Dynamic analysis of long-span bridges with vibration control systems: A novel reduced-order model and comparative study
Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate the use of mechanical dampers for control. While a full finite element model (FEM) of the bridge with vibration control systems ensures accu...
Saved in:
Published in | Engineering structures Vol. 333; p. 120066 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-0296 |
DOI | 10.1016/j.engstruct.2025.120066 |
Cover
Loading…
Abstract | Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate the use of mechanical dampers for control. While a full finite element model (FEM) of the bridge with vibration control systems ensures accuracy of dynamic analysis, it is often computationally expensive due to the large number of degrees of freedom (DOFs). This study presents a reduced-order model that strikes a balance between computational accuracy and efficiency of dynamic analysis, making it ideal for the parametric design of damping devices. The model is based on the modal truncation method, retaining only a limited number of lower-order modes of the undamped bridge to capture the dominant vibration responses induced by wind loads. To compensate for the impact of point-wise control forces and minimize errors from modal truncation, quasi-static correction modes are introduced based on the static deformations of the bridge under unit forces applied at each damper location. The proposed model is applied to the modal analysis of a long-span suspension bridge equipped with damped outriggers and tuned mass dampers (TMDs) to suppress VIVs. The model is compared to both the full FEM and the conventional modal truncation method. Results show that the quasi-static correction significantly improves the accuracy of damping computations, reducing errors by up to 71.2% compared to the uncorrected modal truncation method. Most notably, the computational efficiency improves dramatically compared to the full FEM, with the number of DOFs reduced by approximately two orders of magnitude. Furthermore, a combination of damped outriggers and TMDs tuned to a single mode is sufficient to supply damping for all the bridge vibration modes subjected to VIVs.
•A novel reduced-order model of long-span bridges with vibration control systems.•Comparative studies of full FEMs and reduced-order models for dynamic analysis.•Number of DOFs decreased by two-order of magnitude.•Computational errors of damping ratios for most modes are smaller than 10%.•DOs and TMDs combined to fulfill damping requirements for all modes subject to VIVs. |
---|---|
AbstractList | Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate the use of mechanical dampers for control. While a full finite element model (FEM) of the bridge with vibration control systems ensures accuracy of dynamic analysis, it is often computationally expensive due to the large number of degrees of freedom (DOFs). This study presents a reduced-order model that strikes a balance between computational accuracy and efficiency of dynamic analysis, making it ideal for the parametric design of damping devices. The model is based on the modal truncation method, retaining only a limited number of lower-order modes of the undamped bridge to capture the dominant vibration responses induced by wind loads. To compensate for the impact of point-wise control forces and minimize errors from modal truncation, quasi-static correction modes are introduced based on the static deformations of the bridge under unit forces applied at each damper location. The proposed model is applied to the modal analysis of a long-span suspension bridge equipped with damped outriggers and tuned mass dampers (TMDs) to suppress VIVs. The model is compared to both the full FEM and the conventional modal truncation method. Results show that the quasi-static correction significantly improves the accuracy of damping computations, reducing errors by up to 71.2% compared to the uncorrected modal truncation method. Most notably, the computational efficiency improves dramatically compared to the full FEM, with the number of DOFs reduced by approximately two orders of magnitude. Furthermore, a combination of damped outriggers and TMDs tuned to a single mode is sufficient to supply damping for all the bridge vibration modes subjected to VIVs.
•A novel reduced-order model of long-span bridges with vibration control systems.•Comparative studies of full FEMs and reduced-order models for dynamic analysis.•Number of DOFs decreased by two-order of magnitude.•Computational errors of damping ratios for most modes are smaller than 10%.•DOs and TMDs combined to fulfill damping requirements for all modes subject to VIVs. |
ArticleNumber | 120066 |
Author | Sun, Limin El Damatty, Ashraf Liu, Zhanhang Chen, Lin |
Author_xml | – sequence: 1 givenname: Zhanhang orcidid: 0000-0002-6676-3989 surname: Liu fullname: Liu, Zhanhang organization: State Key Laboratory of Disaster Reduction of Civil Engineering, Tongji University, Shanghai 200092, PR China – sequence: 2 givenname: Limin surname: Sun fullname: Sun, Limin organization: State Key Laboratory of Disaster Reduction of Civil Engineering, Tongji University, Shanghai 200092, PR China – sequence: 3 givenname: Lin orcidid: 0000-0002-3570-234X surname: Chen fullname: Chen, Lin email: linchen@tongji.edu.cn organization: State Key Laboratory of Disaster Reduction of Civil Engineering, Tongji University, Shanghai 200092, PR China – sequence: 4 givenname: Ashraf surname: El Damatty fullname: El Damatty, Ashraf email: damatty@uwo.ca organization: Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada |
BookMark | eNqFkMtOwzAQRb0oEi3wDfgHUvxInJpdVZ5SJTawtvyYFFeJXdlpqvw9qYrYshrpas7VzFmgWYgBELqnZEkJFQ_7JYRd7tPR9ktGWLWkjBAhZmhOaEkLwqS4Rouc94QQtlqROTo9jUF33mIddDtmn3FscBvDrsgHHbBJ3u0g45Pvv_HgTdK9jwHbGPoUW5zH3EOXH_EahzhAixO4owVXxOQg4S66KdPBTUB30Gd4AJz7oxtv0VWj2wx3v_MGfb08f27eiu3H6_tmvS0sE7wvKiuZsIYzWdHaQlUTSrhuJDeUaC7LUlBKObEgjRBlY4ysRF2ZhgtZaSFqfoPqS69NMecEjTok3-k0KkrU2Znaqz9n6uxMXZxN5PpCwnTe4CGpbD2E6TufYNp10f_b8QNf-H-E |
Cites_doi | 10.1016/j.istruc.2022.07.028 10.1016/j.engstruct.2022.114873 10.1016/j.ymssp.2023.110857 10.1016/j.jweia.2021.104866 10.1016/j.istruc.2022.01.012 10.1177/1077546320984305 10.1016/j.jweia.2022.104970 10.1016/j.jweia.2013.11.006 10.1016/j.ymssp.2014.07.003 10.1080/15732479.2019.1604771 10.1016/j.engstruct.2019.109305 10.1016/j.ijmecsci.2013.03.014 10.1080/15397734.2021.1874414 10.1016/j.engstruct.2011.02.017 10.1007/s11709-012-0179-1 10.1016/j.engstruct.2016.08.033 10.1016/j.engstruct.2023.115959 10.1111/mice.12005 10.1061/(ASCE)BE.1943-5592.0001450 10.1016/j.engstruct.2024.117502 10.1061/JBENF2.BEENG-5958 10.1061/(ASCE)0733-9399(2007)133:1(1) 10.1016/j.jsv.2020.115769 10.1016/j.jweia.2021.104794 10.1016/j.jfluidstructs.2021.103348 10.1016/j.jsv.2013.11.029 10.1098/rspa.2015.0718 10.1016/j.jweia.2023.105612 10.1016/j.engstruct.2018.12.067 10.1016/0020-7403(70)90053-6 10.2749/101686613X13439149156886 10.21595/jve.2017.18900 10.1016/j.engstruct.2018.11.040 10.1186/s43251-021-00050-x 10.1016/j.soildyn.2009.10.009 10.1016/j.engstruct.2020.111084 10.1080/10168664.2018.1462132 10.1111/j.1467-8667.2009.00595.x |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engstruct.2025.120066 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_engstruct_2025_120066 S0141029625004572 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSE SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ LY7 R2- RIG SET VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c263t-5c926cb329517ce570103af93b10a3944611130ce9b664fbb95675bf3695a6673 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Tue Aug 05 12:09:20 EDT 2025 Sat Apr 26 15:41:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vortex-induced vibrations Long-span bridges Vibration control Modal truncation method Dampers Quasi-static correction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-5c926cb329517ce570103af93b10a3944611130ce9b664fbb95675bf3695a6673 |
ORCID | 0000-0002-6676-3989 0000-0002-3570-234X |
ParticipantIDs | crossref_primary_10_1016_j_engstruct_2025_120066 elsevier_sciencedirect_doi_10_1016_j_engstruct_2025_120066 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-15 |
PublicationDateYYYYMMDD | 2025-06-15 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Engineering structures |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Peng, Zhang, Liu, Li (b24) 2022; 38 Li, Laima, Zhang, Li, Liu (b44) 2014; 124 Xu, Bi, Han, Li, Du (b11) 2019; 182 Németh, Geleji (b34) 2023; 51 Johnson, Baker, Spencer, Fujino (b39) 2007; 133 Bekdaş, Nigdeli (b31) 2013; 71 Hwang, Kim, Kim (b8) 2020; 16 Miguel, Lopez, Torii, Miguel, Beck (b28) 2016; 126 Ghaedi, Ibrahim, Adeli, Javanmardi (b16) 2017; 19 Ge, Zhao, Cao (b4) 2022; 220 Zahrai, Froozanfar (b26) 2019; 23 Wu, Kareem (b2) 2012; 6 Panakkat, Adeli (b30) 2009; 24 Fujino, Siringoringo (b1) 2013; 23 Dai, Xu, Gai (b12) 2020; 221 Dai, Xu, Yin, Gai, Luo (b21) 2019; 24 Chen, Liu, Zhao, Sun (b20) 2024; 57 Li, Laima, Ou, Zhao, Zhou, Yu, Li, Liu (b43) 2011; 33 Xu, Dai, Bi, Fang, Zhao (b25) 2022; 224 Krenk, Høgsberg (b37) 2014; 333 Li, Hu (b33) 2015; 52 Zhou, Ge, Yang, Liu, Du, Zhang (b22) 2019; 183 Kim, Kim, Hwang (b5) 2018; 28 Yang, Sedaghati, Esmailzadeh (b10) 2022; 28 Sun, Xu, Chen (b40) 2019; 196 Fujino, Kimura, Tanaka (b7) 2012 Krenk, Høgsberg (b38) 2016; 472 Gao, Deng, Yang, Chen (b9) 2021; 105 Luco, Turmo (b17) 2010; 30 Chen, Xu, Sun (b41) 2021; 491 Williams, Wittrick (b18) 1970; 12 Yu, Øiseth, Zhang, Xu, Hu (b36) 2023; 28 Zhao, Zheng, Wei, Jia, Liao, Li, Wei, Zhan, Zhang, Xiao (b6) 2021; 2 Siyuwj (b42) 2011 Hua, Huang, Chen (b19) 2019; 32 Dai, Xu, Xu, Yan, Chen (b13) 2022; 43 Song, Xiao, Jiang, Sun (b35) 2024; 303 Zhu, Xiong, Xiang, Huang, Li (b3) 2021; 219 Chen, Liu, Nagarajaiah, Sun, Zhao, Cui (b15) 2022; 271 Cao, Huang, Zhang, Hua, Chen, Wan (b14) 2023; 243 Khalid, Yusof, Joshani, Selamat, Joshani (b32) 2014; 29 Liu, Chen, Sun, Zhao, Cui, Guan (b23) 2023; 286 Xu, Fang, Zhang, Øiseth, Zhao, Ge (b27) 2023; 205 Fadel Miguel, Piva dos Santos (b29) 2021; 2021 Gao (10.1016/j.engstruct.2025.120066_b9) 2021; 105 Yang (10.1016/j.engstruct.2025.120066_b10) 2022; 28 Fujino (10.1016/j.engstruct.2025.120066_b1) 2013; 23 Miguel (10.1016/j.engstruct.2025.120066_b28) 2016; 126 Chen (10.1016/j.engstruct.2025.120066_b41) 2021; 491 Dai (10.1016/j.engstruct.2025.120066_b12) 2020; 221 Ghaedi (10.1016/j.engstruct.2025.120066_b16) 2017; 19 Zhao (10.1016/j.engstruct.2025.120066_b6) 2021; 2 Zhou (10.1016/j.engstruct.2025.120066_b22) 2019; 183 Sun (10.1016/j.engstruct.2025.120066_b40) 2019; 196 Li (10.1016/j.engstruct.2025.120066_b44) 2014; 124 Luco (10.1016/j.engstruct.2025.120066_b17) 2010; 30 Williams (10.1016/j.engstruct.2025.120066_b18) 1970; 12 Kim (10.1016/j.engstruct.2025.120066_b5) 2018; 28 Li (10.1016/j.engstruct.2025.120066_b43) 2011; 33 Johnson (10.1016/j.engstruct.2025.120066_b39) 2007; 133 Hwang (10.1016/j.engstruct.2025.120066_b8) 2020; 16 Peng (10.1016/j.engstruct.2025.120066_b24) 2022; 38 Yu (10.1016/j.engstruct.2025.120066_b36) 2023; 28 Fadel Miguel (10.1016/j.engstruct.2025.120066_b29) 2021; 2021 Hua (10.1016/j.engstruct.2025.120066_b19) 2019; 32 Zhu (10.1016/j.engstruct.2025.120066_b3) 2021; 219 Ge (10.1016/j.engstruct.2025.120066_b4) 2022; 220 Dai (10.1016/j.engstruct.2025.120066_b13) 2022; 43 Krenk (10.1016/j.engstruct.2025.120066_b37) 2014; 333 Song (10.1016/j.engstruct.2025.120066_b35) 2024; 303 Liu (10.1016/j.engstruct.2025.120066_b23) 2023; 286 Chen (10.1016/j.engstruct.2025.120066_b20) 2024; 57 Fujino (10.1016/j.engstruct.2025.120066_b7) 2012 Xu (10.1016/j.engstruct.2025.120066_b11) 2019; 182 Krenk (10.1016/j.engstruct.2025.120066_b38) 2016; 472 Chen (10.1016/j.engstruct.2025.120066_b15) 2022; 271 Panakkat (10.1016/j.engstruct.2025.120066_b30) 2009; 24 Khalid (10.1016/j.engstruct.2025.120066_b32) 2014; 29 Siyuwj (10.1016/j.engstruct.2025.120066_b42) 2011 Dai (10.1016/j.engstruct.2025.120066_b21) 2019; 24 Bekdaş (10.1016/j.engstruct.2025.120066_b31) 2013; 71 Li (10.1016/j.engstruct.2025.120066_b33) 2015; 52 Xu (10.1016/j.engstruct.2025.120066_b27) 2023; 205 Cao (10.1016/j.engstruct.2025.120066_b14) 2023; 243 Wu (10.1016/j.engstruct.2025.120066_b2) 2012; 6 Xu (10.1016/j.engstruct.2025.120066_b25) 2022; 224 Németh (10.1016/j.engstruct.2025.120066_b34) 2023; 51 Zahrai (10.1016/j.engstruct.2025.120066_b26) 2019; 23 |
References_xml | – volume: 126 start-page: 703 year: 2016 end-page: 711 ident: b28 article-title: Robust design optimization of TMDs in vehicle–bridge coupled vibration problems publication-title: Eng Struct – volume: 183 start-page: 1072 year: 2019 end-page: 1090 ident: b22 article-title: A nonlinear numerical scheme to simulate multiple wind effects on twin-box girder suspension bridges publication-title: Eng Struct – volume: 29 start-page: 221 year: 2014 end-page: 233 ident: b32 article-title: Nonlinear identification of a magneto-rheological damper based on dynamic neural networks publication-title: Comput. Aided Civ Infrastruct Eng – volume: 182 start-page: 101 year: 2019 end-page: 111 ident: b11 article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study publication-title: Eng Struct – volume: 24 start-page: 280 year: 2009 end-page: 292 ident: b30 article-title: Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators publication-title: Comput. Aided Civ Infrastruct Eng – volume: 205 year: 2023 ident: b27 article-title: Optimization of tuned mass dampers for multiple mode vortex-induced vibration mitigation in flexible structures: An application to multi-span continuous bridge publication-title: Mech Syst Signal Process – volume: 71 start-page: 68 year: 2013 end-page: 84 ident: b31 article-title: Mass ratio factor for optimum tuned mass damper strategies publication-title: Int J Mech Sci – volume: 105 year: 2021 ident: b9 article-title: Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach publication-title: J Fluids Struct – volume: 30 start-page: 769 year: 2010 end-page: 781 ident: b17 article-title: Linear vertical vibrations of suspension bridges: A review of continuum models and some new results publication-title: Soil Dyn Earthq Eng – volume: 124 start-page: 54 year: 2014 end-page: 67 ident: b44 article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge publication-title: J Wind Eng Ind Aerodyn – volume: 271 year: 2022 ident: b15 article-title: Vibration mitigation of long-span bridges with damped outriggers publication-title: Eng Struct – volume: 243 year: 2023 ident: b14 article-title: Discrete viscous dampers for multi-mode vortex-induced vibration control of long-span suspension bridges publication-title: J Wind Eng Ind Aerodyn – volume: 51 start-page: 1582 year: 2023 end-page: 1605 ident: b34 article-title: Modal truncation damping in reduced modal analysis of piecewise linear continuum structures publication-title: Mech Based Des Struct Mach – volume: 224 year: 2022 ident: b25 article-title: Multi-mode vortex-induced vibration control of long-span bridges by using distributed tuned mass damper inerters (DTMDIs) publication-title: J Wind Eng Ind Aerodyn – volume: 19 start-page: 3564 year: 2017 end-page: 3580 ident: b16 article-title: Invited review: Recent developments in vibration control of building and bridge structures publication-title: J Vibroeng. – volume: 23 start-page: 449 year: 2019 end-page: 466 ident: b26 article-title: Performance of passive and active MTMDs in seismic response of ahvaz cable-stayed bridge publication-title: Smart Struct Syst – volume: 303 year: 2024 ident: b35 article-title: Active-learning kriging-assisted robust design optimization of tuned mass dampers: Vibration mitigation of a steel-arch footbridge publication-title: Eng Struct – volume: 2 start-page: 1 year: 2021 end-page: 105 ident: b6 article-title: State-of-the-art and annual progress of bridge engineering in 2020 publication-title: Adv Bridg Eng – volume: 43 start-page: 1807 year: 2022 end-page: 1818 ident: b13 article-title: Multiple tuned mass damper control of vortex-induced vibration in bridges based on failure probability publication-title: Structures – volume: 38 start-page: 1595 year: 2022 end-page: 1606 ident: b24 article-title: Parameters optimization and performance evaluation of multiple tuned mass dampers to mitigate the vortex-induced vibration of a long-span bridge publication-title: Structures – volume: 491 year: 2021 ident: b41 article-title: A component mode synthesis method for reduced-order modeling of cable networks in cable-stayed bridges publication-title: J Sound Vib – year: 2012 ident: b7 article-title: Wind Resistant Design of Bridges in Japan: Developments and Practices – volume: 57 start-page: 22 year: 2024 end-page: 36 ident: b20 article-title: Vortex-induced vibration mitigation of long-span bridges with rotational damping: Concept and design of damped outriggers publication-title: China Civ Eng J – volume: 28 year: 2023 ident: b36 article-title: Tuned mass damper design for vortex-induced vibration control of a bridge: Influence of vortex-induced force model publication-title: J Bridg Eng – volume: 16 start-page: 84 year: 2020 end-page: 93 ident: b8 article-title: Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge publication-title: Struct Infrastruct Eng – volume: 28 start-page: 812 year: 2022 end-page: 836 ident: b10 article-title: Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review publication-title: J Vib Control – volume: 32 year: 2019 ident: b19 article-title: Multi-mode vertical vortex-induced vibration of suspension bridges and control strategy publication-title: China J Highw Transp – volume: 286 year: 2023 ident: b23 article-title: Multimode damping optimization of a long-span suspension bridge with damped outriggers for suppressing vortex-induced vibrations publication-title: Eng Struct – volume: 472 year: 2016 ident: b38 article-title: Tuned resonant mass or inerter-based absorbers: Unified calibration with quasi-dynamic flexibility and inertia correction publication-title: Proc R Soc A: Math Phys Eng Sci – volume: 28 start-page: 308 year: 2018 end-page: 317 ident: b5 article-title: Enhanced damping estimation for cable-stayed bridges based on operational monitoring data publication-title: Struct Eng Int – volume: 196 year: 2019 ident: b40 article-title: Damping effects of nonlinear dampers on a shallow cable publication-title: Eng Struct – volume: 52 start-page: 46 year: 2015 end-page: 59 ident: b33 article-title: Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems publication-title: Mech Syst Signal Process – volume: 2021 year: 2021 ident: b29 article-title: Optimization of multiple tuned mass dampers for road bridges taking into account bridge-vehicle interaction, random pavement roughness, and uncertainties publication-title: Shock Vib – volume: 333 start-page: 1577 year: 2014 end-page: 1595 ident: b37 article-title: Tuned mass absorber on a flexible structure publication-title: J Sound Vib – volume: 12 start-page: 781 year: 1970 end-page: 791 ident: b18 article-title: An automatic computational procedure for calculating natural frequencies of skeletal structures publication-title: Int J Mech Sci – volume: 219 year: 2021 ident: b3 article-title: Ride comfort evaluation of stochastic traffic flow crossing long-span suspension bridge experiencing vortex-induced vibration publication-title: J Wind Eng Ind Aerodyn – volume: 220 year: 2022 ident: b4 article-title: Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge publication-title: J Wind Eng Ind Aerodyn – volume: 133 start-page: 1 year: 2007 end-page: 11 ident: b39 article-title: Semiactive damping of stay cables publication-title: J Eng Mech – volume: 33 start-page: 1894 year: 2011 end-page: 1907 ident: b43 article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements publication-title: Eng Struct – volume: 23 start-page: 248 year: 2013 end-page: 268 ident: b1 article-title: Vibration mechanisms and controls of long-span bridges: A review publication-title: Struct Eng Int – volume: 221 year: 2020 ident: b12 article-title: Parameter determination of the tuned mass damper mitigating the vortex-induced vibration in bridges publication-title: Eng Struct – volume: 24 year: 2019 ident: b21 article-title: Parameters design of TMD mitigating vortex-induced vibration of the Hong Kong–Zhuhai–Macao bridge deep-water nonnavigable bridge publication-title: J Bridg Eng – volume: 6 start-page: 335 year: 2012 end-page: 347 ident: b2 article-title: An overview of vortex-induced vibration (VIV) of bridge decks publication-title: Front Struct Civ Eng – year: 2011 ident: b42 article-title: Xihoumen bridge in Zhoushan – volume: 43 start-page: 1807 year: 2022 ident: 10.1016/j.engstruct.2025.120066_b13 article-title: Multiple tuned mass damper control of vortex-induced vibration in bridges based on failure probability publication-title: Structures doi: 10.1016/j.istruc.2022.07.028 – volume: 271 year: 2022 ident: 10.1016/j.engstruct.2025.120066_b15 article-title: Vibration mitigation of long-span bridges with damped outriggers publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.114873 – volume: 205 issn: 0888-3270 year: 2023 ident: 10.1016/j.engstruct.2025.120066_b27 article-title: Optimization of tuned mass dampers for multiple mode vortex-induced vibration mitigation in flexible structures: An application to multi-span continuous bridge publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110857 – volume: 220 year: 2022 ident: 10.1016/j.engstruct.2025.120066_b4 article-title: Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2021.104866 – volume: 32 issue: 10 year: 2019 ident: 10.1016/j.engstruct.2025.120066_b19 article-title: Multi-mode vertical vortex-induced vibration of suspension bridges and control strategy publication-title: China J Highw Transp – volume: 38 start-page: 1595 year: 2022 ident: 10.1016/j.engstruct.2025.120066_b24 article-title: Parameters optimization and performance evaluation of multiple tuned mass dampers to mitigate the vortex-induced vibration of a long-span bridge publication-title: Structures doi: 10.1016/j.istruc.2022.01.012 – volume: 28 start-page: 812 issue: 7–8 year: 2022 ident: 10.1016/j.engstruct.2025.120066_b10 article-title: Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review publication-title: J Vib Control doi: 10.1177/1077546320984305 – volume: 57 start-page: 22 issue: 7 year: 2024 ident: 10.1016/j.engstruct.2025.120066_b20 article-title: Vortex-induced vibration mitigation of long-span bridges with rotational damping: Concept and design of damped outriggers publication-title: China Civ Eng J – volume: 224 year: 2022 ident: 10.1016/j.engstruct.2025.120066_b25 article-title: Multi-mode vortex-induced vibration control of long-span bridges by using distributed tuned mass damper inerters (DTMDIs) publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2022.104970 – volume: 124 start-page: 54 issn: 0167-6105 year: 2014 ident: 10.1016/j.engstruct.2025.120066_b44 article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2013.11.006 – volume: 52 start-page: 46 year: 2015 ident: 10.1016/j.engstruct.2025.120066_b33 article-title: Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.07.003 – volume: 16 start-page: 84 issue: 1 year: 2020 ident: 10.1016/j.engstruct.2025.120066_b8 article-title: Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2019.1604771 – volume: 196 year: 2019 ident: 10.1016/j.engstruct.2025.120066_b40 article-title: Damping effects of nonlinear dampers on a shallow cable publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109305 – volume: 71 start-page: 68 year: 2013 ident: 10.1016/j.engstruct.2025.120066_b31 article-title: Mass ratio factor for optimum tuned mass damper strategies publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2013.03.014 – volume: 51 start-page: 1582 issue: 3 year: 2023 ident: 10.1016/j.engstruct.2025.120066_b34 article-title: Modal truncation damping in reduced modal analysis of piecewise linear continuum structures publication-title: Mech Based Des Struct Mach doi: 10.1080/15397734.2021.1874414 – year: 2011 ident: 10.1016/j.engstruct.2025.120066_b42 – volume: 33 start-page: 1894 issn: 0141-0296 issue: 6 year: 2011 ident: 10.1016/j.engstruct.2025.120066_b43 article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.02.017 – volume: 6 start-page: 335 year: 2012 ident: 10.1016/j.engstruct.2025.120066_b2 article-title: An overview of vortex-induced vibration (VIV) of bridge decks publication-title: Front Struct Civ Eng doi: 10.1007/s11709-012-0179-1 – volume: 126 start-page: 703 year: 2016 ident: 10.1016/j.engstruct.2025.120066_b28 article-title: Robust design optimization of TMDs in vehicle–bridge coupled vibration problems publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.08.033 – volume: 286 issn: 0141-0296 year: 2023 ident: 10.1016/j.engstruct.2025.120066_b23 article-title: Multimode damping optimization of a long-span suspension bridge with damped outriggers for suppressing vortex-induced vibrations publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.115959 – volume: 29 start-page: 221 issue: 3 year: 2014 ident: 10.1016/j.engstruct.2025.120066_b32 article-title: Nonlinear identification of a magneto-rheological damper based on dynamic neural networks publication-title: Comput. Aided Civ Infrastruct Eng doi: 10.1111/mice.12005 – volume: 24 issue: 8 year: 2019 ident: 10.1016/j.engstruct.2025.120066_b21 article-title: Parameters design of TMD mitigating vortex-induced vibration of the Hong Kong–Zhuhai–Macao bridge deep-water nonnavigable bridge publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001450 – volume: 303 year: 2024 ident: 10.1016/j.engstruct.2025.120066_b35 article-title: Active-learning kriging-assisted robust design optimization of tuned mass dampers: Vibration mitigation of a steel-arch footbridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.117502 – volume: 28 issue: 5 year: 2023 ident: 10.1016/j.engstruct.2025.120066_b36 article-title: Tuned mass damper design for vortex-induced vibration control of a bridge: Influence of vortex-induced force model publication-title: J Bridg Eng doi: 10.1061/JBENF2.BEENG-5958 – volume: 133 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.engstruct.2025.120066_b39 article-title: Semiactive damping of stay cables publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2007)133:1(1) – volume: 491 year: 2021 ident: 10.1016/j.engstruct.2025.120066_b41 article-title: A component mode synthesis method for reduced-order modeling of cable networks in cable-stayed bridges publication-title: J Sound Vib doi: 10.1016/j.jsv.2020.115769 – volume: 219 year: 2021 ident: 10.1016/j.engstruct.2025.120066_b3 article-title: Ride comfort evaluation of stochastic traffic flow crossing long-span suspension bridge experiencing vortex-induced vibration publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2021.104794 – volume: 105 year: 2021 ident: 10.1016/j.engstruct.2025.120066_b9 article-title: Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2021.103348 – volume: 333 start-page: 1577 issn: 0022-460X issue: 6 year: 2014 ident: 10.1016/j.engstruct.2025.120066_b37 article-title: Tuned mass absorber on a flexible structure publication-title: J Sound Vib doi: 10.1016/j.jsv.2013.11.029 – volume: 472 issue: 2185 year: 2016 ident: 10.1016/j.engstruct.2025.120066_b38 article-title: Tuned resonant mass or inerter-based absorbers: Unified calibration with quasi-dynamic flexibility and inertia correction publication-title: Proc R Soc A: Math Phys Eng Sci doi: 10.1098/rspa.2015.0718 – volume: 243 issn: 0167-6105 year: 2023 ident: 10.1016/j.engstruct.2025.120066_b14 article-title: Discrete viscous dampers for multi-mode vortex-induced vibration control of long-span suspension bridges publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2023.105612 – volume: 182 start-page: 101 year: 2019 ident: 10.1016/j.engstruct.2025.120066_b11 article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.12.067 – volume: 12 start-page: 781 issue: 9 year: 1970 ident: 10.1016/j.engstruct.2025.120066_b18 article-title: An automatic computational procedure for calculating natural frequencies of skeletal structures publication-title: Int J Mech Sci doi: 10.1016/0020-7403(70)90053-6 – volume: 23 start-page: 248 issue: 3 year: 2013 ident: 10.1016/j.engstruct.2025.120066_b1 article-title: Vibration mechanisms and controls of long-span bridges: A review publication-title: Struct Eng Int doi: 10.2749/101686613X13439149156886 – volume: 19 start-page: 3564 issue: 5 year: 2017 ident: 10.1016/j.engstruct.2025.120066_b16 article-title: Invited review: Recent developments in vibration control of building and bridge structures publication-title: J Vibroeng. doi: 10.21595/jve.2017.18900 – volume: 183 start-page: 1072 issn: 0141-0296 year: 2019 ident: 10.1016/j.engstruct.2025.120066_b22 article-title: A nonlinear numerical scheme to simulate multiple wind effects on twin-box girder suspension bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.11.040 – volume: 2 start-page: 1 year: 2021 ident: 10.1016/j.engstruct.2025.120066_b6 article-title: State-of-the-art and annual progress of bridge engineering in 2020 publication-title: Adv Bridg Eng doi: 10.1186/s43251-021-00050-x – volume: 30 start-page: 769 issue: 9 year: 2010 ident: 10.1016/j.engstruct.2025.120066_b17 article-title: Linear vertical vibrations of suspension bridges: A review of continuum models and some new results publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2009.10.009 – volume: 221 issn: 0141-0296 year: 2020 ident: 10.1016/j.engstruct.2025.120066_b12 article-title: Parameter determination of the tuned mass damper mitigating the vortex-induced vibration in bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111084 – volume: 28 start-page: 308 issue: 3 year: 2018 ident: 10.1016/j.engstruct.2025.120066_b5 article-title: Enhanced damping estimation for cable-stayed bridges based on operational monitoring data publication-title: Struct Eng Int doi: 10.1080/10168664.2018.1462132 – volume: 2021 issue: 1 year: 2021 ident: 10.1016/j.engstruct.2025.120066_b29 article-title: Optimization of multiple tuned mass dampers for road bridges taking into account bridge-vehicle interaction, random pavement roughness, and uncertainties publication-title: Shock Vib – volume: 24 start-page: 280 issue: 4 year: 2009 ident: 10.1016/j.engstruct.2025.120066_b30 article-title: Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators publication-title: Comput. Aided Civ Infrastruct Eng doi: 10.1111/j.1467-8667.2009.00595.x – year: 2012 ident: 10.1016/j.engstruct.2025.120066_b7 – volume: 23 start-page: 449 issue: 5 year: 2019 ident: 10.1016/j.engstruct.2025.120066_b26 article-title: Performance of passive and active MTMDs in seismic response of ahvaz cable-stayed bridge publication-title: Smart Struct Syst |
SSID | ssj0002880 |
Score | 2.4580424 |
Snippet | Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 120066 |
SubjectTerms | Dampers Long-span bridges Modal truncation method Quasi-static correction Vibration control Vortex-induced vibrations |
Title | Dynamic analysis of long-span bridges with vibration control systems: A novel reduced-order model and comparative study |
URI | https://dx.doi.org/10.1016/j.engstruct.2025.120066 |
Volume | 333 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXvRg_BnxB-nBa2Eba7dyIyhBjVyUhNuylo5gyEaU4M2_3fe6TiAx8eBxS7ssr93X762v30fILc9MCKCnIC2JIUFJtWYqVop5UsMU8mMpNCaKzyMxHIePEz6pkX51FgbLKh32l5hu0drdabtotpfzefvFligGEgg88pIIcTgMI9TPb31tyjyC2LqnYWOGrXdqvEw-K2VaIVEMeMu3OxG_r1Bbq87giBw6ukh75Rsdk5rJT8jBlojgKfm8K03laer0RWiR0UWRzxiARU6djgPFH650jckxDgV1Jeq0VHL-6NIezYu1WdB31HI1U2Y1Oak1yoEnT6neyIRTq0l7RsaD-9f-kDk7BaYD0VkxrmUgtOoEQKoibXiEFg9pJjvK91I8HyvQdt7TRiohwkwpSJ0irrKOkDxFd9BzUs-L3FwQKoRnhG-UgO8fGF2USiBuEbA13FYMY94gXhXCZFmqZiRVOdlb8hP1BKOelFFvkG4V6mRnAiSA7X91vvxP5yuyj1dY_-Xza1KHBuYGmMZKNe1UapK93sPTcPQNjwzTug |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b8IwELUQDG2Hqp8q_fTQNSUJsZOwIVoUysdSkNis2DiICiWoRfTv9y5xKEiVOnRN7Ci6nJ7fxef3CHlkifYA9CSUJQEUKLFSlgyktOxQQQo5QcgVForDEY8m3uuUTSukU56FwbZKg_0Fpudoba40TDQbq8Wi8Za3KLohEHjkJT7gcA3VqSDZa-1ePxptAdkNcgM1HG_hhL02L53OC6VWqBVd9uTkmxG_L1I7C0_3hBwbxkjbxUudkopOz8jRjo7gOfl6LnzlaWwkRmiW0GWWzi3Ai5QaKQeK_1zpButj_BrUdKnTQsz5s0XbNM02ekk_UM5Vz6xclpPmXjnw5BlVP0rhNJelvSCT7su4E1nGUcFSLm-uLaZClyvZdIFX-UozH10e4iRsSseO8YgsR-d5W-lQcu4lUkL15DOZNHnIYjQIvSTVNEv1FaGc25o7WnKAACB1fhwCd_OBsOHOohewOrHLEIpVIZwhyo6yd7GNusCoiyLqddIqQy32ckAAvP81-fo_kx_IQTQeDsSgN-rfkEO8g-1gDrslVRis74B4rOW9Saxv3JXWaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+analysis+of+long-span+bridges+with+vibration+control+systems%3A+A+novel+reduced-order+model+and+comparative+study&rft.jtitle=Engineering+structures&rft.au=Liu%2C+Zhanhang&rft.au=Sun%2C+Limin&rft.au=Chen%2C+Lin&rft.au=El+Damatty%2C+Ashraf&rft.date=2025-06-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=333&rft_id=info:doi/10.1016%2Fj.engstruct.2025.120066&rft.externalDocID=S0141029625004572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |