end-page: 41 ident: b32 article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling publication-title: SIAM J Matrix Anal Appl – volume: 359 start-page: 312 year: 2018 end-page: 330 ident: b38 article-title: The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes publication-title: J Comput Phys – volume: 70 start-page: 750 year: 2015 end-page: 764 ident: b9 article-title: A MCC finite element approximation of incompressible miscible displacement in porous media publication-title: Comput Math Appl – volume: 37 start-page: 1891 year: 2013 end-page: 1907 ident: b26 article-title: Isogeometric finite element analysis of poroelasticity publication-title: Int J Numer Anal Methods Geomech – volume: 227 start-page: 9333 year: 2008 end-page: 9364 ident: b40 article-title: A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support publication-title: J Comput Phys – volume: 9 start-page: 302 year: 1983 end-page: 325 ident: b31 article-title: The multifrontal solution of indefinite sparse symmetric linear publication-title: ACM Trans Math Softw (TOMS) – volume: 45 start-page: 2228 year: 2007 end-page: 2258 ident: b8 article-title: Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media publication-title: SIAM J Numer Anal – volume: 16 start-page: 1031 year: 2006 end-page: 1090 ident: b27 article-title: Isogeometric analysis: approximation, stability and error estimates for publication-title: Math Models Methods Appl Sci – volume: 391 year: 2022 ident: b20 article-title: Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow publication-title: Comput Methods Appl Mech Engrg – volume: 31 start-page: 2528 year: 2009 end-page: 2548 ident: b4 article-title: A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method publication-title: SIAM J Sci Comput – volume: 108 start-page: 990 year: 2016 end-page: 1006 ident: b25 article-title: Isogeometric analysis of fluid-saturated porous media including flow in the cracks publication-title: Internat J Numer Methods Engrg – year: 2008 ident: b6 article-title: Miscible flow through porous media – volume: 276 start-page: 422 year: 2014 end-page: 437 ident: b39 article-title: Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity publication-title: J Comput Phys – volume: 83 year: 2024 ident: b28 article-title: Highly efficient NURBS-based isogeometric analysis for coupled nonlinear diffusion–reaction equations with and without advection publication-title: J Comput Sci – start-page: 35 year: 1983 ident: 10.1016/j.compfluid.2025.106675_b1 article-title: Finite element and finite difference methods for continuous flows in porous media publication-title: Math Reserv Simul doi: 10.1137/1.9781611971071.ch2 – volume: 81 start-page: 879 year: 2019 ident: 10.1016/j.compfluid.2025.106675_b41 article-title: Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach publication-title: Numer Algorithms doi: 10.1007/s11075-018-0575-2 – volume: 267 start-page: 264 year: 2015 ident: 10.1016/j.compfluid.2025.106675_b33 article-title: Isogeometric analysis of the Navier–Stokes equations with Taylor–Hood B-spline elements publication-title: Appl Math Comput – volume: 292 start-page: 107 year: 2015 ident: 10.1016/j.compfluid.2025.106675_b22 article-title: Numerical solutions of the incompressible miscible displacement equations in heterogeneous media publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2014.10.048 – volume: 132 start-page: 157 issue: 2 year: 1997 ident: 10.1016/j.compfluid.2025.106675_b30 article-title: A generalized particle search–locate algorithm for arbitrary grids publication-title: J Comput Phys doi: 10.1006/jcph.1996.5604 – year: 2008 ident: 10.1016/j.compfluid.2025.106675_b6 – volume: 47 start-page: 2952 issue: 4 year: 2009 ident: 10.1016/j.compfluid.2025.106675_b16 article-title: A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations publication-title: SIAM J Numer Anal doi: 10.1137/080737009 – volume: 129 start-page: 332 issue: 2 year: 2001 ident: 10.1016/j.compfluid.2025.106675_b35 article-title: An exactly conservative semi-Lagrangian scheme (CIP–CSL) in one dimension publication-title: Mon Weather Rev doi: 10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2 – volume: 2014 year: 2014 ident: 10.1016/j.compfluid.2025.106675_b17 article-title: Modified method of characteristics combined with finite volume element methods for incompressible miscible displacement problems in porous media publication-title: Int J Partial Differ Equ – volume: 276 start-page: 422 year: 2014 ident: 10.1016/j.compfluid.2025.106675_b39 article-title: Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.07.001 – volume: 9 start-page: 302 issue: 3 year: 1983 ident: 10.1016/j.compfluid.2025.106675_b31 article-title: The multifrontal solution of indefinite sparse symmetric linear publication-title: ACM Trans Math Softw (TOMS) doi: 10.1145/356044.356047 – volume: 359 start-page: 312 year: 2018 ident: 10.1016/j.compfluid.2025.106675_b38 article-title: The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.01.001 – volume: 37 start-page: 1891 issue: 12 year: 2013 ident: 10.1016/j.compfluid.2025.106675_b26 article-title: Isogeometric finite element analysis of poroelasticity publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2195 – volume: 194 start-page: 4135 issue: 39–41 year: 2005 ident: 10.1016/j.compfluid.2025.106675_b34 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2004.10.008 – volume: 118 start-page: 271 issue: 2 year: 2011 ident: 10.1016/j.compfluid.2025.106675_b43 article-title: Some estimates for h–p–k-refinement in Isogeometric Analysis publication-title: Numer Math doi: 10.1007/s00211-010-0338-z – volume: 227 start-page: 9333 issue: 22 year: 2008 ident: 10.1016/j.compfluid.2025.106675_b40 article-title: A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support publication-title: J Comput Phys doi: 10.1016/j.jcp.2008.05.028 – volume: 31 start-page: 2528 issue: 4 year: 2009 ident: 10.1016/j.compfluid.2025.106675_b4 article-title: A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method publication-title: SIAM J Sci Comput doi: 10.1137/080722953 – year: 1983 ident: 10.1016/j.compfluid.2025.106675_b5 – volume: 88 start-page: 30 year: 2016 ident: 10.1016/j.compfluid.2025.106675_b42 article-title: Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method publication-title: Comput Geosci doi: 10.1016/j.cageo.2015.12.014 – volume: 305 start-page: 634 year: 2016 ident: 10.1016/j.compfluid.2025.106675_b24 article-title: Two finite element approaches for Darcy and Darcy–Brinkman flow through deformable porous media-Mixed method vs NURBS based (isogeometric) continuity publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.03.005 – volume: 70 start-page: 750 issue: 5 year: 2015 ident: 10.1016/j.compfluid.2025.106675_b9 article-title: A MCC finite element approximation of incompressible miscible displacement in porous media publication-title: Comput Math Appl doi: 10.1016/j.camwa.2015.05.018 – volume: 19 start-page: 1503 issue: 5 year: 2016 ident: 10.1016/j.compfluid.2025.106675_b14 article-title: Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics publication-title: Commun Comput Phys doi: 10.4208/cicp.scpde14.46s – volume: 100 start-page: 767 year: 2016 ident: 10.1016/j.compfluid.2025.106675_b3 article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.04.095 – volume: 59 start-page: 1875 issue: 4 year: 2021 ident: 10.1016/j.compfluid.2025.106675_b13 article-title: Analysis of lowest-order characteristics-mixed FEMs for incompressible miscible flow in porous media publication-title: SIAM J Numer Anal doi: 10.1137/20M1318766 – volume: 80 start-page: 338 issue: 3 year: 2009 ident: 10.1016/j.compfluid.2025.106675_b19 article-title: An efficient second-order characteristic finite element method for non-linear aerosol dynamic equations publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.2639 – volume: 107 start-page: 24 year: 2015 ident: 10.1016/j.compfluid.2025.106675_b15 article-title: Mixed finite element method and the characteristics-mixed finite element method for a slightly compressible miscible displacement problem in porous media publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2014.07.005 – volume: 18 start-page: 63 issue: 1 year: 2002 ident: 10.1016/j.compfluid.2025.106675_b21 article-title: Discontinuous Galerkin methods for flow and transport problems in porous media publication-title: Commun Numer Methods Eng doi: 10.1002/cnm.464 – volume: 108 start-page: 990 issue: 9 year: 2016 ident: 10.1016/j.compfluid.2025.106675_b25 article-title: Isogeometric analysis of fluid-saturated porous media including flow in the cracks publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5242 – volume: 309 start-page: 44 year: 2017 ident: 10.1016/j.compfluid.2025.106675_b12 article-title: A combined discontinuous Galerkin finite element method for miscible displacement problem publication-title: J Comput Appl Math doi: 10.1016/j.cam.2016.06.021 – volume: 85 start-page: 1 year: 2020 ident: 10.1016/j.compfluid.2025.106675_b37 article-title: A conservative semi-Lagrangian finite volume method for convection–diffusion problems on unstructured grids publication-title: J Sci Comput doi: 10.1007/s10915-020-01316-8 – volume: 9 start-page: 1073 year: 1988 ident: 10.1016/j.compfluid.2025.106675_b29 article-title: Total variation diminishing time discretizations publication-title: SIAM J Sci Stat Comput doi: 10.1137/0909073 – volume: 135 start-page: 264 year: 2019 ident: 10.1016/j.compfluid.2025.106675_b2 article-title: A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone publication-title: Appl Numer Math doi: 10.1016/j.apnum.2018.08.013 – volume: 23 start-page: 15 issue: 1 year: 2001 ident: 10.1016/j.compfluid.2025.106675_b32 article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling publication-title: SIAM J Matrix Anal Appl doi: 10.1137/S0895479899358194 – volume: 323 start-page: 95 year: 2016 ident: 10.1016/j.compfluid.2025.106675_b36 article-title: A conservative semi-Lagrangian HWENO method for the Vlasov equation publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.07.021 – volume: 391 year: 2022 ident: 10.1016/j.compfluid.2025.106675_b20 article-title: Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2021.114550 – volume: 31 start-page: 723 issue: 3 year: 2015 ident: 10.1016/j.compfluid.2025.106675_b7 article-title: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media publication-title: Numer Methods Partial Differential Equations doi: 10.1002/num.21913 – volume: 83 year: 2024 ident: 10.1016/j.compfluid.2025.106675_b28 article-title: Highly efficient NURBS-based isogeometric analysis for coupled nonlinear diffusion–reaction equations with and without advection publication-title: J Comput Sci doi: 10.1016/j.jocs.2024.102434 – volume: 16 start-page: 1031 issue: 07 year: 2006 ident: 10.1016/j.compfluid.2025.106675_b27 article-title: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202506001455 – volume: 302 start-page: 139 year: 2016 ident: 10.1016/j.compfluid.2025.106675_b11 article-title: A new MCC–MFE method for compressible miscible displacement in porous media publication-title: J Comput Appl Math doi: 10.1016/j.cam.2016.01.052 – volume: 19 start-page: 1251 issue: 6 year: 2015 ident: 10.1016/j.compfluid.2025.106675_b23 article-title: High order discontinuous Galerkin method for simulating miscible flooding in porous media publication-title: Comput Geosci doi: 10.1007/s10596-015-9541-4 – volume: 375 year: 2021 ident: 10.1016/j.compfluid.2025.106675_b10 article-title: A virtual element method for the miscible displacement of incompressible fluids in porous media publication-title: Comput Methods Appl Mech Engrg – volume: 45 start-page: 2228 issue: 5 year: 2007 ident: 10.1016/j.compfluid.2025.106675_b8 article-title: Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media publication-title: SIAM J Numer Anal doi: 10.1137/060657236 – volume: 228 start-page: 391 issue: 1 year: 2009 ident: 10.1016/j.compfluid.2025.106675_b18 article-title: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.09.029 |
SSID | ssj0004324 |
Score | 2.4354484 |
Snippet | Incompressible-miscible problems arise in many fields of application where the main objective is to describe the change of the pressure and the velocity during... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106675 |
SubjectTerms | Characteristic-Galerkin Convection-Dispersion problems Darcy flow Incompressible miscible displacement Isogeometric analysis L2-projection |
Title | A BDF2 characteristic-Galerkin isogeometric analysis for the miscible displacement of incompressible fluids in porous media |
URI | https://dx.doi.org/10.1016/j.compfluid.2025.106675 |
Volume | 298 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jd1kd_PwVqu1KvZkobfQfUQibVNMexL87c7koS0IHjxmwsIyGWa-3XzzDSGXTEWJa1ztTEQ4cQRAWEdxOKxAKfUDzUPjRtiN_Dz0ByPxOJbjBunVvTBIq6xyf5nTi2xdWTqVNzuLNMUeXyEhurCIA46R2GguRIBRfvX5Q_NAxbnyLzNKM3K2wfFC2nYyXaUoGepJsPo-Eg5_q1BrVae_R3YruEi75Y72ScPOD8jOmojgIfno0pvbvkf1hvSycw-ZH-_BaZpnrzab4eQsTSeVBgkFrEoB-9EZduWqqaUmzQt-Ft4W0iyhqNowK1my-LrYfw5WCoA9W-W0aDk5IqP-3Utv4FQjFRzt-XzpBMYz0loNIA4-HpdCJEwznxkLhcxwxUPNiylVVnITJNqEKjQCUI_WlmnN-DFpzrO5PSE0nBjNuVaQTeGI53FlpSe0Gxkbeca4rEVY7cZ4USpnxDWl7C3-9nyMno9Lz7fIde3ueCMIYsjvfy0-_c_iM7KNT3hZ7Mpz0ly-r-wFoI2lahfh1CZb3YenwfALPlPXow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFOUpwfWCCe204StFEpLoVOR2KLGdlAQbRBtJ_48d3lAKyExsJ5lyTpbd59P330HcMHjMHGNq52xDMaORAjrxAI_K5hK_ZYWgXFD6kZ-HPq9J3n_rJ5r0Kl6YYhWWcb-Iqbn0bq0XJbevHxPU-rxlQpfFyVxxDFKrUGD1KlUHRrt_qA3_GmPFF4hxixJnVHwFZoXMbeTt0VKqqGeQqvvE-fwtyS1lHi627BVIkbWLg61AzU73YXNJR3BPfhss-ubrsf0ivqyc4fBn0rhLJ1lLzab0PAszcalDAlDuMoQ_rEJNebGb5aZdJZTtKhgyLKEkXDDpCDK0nJ-_hlaGWL2bDFjedfJPjx1b0ednlNOVXC054u50zKeUdZqxHF4f0JJmXDNfW4s5jIjYhFokQ-qskqYVqJNEAdGIvDR2nKtuTiA-jSb2kNgwdhoIXSMARV_eZ6IrfKkdkNjQ88YlzeBV26M3gvxjKhilb1G356PyPNR4fkmXFXujlbeQYQh_q_NR__ZfA7rvdHjQ_TQHw6OYYNWqHbsqhOozz8W9hTBxzw-Kx_XF6XC2lQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+BDF2+characteristic-Galerkin+isogeometric+analysis+for+the+miscible+displacement+of+incompressible+fluids+in+porous+media&rft.jtitle=Computers+%26+fluids&rft.au=Asmouh%2C+Ilham&rft.au=Ouardghi%2C+Abdelouahed&rft.date=2025-08-15&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.volume=298&rft_id=info:doi/10.1016%2Fj.compfluid.2025.106675&rft.externalDocID=S0045793025001355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |