Beyond Frame-level CNN: Saliency-Aware 3-D CNN With LSTM for Video Action Recognition

Human activity recognition in videos with convolutional neural network (CNN) features has received increasing attention in multimedia understanding. Taking videos as a sequence of frames, a new record was recently set on several benchmark datasets by feeding frame-level CNN sequence features to long...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 24; no. 4; pp. 510 - 514
Main Authors Wang, Xuanhan, Gao, Lianli, Song, Jingkuan, Shen, Hengtao
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2017
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2016.2611485

Cover

Loading…
Abstract Human activity recognition in videos with convolutional neural network (CNN) features has received increasing attention in multimedia understanding. Taking videos as a sequence of frames, a new record was recently set on several benchmark datasets by feeding frame-level CNN sequence features to long short-term memory (LSTM) model for video activity recognition. This recurrent model-based visual recognition pipeline is a natural choice for perceptual problems with time-varying visual input or sequential outputs. However, the above-mentioned pipeline takes frame-level CNN sequence features as input for LSTM, which may fail to capture the rich motion information from adjacent frames or maybe multiple clips. Furthermore, an activity is conducted by a subject or multiple subjects. It is important to consider attention that allows for salient features, instead of mapping an entire frame into a static representation. To tackle these issues, we propose a novel pipeline, saliency-aware three-dimensional (3-D) CNN with LSTM, for video action recognition by integrating LSTM with salient-aware deep 3-D CNN features on videos shots. Specifically, we first apply saliency-aware methods to generate saliency-aware videos. Then, we design an end-to-end pipeline by integrating 3-D CNN with LSTM, followed by a time series pooling layer and a softmax layer to predict the activities. Noticeably, we set a new record on two benchmark datasets, i.e., UCF101 with 13 320 videos and HMDB-51 with 6766 videos. Our method outperforms the state-of-the-art end-to-end methods of action recognition by 3.8% and 3.2%, respectively on above two datasets.
AbstractList Human activity recognition in videos with convolutional neural network (CNN) features has received increasing attention in multimedia understanding. Taking videos as a sequence of frames, a new record was recently set on several benchmark datasets by feeding frame-level CNN sequence features to long short-term memory (LSTM) model for video activity recognition. This recurrent model-based visual recognition pipeline is a natural choice for perceptual problems with time-varying visual input or sequential outputs. However, the above-mentioned pipeline takes frame-level CNN sequence features as input for LSTM, which may fail to capture the rich motion information from adjacent frames or maybe multiple clips. Furthermore, an activity is conducted by a subject or multiple subjects. It is important to consider attention that allows for salient features, instead of mapping an entire frame into a static representation. To tackle these issues, we propose a novel pipeline, saliency-aware three-dimensional (3-D) CNN with LSTM, for video action recognition by integrating LSTM with salient-aware deep 3-D CNN features on videos shots. Specifically, we first apply saliency-aware methods to generate saliency-aware videos. Then, we design an end-to-end pipeline by integrating 3-D CNN with LSTM, followed by a time series pooling layer and a softmax layer to predict the activities. Noticeably, we set a new record on two benchmark datasets, i.e., UCF101 with 13 320 videos and HMDB-51 with 6766 videos. Our method outperforms the state-of-the-art end-to-end methods of action recognition by 3.8% and 3.2%, respectively on above two datasets.
Author Xuanhan Wang
Hengtao Shen
Jingkuan Song
Lianli Gao
Author_xml – sequence: 1
  givenname: Xuanhan
  surname: Wang
  fullname: Wang, Xuanhan
– sequence: 2
  givenname: Lianli
  surname: Gao
  fullname: Gao, Lianli
– sequence: 3
  givenname: Jingkuan
  surname: Song
  fullname: Song, Jingkuan
– sequence: 4
  givenname: Hengtao
  surname: Shen
  fullname: Shen, Hengtao
BookMark eNp9kMFOwzAMhiMEEtvgjsQlL9ARp0machuDAdIYiG1wrJLUhaCuRWkF2tvTahMHDlzsX5Y-2_qG5LCqKyTkDNgYgKUX8-XTmDNQY64AhJYHZABS6ojHCg67zBIWpSnTx2TYNB-MMQ1aDsj6Crd1ldNZMBuMSvzCkk4Xi0u6NKXHym2jybcJSOPoup_TV9--0_ly9UCLOtAXn2NNJ671dUWf0dVvle_zCTkqTNng6b6PyHp2s5reRfPH2_vpZB45ruI2kkkuHGgF3CZWaptoJiQvEtFVgQJACodKWJuy3IDiRZGo2AFaprixysYjwnZ7XaibJmCRfQa_MWGbAct6LVmnJeu1ZHstHaL-IM63pn-6DcaX_4HnO9Aj4u-dRCYcdBz_APKNbss
CODEN ISPLEM
CitedBy_id crossref_primary_10_1016_j_media_2018_05_001
crossref_primary_10_1049_cvi2_12013
crossref_primary_10_1109_TPAMI_2022_3183112
crossref_primary_10_3389_fninf_2018_00035
crossref_primary_10_3390_app10155326
crossref_primary_10_1177_09544070241265633
crossref_primary_10_3390_s23115133
crossref_primary_10_1142_S0219519422400516
crossref_primary_10_1016_j_artmed_2020_101936
crossref_primary_10_3389_fpsyg_2020_575971
crossref_primary_10_1007_s11042_019_07800_0
crossref_primary_10_1016_j_isprsjprs_2020_01_003
crossref_primary_10_1109_ACCESS_2024_3479718
crossref_primary_10_1109_TNNLS_2020_2978613
crossref_primary_10_1109_TCYB_2017_2734946
crossref_primary_10_1007_s11042_017_5238_0
crossref_primary_10_1109_JSEN_2018_2810449
crossref_primary_10_3390_fi11020042
crossref_primary_10_1016_j_asoc_2021_107433
crossref_primary_10_1109_ACCESS_2020_2976496
crossref_primary_10_3389_fnins_2020_590164
crossref_primary_10_1007_s10489_020_01688_2
crossref_primary_10_1007_s11063_018_9812_x
crossref_primary_10_1109_JSEN_2019_2956901
crossref_primary_10_1109_LRA_2021_3059624
crossref_primary_10_3390_jimaging9040082
crossref_primary_10_1016_j_neucom_2020_06_008
crossref_primary_10_1109_ACCESS_2022_3165977
crossref_primary_10_1007_s00521_019_04232_7
crossref_primary_10_1016_j_jneumeth_2019_05_006
crossref_primary_10_1007_s11042_019_08205_9
crossref_primary_10_1109_ACCESS_2023_3293813
crossref_primary_10_1109_ACCESS_2020_3033190
crossref_primary_10_1007_s11265_025_01952_z
crossref_primary_10_1016_j_neucom_2018_09_049
crossref_primary_10_1109_TIFS_2020_3036242
crossref_primary_10_1016_j_chb_2023_108038
crossref_primary_10_1109_TEMC_2021_3131670
crossref_primary_10_1007_s11042_018_5642_0
crossref_primary_10_1049_iet_ipr_2018_6581
crossref_primary_10_1088_1742_6596_2278_1_012004
crossref_primary_10_3390_en14092392
crossref_primary_10_3390_rs13193876
crossref_primary_10_3390_s20205957
crossref_primary_10_3390_app8122417
crossref_primary_10_1007_s11042_019_08453_9
crossref_primary_10_1007_s10489_021_02924_z
crossref_primary_10_1109_ACCESS_2021_3110610
crossref_primary_10_2147_IJGM_S408725
crossref_primary_10_1016_j_jvcir_2021_103112
crossref_primary_10_1109_JSEN_2022_3163449
crossref_primary_10_1109_TMM_2018_2875512
crossref_primary_10_1109_ACCESS_2018_2880494
crossref_primary_10_1007_s11042_020_08609_y
crossref_primary_10_1016_j_neucom_2018_11_102
crossref_primary_10_1016_j_neucom_2019_07_082
crossref_primary_10_1007_s10462_022_10148_x
crossref_primary_10_1016_j_media_2021_102008
crossref_primary_10_3390_app10093166
crossref_primary_10_1049_ipr2_12640
crossref_primary_10_1109_LGRS_2021_3086136
crossref_primary_10_1016_j_neucom_2020_03_111
crossref_primary_10_1016_j_neucom_2019_05_027
crossref_primary_10_3390_a16080369
crossref_primary_10_1109_ACCESS_2019_2897060
crossref_primary_10_1007_s11042_020_09530_0
crossref_primary_10_1109_TIP_2020_3021294
crossref_primary_10_1016_j_mineng_2021_107068
crossref_primary_10_1109_TMM_2021_3066775
crossref_primary_10_3390_e22101174
crossref_primary_10_1007_s10462_020_09825_6
crossref_primary_10_1007_s11042_018_6088_0
crossref_primary_10_1016_j_patcog_2020_107477
crossref_primary_10_1109_TMM_2020_2991513
crossref_primary_10_1007_s11042_019_07895_5
crossref_primary_10_1007_s11042_019_07984_5
crossref_primary_10_3233_IDT_230469
crossref_primary_10_1109_TIP_2020_2989864
crossref_primary_10_1109_ACCESS_2021_3096240
crossref_primary_10_1016_j_jvcir_2020_102769
crossref_primary_10_1109_LSP_2018_2823910
crossref_primary_10_3390_electronics10202470
crossref_primary_10_1109_ACCESS_2021_3132668
crossref_primary_10_1007_s00500_023_09044_5
crossref_primary_10_1007_s11042_020_09589_9
crossref_primary_10_1007_s11042_018_5801_3
crossref_primary_10_1109_MAES_2021_3140064
crossref_primary_10_3390_jimaging9070130
crossref_primary_10_1177_15589250221077267
crossref_primary_10_1109_LSP_2023_3267975
crossref_primary_10_3233_JIFS_230170
crossref_primary_10_1007_s11042_019_7168_5
crossref_primary_10_1016_j_neucom_2018_10_095
crossref_primary_10_1016_j_neucom_2018_09_086
crossref_primary_10_3390_app13063403
crossref_primary_10_1016_j_ins_2023_03_058
crossref_primary_10_1109_TMM_2017_2777665
crossref_primary_10_1186_s13640_020_00544_0
crossref_primary_10_1007_s11042_019_7270_8
crossref_primary_10_1016_j_neucom_2018_06_096
crossref_primary_10_3390_electronics13122291
crossref_primary_10_3390_w16233390
crossref_primary_10_4018_IJICTE_315743
crossref_primary_10_1007_s42979_021_00775_6
crossref_primary_10_1016_j_image_2019_08_009
crossref_primary_10_1007_s11042_019_07929_y
crossref_primary_10_1007_s00521_019_04605_y
crossref_primary_10_1007_s11280_018_0642_6
crossref_primary_10_1016_j_ins_2021_07_079
crossref_primary_10_1109_ACCESS_2020_2983427
crossref_primary_10_1109_JSTARS_2022_3162953
crossref_primary_10_1007_s00521_020_05144_7
crossref_primary_10_1109_TCSVT_2018_2870832
crossref_primary_10_1016_j_asoc_2022_109884
crossref_primary_10_1016_j_oceaneng_2022_111683
crossref_primary_10_1007_s10489_021_02329_y
crossref_primary_10_3390_s21093099
crossref_primary_10_1016_j_dsp_2018_03_021
crossref_primary_10_1007_s11042_019_08493_1
crossref_primary_10_1109_ACCESS_2021_3083064
crossref_primary_10_1109_JSEN_2023_3329491
crossref_primary_10_1016_j_mri_2021_02_001
crossref_primary_10_1016_j_neuroimage_2019_116459
crossref_primary_10_1049_trit_2018_1025
crossref_primary_10_1155_2020_3062706
crossref_primary_10_1007_s11042_018_6653_6
crossref_primary_10_1016_j_infrared_2019_103014
crossref_primary_10_1016_j_engappai_2020_103758
crossref_primary_10_3390_app14010230
crossref_primary_10_1088_1757_899X_768_7_072014
crossref_primary_10_1007_s11042_017_5020_3
crossref_primary_10_1109_TCSVT_2019_2909427
crossref_primary_10_1007_s11042_019_7180_9
crossref_primary_10_1007_s11063_019_10091_z
crossref_primary_10_3390_ijerph19031744
crossref_primary_10_1016_j_eswa_2019_112847
crossref_primary_10_1007_s11042_018_6959_4
crossref_primary_10_1109_JSEN_2021_3071884
crossref_primary_10_1109_TNNLS_2022_3175480
crossref_primary_10_1016_j_engappai_2022_105581
crossref_primary_10_1016_j_chemolab_2020_104143
crossref_primary_10_3390_s23146384
crossref_primary_10_1109_JSEN_2020_3016968
crossref_primary_10_1007_s11042_018_7068_0
crossref_primary_10_1007_s42979_021_00484_0
crossref_primary_10_1145_3355394
crossref_primary_10_1155_2022_9506418
crossref_primary_10_3390_rs11060654
crossref_primary_10_1109_TNNLS_2020_2986823
crossref_primary_10_3390_app13169059
crossref_primary_10_1007_s11042_018_7083_1
crossref_primary_10_1017_S0263574721000801
crossref_primary_10_1142_S0129065722500344
crossref_primary_10_1016_j_apor_2022_103330
crossref_primary_10_1155_2022_6246842
crossref_primary_10_1007_s11042_020_09173_1
crossref_primary_10_1016_j_ecoinf_2020_101089
crossref_primary_10_1109_LSP_2017_2690339
crossref_primary_10_1142_S0219467824500554
crossref_primary_10_1007_s11042_021_11093_7
crossref_primary_10_1016_j_desal_2021_115233
crossref_primary_10_1016_j_egyr_2022_09_071
crossref_primary_10_1007_s00521_020_05332_5
crossref_primary_10_1016_j_ress_2020_107032
crossref_primary_10_1007_s10489_018_1395_8
crossref_primary_10_1080_13682199_2023_2166193
crossref_primary_10_1109_ACCESS_2018_2889556
Cites_doi 10.1109/CVPR.2014.223
10.1109/CVPR.2015.7298935
10.1007/s00530-015-0494-1
10.1109/TBC.2016.2580920
10.1109/ICCV.2015.522
10.1145/1291233.1291311
10.1002/sec.1582
10.1109/CVPR.2015.7298691
10.1109/TCYB.2015.2403356
10.1109/TKDE.2010.99
10.1109/TPAMI.2016.2577031
10.1109/TPAMI.2012.59
10.1109/CVPR.2008.4587756
10.1109/VSPETS.2005.1570899
10.1109/CVPR.2015.7298961
10.1109/TIP.2016.2601260
10.1109/CVPR.2015.7298878
10.1109/ICCV.2013.441
10.1109/TBC.2015.2419824
10.1109/ICCV.2015.510
10.1109/CVPR.2015.7299066
10.1109/TIP.2014.2332764
10.1016/j.neucom.2015.08.115
10.1109/ICCV.2011.6126543
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LSP.2016.2611485
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 514
ExternalDocumentID 10_1109_LSP_2016_2611485
7572183
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61502080
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYGX2014J063
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c263t-57d4c18612b7b58b780452f744524e41154ce64bb90da162ff763c1eb062ab6b3
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 00:42:14 EDT 2025
Tue Aug 26 16:58:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-57d4c18612b7b58b780452f744524e41154ce64bb90da162ff763c1eb062ab6b3
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LSP_2016_2611485
ieee_primary_7572183
crossref_primary_10_1109_LSP_2016_2611485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-April
2017-4-00
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
zhu (ref28) 2016
ref15
ref14
ref31
ref30
zeiler (ref25) 0
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref19
graves (ref6) 0
ref24
sutskever (ref20) 2014
ref23
ref26
ref22
ref21
ng (ref12) 0
ref27
simonyan (ref16) 0
ref29
ref8
ref7
ref4
ref3
gao (ref5) 0
krizhevsky (ref9) 2012
soomro (ref18) 2012
References_xml – ident: ref8
  doi: 10.1109/CVPR.2014.223
– start-page: 1764
  year: 0
  ident: ref6
  article-title: Towards end-to-end speech recognition with recurrent neural networks
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref22
  doi: 10.1109/CVPR.2015.7298935
– ident: ref3
  doi: 10.1007/s00530-015-0494-1
– ident: ref32
  doi: 10.1109/TBC.2016.2580920
– start-page: 818
  year: 0
  ident: ref25
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc 13th Eur Conf Comput Vis
– ident: ref19
  doi: 10.1109/ICCV.2015.522
– ident: ref15
  doi: 10.1145/1291233.1291311
– ident: ref31
  doi: 10.1002/sec.1582
– ident: ref14
  doi: 10.1109/CVPR.2015.7298691
– start-page: 3104
  year: 2014
  ident: ref20
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural IInformation Processing Systems
– start-page: 4694
  year: 0
  ident: ref12
  article-title: Beyond short snippets: Deep networks for video classification
  publication-title: Proc 2015 IEEE Conf Comput Vis Pattern Recog
– ident: ref27
  doi: 10.1109/TCYB.2015.2403356
– ident: ref30
  doi: 10.1109/TKDE.2010.99
– start-page: 1188
  year: 0
  ident: ref5
  article-title: Graph-without-cut: An ideal graph learning for image segmentation
  publication-title: Proc 13th AAAI Conf Artif Intell Phoenix Arizona USA
– ident: ref13
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref7
  doi: 10.1109/TPAMI.2012.59
– start-page: 1097
  year: 2012
  ident: ref9
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems 25
– ident: ref11
  doi: 10.1109/CVPR.2008.4587756
– year: 2016
  ident: ref28
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans Neural Netw Learning Syst
– ident: ref1
  doi: 10.1109/VSPETS.2005.1570899
– ident: ref24
  doi: 10.1109/CVPR.2015.7298961
– ident: ref17
  doi: 10.1109/TIP.2016.2601260
– ident: ref2
  doi: 10.1109/CVPR.2015.7298878
– ident: ref23
  doi: 10.1109/ICCV.2013.441
– ident: ref33
  doi: 10.1109/TBC.2015.2419824
– ident: ref21
  doi: 10.1109/ICCV.2015.510
– ident: ref4
  doi: 10.1109/CVPR.2015.7299066
– ident: ref29
  doi: 10.1109/TIP.2014.2332764
– start-page: 568
  year: 0
  ident: ref16
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Proc Neural Inform Process Syst
– ident: ref26
  doi: 10.1016/j.neucom.2015.08.115
– year: 2012
  ident: ref18
  article-title: UCF101: A dataset of 101 human actions classes from videos in the wild
  publication-title: CoRR
– ident: ref10
  doi: 10.1109/ICCV.2011.6126543
SSID ssj0008185
Score 2.5674927
Snippet Human activity recognition in videos with convolutional neural network (CNN) features has received increasing attention in multimedia understanding. Taking...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 510
SubjectTerms Action recognition
Computer architecture
deep learning
Image recognition
LSTM
Microprocessors
Pipelines
saliency-aware
three-dimensional (3-D) convolution
Three-dimensional displays
Time series analysis
Visualization
Title Beyond Frame-level CNN: Saliency-Aware 3-D CNN With LSTM for Video Action Recognition
URI https://ieeexplore.ieee.org/document/7572183
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zT_rgbYrzRh58EUzXdWnS-jamY8g2xG26t5KkKQ5HK6ND8Neb0xtTRHwpJSQlJOGc7zTf-Q5CV5Tb2nOEJuCsCfVB8laGnDBXRZFPKeUScodHYzaY0Ye5O6-hmyoXRmudkc-0Ba_ZXX6YqDX8Kmtxl4NH30JbJnDLc7UqqwuOJ-cX2sRYWK-8krT91nDyCBwuZplowaB_95sL2qipkrmU_h4alZPJmSRv1jqVlvr8odP439nuo90CW-JufhgOUE3Hh2hnQ3GwgWZ5xgruAyeLLIExhHvj8S2eGDwOWZik-yFWGnfIHbTjl0X6ioeT6QgbcIufF6FOcDdLhcBPJfUoiY_QrH8_7Q1IUVmBKId1UuLykKq2Z9CN5NL1JKgQuU7EqXlSTUGiR2lGpfTtULSZE0XGDKm2ljZzhGSyc4zqcRLrE4R95kZcafOZLBxTQgohbQMbPcVk5IgmapWLHahCdhyqXyyDLPyw_cBsTwDbExTb00TX1Yj3XHLjj74NWPiqX7Hmp783n6FtB7xyRrw5R_V0tdYXBlOk8jI7TF9ErcTQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL1MfVAf_Jrit3nwRTBb2-Wj9W1Mx9RtiNvUt9KkKQ5lE-kQ_PXmtt2YIuJLKSEp4SbknDTnngCcMukY34sMRbCmLEDLWxVLKrhOkoAxJhXmDne6ojVgN0_8qQTns1wYY0wmPjMVfM3O8uOxnuCvsqrkEhF9AZYs7nM3z9aarbsIPbnC0KF2jfWnh5JOUG337lDFJSp2v2D5P_8GQnO3qmSg0lyHzrQ7uZbkpTJJVUV__nBq_G9_N2CtYJeknk-HTSiZ0RasznkOlmGQ56yQJqqy6Ctqhkij270gPcvIMQ-T1j-id0Nq9BLLyeMwfSbtXr9DLL0lD8PYjEk9S4Yg91Px0Xi0DYPmVb_RosXdClR7opZSLmOmXd_yGyUV9xX6EHEvkcw-mWFo0qONYEoFThy5wksSuxBp1yhHeJESqrYDi6PxyOwCCQRPpDb2M9mGTEcqipRjiaOvhUq8aA-q02CHujAex_svXsNsA-IEoR2eEIcnLIZnD85mLd5y040_6pYx8LN6Rcz3fy8-geVWv9MO29fd2wNY8RCjMxnOISym7xNzZBlGqo6zifUFukLIGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Frame-level+CNN%3A+Saliency-Aware+3-D+CNN+With+LSTM+for+Video+Action+Recognition&rft.jtitle=IEEE+signal+processing+letters&rft.au=Xuanhan+Wang&rft.au=Lianli+Gao&rft.au=Jingkuan+Song&rft.au=Hengtao+Shen&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=24&rft.issue=4&rft.spage=510&rft.epage=514&rft_id=info:doi/10.1109%2FLSP.2016.2611485&rft.externalDocID=7572183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon