Dynamic analysis of long-span bridges with vibration control systems: A novel reduced-order model and comparative study

Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate the use of mechanical dampers for control. While a full finite element model (FEM) of the bridge with vibration control systems ensures accu...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 333; p. 120066
Main Authors Liu, Zhanhang, Sun, Limin, Chen, Lin, El Damatty, Ashraf
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2025
Subjects
Online AccessGet full text
ISSN0141-0296
DOI10.1016/j.engstruct.2025.120066

Cover

Loading…
Abstract Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate the use of mechanical dampers for control. While a full finite element model (FEM) of the bridge with vibration control systems ensures accuracy of dynamic analysis, it is often computationally expensive due to the large number of degrees of freedom (DOFs). This study presents a reduced-order model that strikes a balance between computational accuracy and efficiency of dynamic analysis, making it ideal for the parametric design of damping devices. The model is based on the modal truncation method, retaining only a limited number of lower-order modes of the undamped bridge to capture the dominant vibration responses induced by wind loads. To compensate for the impact of point-wise control forces and minimize errors from modal truncation, quasi-static correction modes are introduced based on the static deformations of the bridge under unit forces applied at each damper location. The proposed model is applied to the modal analysis of a long-span suspension bridge equipped with damped outriggers and tuned mass dampers (TMDs) to suppress VIVs. The model is compared to both the full FEM and the conventional modal truncation method. Results show that the quasi-static correction significantly improves the accuracy of damping computations, reducing errors by up to 71.2% compared to the uncorrected modal truncation method. Most notably, the computational efficiency improves dramatically compared to the full FEM, with the number of DOFs reduced by approximately two orders of magnitude. Furthermore, a combination of damped outriggers and TMDs tuned to a single mode is sufficient to supply damping for all the bridge vibration modes subjected to VIVs. •A novel reduced-order model of long-span bridges with vibration control systems.•Comparative studies of full FEMs and reduced-order models for dynamic analysis.•Number of DOFs decreased by two-order of magnitude.•Computational errors of damping ratios for most modes are smaller than 10%.•DOs and TMDs combined to fulfill damping requirements for all modes subject to VIVs.
AbstractList Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate the use of mechanical dampers for control. While a full finite element model (FEM) of the bridge with vibration control systems ensures accuracy of dynamic analysis, it is often computationally expensive due to the large number of degrees of freedom (DOFs). This study presents a reduced-order model that strikes a balance between computational accuracy and efficiency of dynamic analysis, making it ideal for the parametric design of damping devices. The model is based on the modal truncation method, retaining only a limited number of lower-order modes of the undamped bridge to capture the dominant vibration responses induced by wind loads. To compensate for the impact of point-wise control forces and minimize errors from modal truncation, quasi-static correction modes are introduced based on the static deformations of the bridge under unit forces applied at each damper location. The proposed model is applied to the modal analysis of a long-span suspension bridge equipped with damped outriggers and tuned mass dampers (TMDs) to suppress VIVs. The model is compared to both the full FEM and the conventional modal truncation method. Results show that the quasi-static correction significantly improves the accuracy of damping computations, reducing errors by up to 71.2% compared to the uncorrected modal truncation method. Most notably, the computational efficiency improves dramatically compared to the full FEM, with the number of DOFs reduced by approximately two orders of magnitude. Furthermore, a combination of damped outriggers and TMDs tuned to a single mode is sufficient to supply damping for all the bridge vibration modes subjected to VIVs. •A novel reduced-order model of long-span bridges with vibration control systems.•Comparative studies of full FEMs and reduced-order models for dynamic analysis.•Number of DOFs decreased by two-order of magnitude.•Computational errors of damping ratios for most modes are smaller than 10%.•DOs and TMDs combined to fulfill damping requirements for all modes subject to VIVs.
ArticleNumber 120066
Author Sun, Limin
El Damatty, Ashraf
Liu, Zhanhang
Chen, Lin
Author_xml – sequence: 1
  givenname: Zhanhang
  orcidid: 0000-0002-6676-3989
  surname: Liu
  fullname: Liu, Zhanhang
  organization: State Key Laboratory of Disaster Reduction of Civil Engineering, Tongji University, Shanghai 200092, PR China
– sequence: 2
  givenname: Limin
  surname: Sun
  fullname: Sun, Limin
  organization: State Key Laboratory of Disaster Reduction of Civil Engineering, Tongji University, Shanghai 200092, PR China
– sequence: 3
  givenname: Lin
  orcidid: 0000-0002-3570-234X
  surname: Chen
  fullname: Chen, Lin
  email: linchen@tongji.edu.cn
  organization: State Key Laboratory of Disaster Reduction of Civil Engineering, Tongji University, Shanghai 200092, PR China
– sequence: 4
  givenname: Ashraf
  surname: El Damatty
  fullname: El Damatty, Ashraf
  email: damatty@uwo.ca
  organization: Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada
BookMark eNqFkMtOwzAQRb0oEi3wDfgHUvxInJpdVZ5SJTawtvyYFFeJXdlpqvw9qYrYshrpas7VzFmgWYgBELqnZEkJFQ_7JYRd7tPR9ktGWLWkjBAhZmhOaEkLwqS4Rouc94QQtlqROTo9jUF33mIddDtmn3FscBvDrsgHHbBJ3u0g45Pvv_HgTdK9jwHbGPoUW5zH3EOXH_EahzhAixO4owVXxOQg4S66KdPBTUB30Gd4AJz7oxtv0VWj2wx3v_MGfb08f27eiu3H6_tmvS0sE7wvKiuZsIYzWdHaQlUTSrhuJDeUaC7LUlBKObEgjRBlY4ysRF2ZhgtZaSFqfoPqS69NMecEjTok3-k0KkrU2Znaqz9n6uxMXZxN5PpCwnTe4CGpbD2E6TufYNp10f_b8QNf-H-E
Cites_doi 10.1016/j.istruc.2022.07.028
10.1016/j.engstruct.2022.114873
10.1016/j.ymssp.2023.110857
10.1016/j.jweia.2021.104866
10.1016/j.istruc.2022.01.012
10.1177/1077546320984305
10.1016/j.jweia.2022.104970
10.1016/j.jweia.2013.11.006
10.1016/j.ymssp.2014.07.003
10.1080/15732479.2019.1604771
10.1016/j.engstruct.2019.109305
10.1016/j.ijmecsci.2013.03.014
10.1080/15397734.2021.1874414
10.1016/j.engstruct.2011.02.017
10.1007/s11709-012-0179-1
10.1016/j.engstruct.2016.08.033
10.1016/j.engstruct.2023.115959
10.1111/mice.12005
10.1061/(ASCE)BE.1943-5592.0001450
10.1016/j.engstruct.2024.117502
10.1061/JBENF2.BEENG-5958
10.1061/(ASCE)0733-9399(2007)133:1(1)
10.1016/j.jsv.2020.115769
10.1016/j.jweia.2021.104794
10.1016/j.jfluidstructs.2021.103348
10.1016/j.jsv.2013.11.029
10.1098/rspa.2015.0718
10.1016/j.jweia.2023.105612
10.1016/j.engstruct.2018.12.067
10.1016/0020-7403(70)90053-6
10.2749/101686613X13439149156886
10.21595/jve.2017.18900
10.1016/j.engstruct.2018.11.040
10.1186/s43251-021-00050-x
10.1016/j.soildyn.2009.10.009
10.1016/j.engstruct.2020.111084
10.1080/10168664.2018.1462132
10.1111/j.1467-8667.2009.00595.x
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2025.120066
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_engstruct_2025_120066
S0141029625004572
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY7
R2-
RIG
SET
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c263t-5c926cb329517ce570103af93b10a3944611130ce9b664fbb95675bf3695a6673
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Tue Aug 05 12:09:20 EDT 2025
Sat Apr 26 15:41:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Vortex-induced vibrations
Long-span bridges
Vibration control
Modal truncation method
Dampers
Quasi-static correction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-5c926cb329517ce570103af93b10a3944611130ce9b664fbb95675bf3695a6673
ORCID 0000-0002-6676-3989
0000-0002-3570-234X
ParticipantIDs crossref_primary_10_1016_j_engstruct_2025_120066
elsevier_sciencedirect_doi_10_1016_j_engstruct_2025_120066
PublicationCentury 2000
PublicationDate 2025-06-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peng, Zhang, Liu, Li (b24) 2022; 38
Li, Laima, Zhang, Li, Liu (b44) 2014; 124
Xu, Bi, Han, Li, Du (b11) 2019; 182
Németh, Geleji (b34) 2023; 51
Johnson, Baker, Spencer, Fujino (b39) 2007; 133
Bekdaş, Nigdeli (b31) 2013; 71
Hwang, Kim, Kim (b8) 2020; 16
Miguel, Lopez, Torii, Miguel, Beck (b28) 2016; 126
Ghaedi, Ibrahim, Adeli, Javanmardi (b16) 2017; 19
Ge, Zhao, Cao (b4) 2022; 220
Zahrai, Froozanfar (b26) 2019; 23
Wu, Kareem (b2) 2012; 6
Panakkat, Adeli (b30) 2009; 24
Fujino, Siringoringo (b1) 2013; 23
Dai, Xu, Gai (b12) 2020; 221
Dai, Xu, Yin, Gai, Luo (b21) 2019; 24
Chen, Liu, Zhao, Sun (b20) 2024; 57
Li, Laima, Ou, Zhao, Zhou, Yu, Li, Liu (b43) 2011; 33
Xu, Dai, Bi, Fang, Zhao (b25) 2022; 224
Krenk, Høgsberg (b37) 2014; 333
Li, Hu (b33) 2015; 52
Zhou, Ge, Yang, Liu, Du, Zhang (b22) 2019; 183
Kim, Kim, Hwang (b5) 2018; 28
Yang, Sedaghati, Esmailzadeh (b10) 2022; 28
Sun, Xu, Chen (b40) 2019; 196
Fujino, Kimura, Tanaka (b7) 2012
Krenk, Høgsberg (b38) 2016; 472
Gao, Deng, Yang, Chen (b9) 2021; 105
Luco, Turmo (b17) 2010; 30
Chen, Xu, Sun (b41) 2021; 491
Williams, Wittrick (b18) 1970; 12
Yu, Øiseth, Zhang, Xu, Hu (b36) 2023; 28
Zhao, Zheng, Wei, Jia, Liao, Li, Wei, Zhan, Zhang, Xiao (b6) 2021; 2
Siyuwj (b42) 2011
Hua, Huang, Chen (b19) 2019; 32
Dai, Xu, Xu, Yan, Chen (b13) 2022; 43
Song, Xiao, Jiang, Sun (b35) 2024; 303
Zhu, Xiong, Xiang, Huang, Li (b3) 2021; 219
Chen, Liu, Nagarajaiah, Sun, Zhao, Cui (b15) 2022; 271
Cao, Huang, Zhang, Hua, Chen, Wan (b14) 2023; 243
Khalid, Yusof, Joshani, Selamat, Joshani (b32) 2014; 29
Liu, Chen, Sun, Zhao, Cui, Guan (b23) 2023; 286
Xu, Fang, Zhang, Øiseth, Zhao, Ge (b27) 2023; 205
Fadel Miguel, Piva dos Santos (b29) 2021; 2021
Gao (10.1016/j.engstruct.2025.120066_b9) 2021; 105
Yang (10.1016/j.engstruct.2025.120066_b10) 2022; 28
Fujino (10.1016/j.engstruct.2025.120066_b1) 2013; 23
Miguel (10.1016/j.engstruct.2025.120066_b28) 2016; 126
Chen (10.1016/j.engstruct.2025.120066_b41) 2021; 491
Dai (10.1016/j.engstruct.2025.120066_b12) 2020; 221
Ghaedi (10.1016/j.engstruct.2025.120066_b16) 2017; 19
Zhao (10.1016/j.engstruct.2025.120066_b6) 2021; 2
Zhou (10.1016/j.engstruct.2025.120066_b22) 2019; 183
Sun (10.1016/j.engstruct.2025.120066_b40) 2019; 196
Li (10.1016/j.engstruct.2025.120066_b44) 2014; 124
Luco (10.1016/j.engstruct.2025.120066_b17) 2010; 30
Williams (10.1016/j.engstruct.2025.120066_b18) 1970; 12
Kim (10.1016/j.engstruct.2025.120066_b5) 2018; 28
Li (10.1016/j.engstruct.2025.120066_b43) 2011; 33
Johnson (10.1016/j.engstruct.2025.120066_b39) 2007; 133
Hwang (10.1016/j.engstruct.2025.120066_b8) 2020; 16
Peng (10.1016/j.engstruct.2025.120066_b24) 2022; 38
Yu (10.1016/j.engstruct.2025.120066_b36) 2023; 28
Fadel Miguel (10.1016/j.engstruct.2025.120066_b29) 2021; 2021
Hua (10.1016/j.engstruct.2025.120066_b19) 2019; 32
Zhu (10.1016/j.engstruct.2025.120066_b3) 2021; 219
Ge (10.1016/j.engstruct.2025.120066_b4) 2022; 220
Dai (10.1016/j.engstruct.2025.120066_b13) 2022; 43
Krenk (10.1016/j.engstruct.2025.120066_b37) 2014; 333
Song (10.1016/j.engstruct.2025.120066_b35) 2024; 303
Liu (10.1016/j.engstruct.2025.120066_b23) 2023; 286
Chen (10.1016/j.engstruct.2025.120066_b20) 2024; 57
Fujino (10.1016/j.engstruct.2025.120066_b7) 2012
Xu (10.1016/j.engstruct.2025.120066_b11) 2019; 182
Krenk (10.1016/j.engstruct.2025.120066_b38) 2016; 472
Chen (10.1016/j.engstruct.2025.120066_b15) 2022; 271
Panakkat (10.1016/j.engstruct.2025.120066_b30) 2009; 24
Khalid (10.1016/j.engstruct.2025.120066_b32) 2014; 29
Siyuwj (10.1016/j.engstruct.2025.120066_b42) 2011
Dai (10.1016/j.engstruct.2025.120066_b21) 2019; 24
Bekdaş (10.1016/j.engstruct.2025.120066_b31) 2013; 71
Li (10.1016/j.engstruct.2025.120066_b33) 2015; 52
Xu (10.1016/j.engstruct.2025.120066_b27) 2023; 205
Cao (10.1016/j.engstruct.2025.120066_b14) 2023; 243
Wu (10.1016/j.engstruct.2025.120066_b2) 2012; 6
Xu (10.1016/j.engstruct.2025.120066_b25) 2022; 224
Németh (10.1016/j.engstruct.2025.120066_b34) 2023; 51
Zahrai (10.1016/j.engstruct.2025.120066_b26) 2019; 23
References_xml – volume: 126
  start-page: 703
  year: 2016
  end-page: 711
  ident: b28
  article-title: Robust design optimization of TMDs in vehicle–bridge coupled vibration problems
  publication-title: Eng Struct
– volume: 183
  start-page: 1072
  year: 2019
  end-page: 1090
  ident: b22
  article-title: A nonlinear numerical scheme to simulate multiple wind effects on twin-box girder suspension bridges
  publication-title: Eng Struct
– volume: 29
  start-page: 221
  year: 2014
  end-page: 233
  ident: b32
  article-title: Nonlinear identification of a magneto-rheological damper based on dynamic neural networks
  publication-title: Comput. Aided Civ Infrastruct Eng
– volume: 182
  start-page: 101
  year: 2019
  end-page: 111
  ident: b11
  article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study
  publication-title: Eng Struct
– volume: 24
  start-page: 280
  year: 2009
  end-page: 292
  ident: b30
  article-title: Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators
  publication-title: Comput. Aided Civ Infrastruct Eng
– volume: 205
  year: 2023
  ident: b27
  article-title: Optimization of tuned mass dampers for multiple mode vortex-induced vibration mitigation in flexible structures: An application to multi-span continuous bridge
  publication-title: Mech Syst Signal Process
– volume: 71
  start-page: 68
  year: 2013
  end-page: 84
  ident: b31
  article-title: Mass ratio factor for optimum tuned mass damper strategies
  publication-title: Int J Mech Sci
– volume: 105
  year: 2021
  ident: b9
  article-title: Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach
  publication-title: J Fluids Struct
– volume: 30
  start-page: 769
  year: 2010
  end-page: 781
  ident: b17
  article-title: Linear vertical vibrations of suspension bridges: A review of continuum models and some new results
  publication-title: Soil Dyn Earthq Eng
– volume: 124
  start-page: 54
  year: 2014
  end-page: 67
  ident: b44
  article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge
  publication-title: J Wind Eng Ind Aerodyn
– volume: 271
  year: 2022
  ident: b15
  article-title: Vibration mitigation of long-span bridges with damped outriggers
  publication-title: Eng Struct
– volume: 243
  year: 2023
  ident: b14
  article-title: Discrete viscous dampers for multi-mode vortex-induced vibration control of long-span suspension bridges
  publication-title: J Wind Eng Ind Aerodyn
– volume: 51
  start-page: 1582
  year: 2023
  end-page: 1605
  ident: b34
  article-title: Modal truncation damping in reduced modal analysis of piecewise linear continuum structures
  publication-title: Mech Based Des Struct Mach
– volume: 224
  year: 2022
  ident: b25
  article-title: Multi-mode vortex-induced vibration control of long-span bridges by using distributed tuned mass damper inerters (DTMDIs)
  publication-title: J Wind Eng Ind Aerodyn
– volume: 19
  start-page: 3564
  year: 2017
  end-page: 3580
  ident: b16
  article-title: Invited review: Recent developments in vibration control of building and bridge structures
  publication-title: J Vibroeng.
– volume: 23
  start-page: 449
  year: 2019
  end-page: 466
  ident: b26
  article-title: Performance of passive and active MTMDs in seismic response of ahvaz cable-stayed bridge
  publication-title: Smart Struct Syst
– volume: 303
  year: 2024
  ident: b35
  article-title: Active-learning kriging-assisted robust design optimization of tuned mass dampers: Vibration mitigation of a steel-arch footbridge
  publication-title: Eng Struct
– volume: 2
  start-page: 1
  year: 2021
  end-page: 105
  ident: b6
  article-title: State-of-the-art and annual progress of bridge engineering in 2020
  publication-title: Adv Bridg Eng
– volume: 43
  start-page: 1807
  year: 2022
  end-page: 1818
  ident: b13
  article-title: Multiple tuned mass damper control of vortex-induced vibration in bridges based on failure probability
  publication-title: Structures
– volume: 38
  start-page: 1595
  year: 2022
  end-page: 1606
  ident: b24
  article-title: Parameters optimization and performance evaluation of multiple tuned mass dampers to mitigate the vortex-induced vibration of a long-span bridge
  publication-title: Structures
– volume: 491
  year: 2021
  ident: b41
  article-title: A component mode synthesis method for reduced-order modeling of cable networks in cable-stayed bridges
  publication-title: J Sound Vib
– year: 2012
  ident: b7
  article-title: Wind Resistant Design of Bridges in Japan: Developments and Practices
– volume: 57
  start-page: 22
  year: 2024
  end-page: 36
  ident: b20
  article-title: Vortex-induced vibration mitigation of long-span bridges with rotational damping: Concept and design of damped outriggers
  publication-title: China Civ Eng J
– volume: 28
  year: 2023
  ident: b36
  article-title: Tuned mass damper design for vortex-induced vibration control of a bridge: Influence of vortex-induced force model
  publication-title: J Bridg Eng
– volume: 16
  start-page: 84
  year: 2020
  end-page: 93
  ident: b8
  article-title: Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge
  publication-title: Struct Infrastruct Eng
– volume: 28
  start-page: 812
  year: 2022
  end-page: 836
  ident: b10
  article-title: Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review
  publication-title: J Vib Control
– volume: 32
  year: 2019
  ident: b19
  article-title: Multi-mode vertical vortex-induced vibration of suspension bridges and control strategy
  publication-title: China J Highw Transp
– volume: 286
  year: 2023
  ident: b23
  article-title: Multimode damping optimization of a long-span suspension bridge with damped outriggers for suppressing vortex-induced vibrations
  publication-title: Eng Struct
– volume: 472
  year: 2016
  ident: b38
  article-title: Tuned resonant mass or inerter-based absorbers: Unified calibration with quasi-dynamic flexibility and inertia correction
  publication-title: Proc R Soc A: Math Phys Eng Sci
– volume: 28
  start-page: 308
  year: 2018
  end-page: 317
  ident: b5
  article-title: Enhanced damping estimation for cable-stayed bridges based on operational monitoring data
  publication-title: Struct Eng Int
– volume: 196
  year: 2019
  ident: b40
  article-title: Damping effects of nonlinear dampers on a shallow cable
  publication-title: Eng Struct
– volume: 52
  start-page: 46
  year: 2015
  end-page: 59
  ident: b33
  article-title: Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems
  publication-title: Mech Syst Signal Process
– volume: 2021
  year: 2021
  ident: b29
  article-title: Optimization of multiple tuned mass dampers for road bridges taking into account bridge-vehicle interaction, random pavement roughness, and uncertainties
  publication-title: Shock Vib
– volume: 333
  start-page: 1577
  year: 2014
  end-page: 1595
  ident: b37
  article-title: Tuned mass absorber on a flexible structure
  publication-title: J Sound Vib
– volume: 12
  start-page: 781
  year: 1970
  end-page: 791
  ident: b18
  article-title: An automatic computational procedure for calculating natural frequencies of skeletal structures
  publication-title: Int J Mech Sci
– volume: 219
  year: 2021
  ident: b3
  article-title: Ride comfort evaluation of stochastic traffic flow crossing long-span suspension bridge experiencing vortex-induced vibration
  publication-title: J Wind Eng Ind Aerodyn
– volume: 220
  year: 2022
  ident: b4
  article-title: Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge
  publication-title: J Wind Eng Ind Aerodyn
– volume: 133
  start-page: 1
  year: 2007
  end-page: 11
  ident: b39
  article-title: Semiactive damping of stay cables
  publication-title: J Eng Mech
– volume: 33
  start-page: 1894
  year: 2011
  end-page: 1907
  ident: b43
  article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements
  publication-title: Eng Struct
– volume: 23
  start-page: 248
  year: 2013
  end-page: 268
  ident: b1
  article-title: Vibration mechanisms and controls of long-span bridges: A review
  publication-title: Struct Eng Int
– volume: 221
  year: 2020
  ident: b12
  article-title: Parameter determination of the tuned mass damper mitigating the vortex-induced vibration in bridges
  publication-title: Eng Struct
– volume: 24
  year: 2019
  ident: b21
  article-title: Parameters design of TMD mitigating vortex-induced vibration of the Hong Kong–Zhuhai–Macao bridge deep-water nonnavigable bridge
  publication-title: J Bridg Eng
– volume: 6
  start-page: 335
  year: 2012
  end-page: 347
  ident: b2
  article-title: An overview of vortex-induced vibration (VIV) of bridge decks
  publication-title: Front Struct Civ Eng
– year: 2011
  ident: b42
  article-title: Xihoumen bridge in Zhoushan
– volume: 43
  start-page: 1807
  year: 2022
  ident: 10.1016/j.engstruct.2025.120066_b13
  article-title: Multiple tuned mass damper control of vortex-induced vibration in bridges based on failure probability
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.07.028
– volume: 271
  year: 2022
  ident: 10.1016/j.engstruct.2025.120066_b15
  article-title: Vibration mitigation of long-span bridges with damped outriggers
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114873
– volume: 205
  issn: 0888-3270
  year: 2023
  ident: 10.1016/j.engstruct.2025.120066_b27
  article-title: Optimization of tuned mass dampers for multiple mode vortex-induced vibration mitigation in flexible structures: An application to multi-span continuous bridge
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110857
– volume: 220
  year: 2022
  ident: 10.1016/j.engstruct.2025.120066_b4
  article-title: Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2021.104866
– volume: 32
  issue: 10
  year: 2019
  ident: 10.1016/j.engstruct.2025.120066_b19
  article-title: Multi-mode vertical vortex-induced vibration of suspension bridges and control strategy
  publication-title: China J Highw Transp
– volume: 38
  start-page: 1595
  year: 2022
  ident: 10.1016/j.engstruct.2025.120066_b24
  article-title: Parameters optimization and performance evaluation of multiple tuned mass dampers to mitigate the vortex-induced vibration of a long-span bridge
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.01.012
– volume: 28
  start-page: 812
  issue: 7–8
  year: 2022
  ident: 10.1016/j.engstruct.2025.120066_b10
  article-title: Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review
  publication-title: J Vib Control
  doi: 10.1177/1077546320984305
– volume: 57
  start-page: 22
  issue: 7
  year: 2024
  ident: 10.1016/j.engstruct.2025.120066_b20
  article-title: Vortex-induced vibration mitigation of long-span bridges with rotational damping: Concept and design of damped outriggers
  publication-title: China Civ Eng J
– volume: 224
  year: 2022
  ident: 10.1016/j.engstruct.2025.120066_b25
  article-title: Multi-mode vortex-induced vibration control of long-span bridges by using distributed tuned mass damper inerters (DTMDIs)
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2022.104970
– volume: 124
  start-page: 54
  issn: 0167-6105
  year: 2014
  ident: 10.1016/j.engstruct.2025.120066_b44
  article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2013.11.006
– volume: 52
  start-page: 46
  year: 2015
  ident: 10.1016/j.engstruct.2025.120066_b33
  article-title: Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.07.003
– volume: 16
  start-page: 84
  issue: 1
  year: 2020
  ident: 10.1016/j.engstruct.2025.120066_b8
  article-title: Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2019.1604771
– volume: 196
  year: 2019
  ident: 10.1016/j.engstruct.2025.120066_b40
  article-title: Damping effects of nonlinear dampers on a shallow cable
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109305
– volume: 71
  start-page: 68
  year: 2013
  ident: 10.1016/j.engstruct.2025.120066_b31
  article-title: Mass ratio factor for optimum tuned mass damper strategies
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2013.03.014
– volume: 51
  start-page: 1582
  issue: 3
  year: 2023
  ident: 10.1016/j.engstruct.2025.120066_b34
  article-title: Modal truncation damping in reduced modal analysis of piecewise linear continuum structures
  publication-title: Mech Based Des Struct Mach
  doi: 10.1080/15397734.2021.1874414
– year: 2011
  ident: 10.1016/j.engstruct.2025.120066_b42
– volume: 33
  start-page: 1894
  issn: 0141-0296
  issue: 6
  year: 2011
  ident: 10.1016/j.engstruct.2025.120066_b43
  article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.02.017
– volume: 6
  start-page: 335
  year: 2012
  ident: 10.1016/j.engstruct.2025.120066_b2
  article-title: An overview of vortex-induced vibration (VIV) of bridge decks
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-012-0179-1
– volume: 126
  start-page: 703
  year: 2016
  ident: 10.1016/j.engstruct.2025.120066_b28
  article-title: Robust design optimization of TMDs in vehicle–bridge coupled vibration problems
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.08.033
– volume: 286
  issn: 0141-0296
  year: 2023
  ident: 10.1016/j.engstruct.2025.120066_b23
  article-title: Multimode damping optimization of a long-span suspension bridge with damped outriggers for suppressing vortex-induced vibrations
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.115959
– volume: 29
  start-page: 221
  issue: 3
  year: 2014
  ident: 10.1016/j.engstruct.2025.120066_b32
  article-title: Nonlinear identification of a magneto-rheological damper based on dynamic neural networks
  publication-title: Comput. Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12005
– volume: 24
  issue: 8
  year: 2019
  ident: 10.1016/j.engstruct.2025.120066_b21
  article-title: Parameters design of TMD mitigating vortex-induced vibration of the Hong Kong–Zhuhai–Macao bridge deep-water nonnavigable bridge
  publication-title: J Bridg Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001450
– volume: 303
  year: 2024
  ident: 10.1016/j.engstruct.2025.120066_b35
  article-title: Active-learning kriging-assisted robust design optimization of tuned mass dampers: Vibration mitigation of a steel-arch footbridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.117502
– volume: 28
  issue: 5
  year: 2023
  ident: 10.1016/j.engstruct.2025.120066_b36
  article-title: Tuned mass damper design for vortex-induced vibration control of a bridge: Influence of vortex-induced force model
  publication-title: J Bridg Eng
  doi: 10.1061/JBENF2.BEENG-5958
– volume: 133
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.engstruct.2025.120066_b39
  article-title: Semiactive damping of stay cables
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2007)133:1(1)
– volume: 491
  year: 2021
  ident: 10.1016/j.engstruct.2025.120066_b41
  article-title: A component mode synthesis method for reduced-order modeling of cable networks in cable-stayed bridges
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2020.115769
– volume: 219
  year: 2021
  ident: 10.1016/j.engstruct.2025.120066_b3
  article-title: Ride comfort evaluation of stochastic traffic flow crossing long-span suspension bridge experiencing vortex-induced vibration
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2021.104794
– volume: 105
  year: 2021
  ident: 10.1016/j.engstruct.2025.120066_b9
  article-title: Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2021.103348
– volume: 333
  start-page: 1577
  issn: 0022-460X
  issue: 6
  year: 2014
  ident: 10.1016/j.engstruct.2025.120066_b37
  article-title: Tuned mass absorber on a flexible structure
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2013.11.029
– volume: 472
  issue: 2185
  year: 2016
  ident: 10.1016/j.engstruct.2025.120066_b38
  article-title: Tuned resonant mass or inerter-based absorbers: Unified calibration with quasi-dynamic flexibility and inertia correction
  publication-title: Proc R Soc A: Math Phys Eng Sci
  doi: 10.1098/rspa.2015.0718
– volume: 243
  issn: 0167-6105
  year: 2023
  ident: 10.1016/j.engstruct.2025.120066_b14
  article-title: Discrete viscous dampers for multi-mode vortex-induced vibration control of long-span suspension bridges
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2023.105612
– volume: 182
  start-page: 101
  year: 2019
  ident: 10.1016/j.engstruct.2025.120066_b11
  article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.12.067
– volume: 12
  start-page: 781
  issue: 9
  year: 1970
  ident: 10.1016/j.engstruct.2025.120066_b18
  article-title: An automatic computational procedure for calculating natural frequencies of skeletal structures
  publication-title: Int J Mech Sci
  doi: 10.1016/0020-7403(70)90053-6
– volume: 23
  start-page: 248
  issue: 3
  year: 2013
  ident: 10.1016/j.engstruct.2025.120066_b1
  article-title: Vibration mechanisms and controls of long-span bridges: A review
  publication-title: Struct Eng Int
  doi: 10.2749/101686613X13439149156886
– volume: 19
  start-page: 3564
  issue: 5
  year: 2017
  ident: 10.1016/j.engstruct.2025.120066_b16
  article-title: Invited review: Recent developments in vibration control of building and bridge structures
  publication-title: J Vibroeng.
  doi: 10.21595/jve.2017.18900
– volume: 183
  start-page: 1072
  issn: 0141-0296
  year: 2019
  ident: 10.1016/j.engstruct.2025.120066_b22
  article-title: A nonlinear numerical scheme to simulate multiple wind effects on twin-box girder suspension bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.11.040
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.engstruct.2025.120066_b6
  article-title: State-of-the-art and annual progress of bridge engineering in 2020
  publication-title: Adv Bridg Eng
  doi: 10.1186/s43251-021-00050-x
– volume: 30
  start-page: 769
  issue: 9
  year: 2010
  ident: 10.1016/j.engstruct.2025.120066_b17
  article-title: Linear vertical vibrations of suspension bridges: A review of continuum models and some new results
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2009.10.009
– volume: 221
  issn: 0141-0296
  year: 2020
  ident: 10.1016/j.engstruct.2025.120066_b12
  article-title: Parameter determination of the tuned mass damper mitigating the vortex-induced vibration in bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111084
– volume: 28
  start-page: 308
  issue: 3
  year: 2018
  ident: 10.1016/j.engstruct.2025.120066_b5
  article-title: Enhanced damping estimation for cable-stayed bridges based on operational monitoring data
  publication-title: Struct Eng Int
  doi: 10.1080/10168664.2018.1462132
– volume: 2021
  issue: 1
  year: 2021
  ident: 10.1016/j.engstruct.2025.120066_b29
  article-title: Optimization of multiple tuned mass dampers for road bridges taking into account bridge-vehicle interaction, random pavement roughness, and uncertainties
  publication-title: Shock Vib
– volume: 24
  start-page: 280
  issue: 4
  year: 2009
  ident: 10.1016/j.engstruct.2025.120066_b30
  article-title: Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators
  publication-title: Comput. Aided Civ Infrastruct Eng
  doi: 10.1111/j.1467-8667.2009.00595.x
– year: 2012
  ident: 10.1016/j.engstruct.2025.120066_b7
– volume: 23
  start-page: 449
  issue: 5
  year: 2019
  ident: 10.1016/j.engstruct.2025.120066_b26
  article-title: Performance of passive and active MTMDs in seismic response of ahvaz cable-stayed bridge
  publication-title: Smart Struct Syst
SSID ssj0002880
Score 2.4580424
Snippet Long-span bridges, especially suspension bridges, are highly vulnerable to wind-induced vibrations, such as vortex-induced vibrations (VIVs), which necessitate...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 120066
SubjectTerms Dampers
Long-span bridges
Modal truncation method
Quasi-static correction
Vibration control
Vortex-induced vibrations
Title Dynamic analysis of long-span bridges with vibration control systems: A novel reduced-order model and comparative study
URI https://dx.doi.org/10.1016/j.engstruct.2025.120066
Volume 333
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXvRg_BnxB-nBa2Eba7dyIyhBjVyUhNuylo5gyEaU4M2_3fe6TiAx8eBxS7ssr93X762v30fILc9MCKCnIC2JIUFJtWYqVop5UsMU8mMpNCaKzyMxHIePEz6pkX51FgbLKh32l5hu0drdabtotpfzefvFligGEgg88pIIcTgMI9TPb31tyjyC2LqnYWOGrXdqvEw-K2VaIVEMeMu3OxG_r1Bbq87giBw6ukh75Rsdk5rJT8jBlojgKfm8K03laer0RWiR0UWRzxiARU6djgPFH650jckxDgV1Jeq0VHL-6NIezYu1WdB31HI1U2Y1Oak1yoEnT6neyIRTq0l7RsaD-9f-kDk7BaYD0VkxrmUgtOoEQKoibXiEFg9pJjvK91I8HyvQdt7TRiohwkwpSJ0irrKOkDxFd9BzUs-L3FwQKoRnhG-UgO8fGF2USiBuEbA13FYMY94gXhXCZFmqZiRVOdlb8hP1BKOelFFvkG4V6mRnAiSA7X91vvxP5yuyj1dY_-Xza1KHBuYGmMZKNe1UapK93sPTcPQNjwzTug
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b8IwELUQDG2Hqp8q_fTQNSUJsZOwIVoUysdSkNis2DiICiWoRfTv9y5xKEiVOnRN7Ci6nJ7fxef3CHlkifYA9CSUJQEUKLFSlgyktOxQQQo5QcgVForDEY8m3uuUTSukU56FwbZKg_0Fpudoba40TDQbq8Wi8Za3KLohEHjkJT7gcA3VqSDZa-1ePxptAdkNcgM1HG_hhL02L53OC6VWqBVd9uTkmxG_L1I7C0_3hBwbxkjbxUudkopOz8jRjo7gOfl6LnzlaWwkRmiW0GWWzi3Ai5QaKQeK_1zpButj_BrUdKnTQsz5s0XbNM02ekk_UM5Vz6xclpPmXjnw5BlVP0rhNJelvSCT7su4E1nGUcFSLm-uLaZClyvZdIFX-UozH10e4iRsSseO8YgsR-d5W-lQcu4lUkL15DOZNHnIYjQIvSTVNEv1FaGc25o7WnKAACB1fhwCd_OBsOHOohewOrHLEIpVIZwhyo6yd7GNusCoiyLqddIqQy32ckAAvP81-fo_kx_IQTQeDsSgN-rfkEO8g-1gDrslVRis74B4rOW9Saxv3JXWaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+analysis+of+long-span+bridges+with+vibration+control+systems%3A+A+novel+reduced-order+model+and+comparative+study&rft.jtitle=Engineering+structures&rft.au=Liu%2C+Zhanhang&rft.au=Sun%2C+Limin&rft.au=Chen%2C+Lin&rft.au=El+Damatty%2C+Ashraf&rft.date=2025-06-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=333&rft_id=info:doi/10.1016%2Fj.engstruct.2025.120066&rft.externalDocID=S0141029625004572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon