Using Polynomial Kernel Support Vector Machines for Speaker Verification
In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines (PK-SVMs). The proposed approach is rooted in an equivalence relationship between the state-of-the-art probabilistic linear discriminant analysis (PL...
Saved in:
Published in | IEEE signal processing letters Vol. 20; no. 9; pp. 901 - 904 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines (PK-SVMs). The proposed approach is rooted in an equivalence relationship between the state-of-the-art probabilistic linear discriminant analysis (PLDA) and second degree polynomial kernel methods. We present two techniques for overcoming the memory and computational challenges that PK-SVMs pose. The first of these, a kernel evaluation simplification trick, eliminates the need to explicitly compute dot products for a huge number of training samples. The second technique makes use of the massively parallel processing power of modern graphical processing units. We performed experiments on the Phase I speaker verification track of the DARPA sponsored Robust Automatic Transcription of Speech (RATS) program. We found that, in the multi-session enrollment experiments, second degree PK-SVMs outperformed PLDA across all tasks in terms of the official evaluation metric, and third and fourth degree PK-SVMs provided a performance improvement over the second degree PK-SVMs. Furthermore, for the "30s-30s" task, a linear score combination between the PLDA and PK-SVM based systems provided 27% improvement relative to the PLDA baseline in terms of the official evaluation metric. |
---|---|
AbstractList | In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines (PK-SVMs). The proposed approach is rooted in an equivalence relationship between the state-of-the-art probabilistic linear discriminant analysis (PLDA) and second degree polynomial kernel methods. We present two techniques for overcoming the memory and computational challenges that PK-SVMs pose. The first of these, a kernel evaluation simplification trick, eliminates the need to explicitly compute dot products for a huge number of training samples. The second technique makes use of the massively parallel processing power of modern graphical processing units. We performed experiments on the Phase I speaker verification track of the DARPA sponsored Robust Automatic Transcription of Speech (RATS) program. We found that, in the multi-session enrollment experiments, second degree PK-SVMs outperformed PLDA across all tasks in terms of the official evaluation metric, and third and fourth degree PK-SVMs provided a performance improvement over the second degree PK-SVMs. Furthermore, for the "30s-30s" task, a linear score combination between the PLDA and PK-SVM based systems provided 27% improvement relative to the PLDA baseline in terms of the official evaluation metric. |
Author | Pelecanos, J. Yaman, S. |
Author_xml | – sequence: 1 givenname: S. surname: Yaman fullname: Yaman, S. email: yaman@us.ibm.com organization: Stat. Biometrics Group, IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA – sequence: 2 givenname: J. surname: Pelecanos fullname: Pelecanos, J. email: jwpeleca@us.ibm.com organization: Stat. Biometrics Group, IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA |
BookMark | eNo9kMtOwzAQRS1UJEphj8QmP5AytuM4WaIKKKKISqVsI8cZgyG1Izss-ve4asVqXveOZs4lmTjvkJAbCnNKob5bbdZzBpTPGZOcMnlGplSIKme8pJOUg4S8rqG6IJcxfgNARSsxJctttO4zW_t-7_zOqj57weCwzza_w-DDmH2gHn3IXpX-sg5jZlKxGVD9YEizYI3VarTeXZFzo_qI16c4I9vHh_fFMl-9PT0v7le5ZiUf8wI5aFECr9AUqmUdb2lXa5N-KFDJ1Ba1El0roCt4utHIpEDNCyNK2aLhMwLHvTr4GAOaZgh2p8K-odAcSDSJRHMg0ZxIJMvt0WIR8V9eCiELxvgfigpcnA |
CODEN | ISPLEM |
CitedBy_id | crossref_primary_10_1186_s13636_024_00348_4 crossref_primary_10_1007_s00521_016_2470_x crossref_primary_10_1007_s00521_014_1596_y crossref_primary_10_1016_j_eswa_2021_115465 crossref_primary_10_1051_matecconf_20165904003 crossref_primary_10_33769_aupse_992350 crossref_primary_10_1016_j_ins_2018_01_022 crossref_primary_10_1109_TASLP_2014_2341914 crossref_primary_10_1109_TCYB_2016_2634011 crossref_primary_10_1016_j_dsp_2014_05_001 crossref_primary_10_1186_s13636_024_00335_9 crossref_primary_10_1007_s10772_021_09808_0 crossref_primary_10_1109_ACCESS_2023_3332561 crossref_primary_10_6113_JPE_2016_16_2_760 |
Cites_doi | 10.1109/ICASSP.2011.5947437 10.1016/j.csl.2005.06.003 10.1017/CBO9780511809682 10.1145/1961189.1961199 10.21437/Interspeech.2011-53 10.1145/2020408.2020548 10.1109/ICASSP.2011.5947442 10.1109/ICASSP.2013.6639161 10.1109/ICCV.2007.4409052 10.1145/1390156.1390170 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LSP.2013.2273127 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 904 |
ExternalDocumentID | 10_1109_LSP_2013_2273127 6557422 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 0ZS 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAYJJ ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 XFK AAYXX CITATION |
ID | FETCH-LOGICAL-c263t-4e30c56038ef4ab2d3b1d9cf1104ea738e59a5db50d43081f7d3bec34f567bef3 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Fri Aug 23 00:17:33 EDT 2024 Wed Jun 26 19:28:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-4e30c56038ef4ab2d3b1d9cf1104ea738e59a5db50d43081f7d3bec34f567bef3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6557422 crossref_primary_10_1109_LSP_2013_2273127 |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | osuna (ref12) 1997 joachims (ref13) 1999 ref14 ref10 garcia-romero (ref19) 2011 ref2 ref1 ref17 ref16 platt (ref15) 1999 brummer (ref3) 2010 ref4 senoussaoui (ref8) 2011 ref6 ref5 zhu (ref7) 2013 dehak (ref9) 2010 walker (ref18) 2012 yaman (ref11) 2012 |
References_xml | – year: 1999 ident: ref13 publication-title: Advances in Kernel Methods Support Vector Learning contributor: fullname: joachims – year: 1997 ident: ref12 article-title: An improved training algorithm for support vector machines publication-title: IEEE Workshop on Neural Networks for Signal Processing contributor: fullname: osuna – ident: ref5 doi: 10.1109/ICASSP.2011.5947437 – ident: ref6 doi: 10.1016/j.csl.2005.06.003 – year: 2010 ident: ref3 article-title: The speaker partitioning problem publication-title: IEEE Odyssey Speaker and Language Recognition Workshop contributor: fullname: brummer – year: 2012 ident: ref18 article-title: The RATS radio traffic collection system publication-title: IEEE Odyssey Speaker and Language Recognition Workshop contributor: fullname: walker – ident: ref10 doi: 10.1017/CBO9780511809682 – year: 1999 ident: ref15 publication-title: Advances in Kernel Methods Support Vector Learning contributor: fullname: platt – year: 2013 ident: ref7 article-title: The IBM RATS Phase II speaker recognition system: Overview and analysis publication-title: ISCA INTERSPEECH contributor: fullname: zhu – year: 2011 ident: ref8 article-title: Mixture of PLDA models in i-vector space for gender-independent speaker recognition publication-title: ISCA INTERSPEECH contributor: fullname: senoussaoui – ident: ref14 doi: 10.1145/1961189.1961199 – year: 2011 ident: ref19 article-title: Analysis of i-vector length normalization in speaker recognition systems publication-title: IEEE Interspeech doi: 10.21437/Interspeech.2011-53 contributor: fullname: garcia-romero – ident: ref16 doi: 10.1145/2020408.2020548 – ident: ref4 doi: 10.1109/ICASSP.2011.5947442 – year: 2010 ident: ref9 article-title: Cosine similarity scoring without score normalization techniques publication-title: IEEE Odyssey Speaker and Language Recognition Workshop contributor: fullname: dehak – ident: ref2 doi: 10.1109/ICASSP.2013.6639161 – ident: ref1 doi: 10.1109/ICCV.2007.4409052 – ident: ref17 doi: 10.1145/1390156.1390170 – year: 2012 ident: ref11 article-title: On the use of non-linear polynomial kernel SVMs in language recognition publication-title: ISCA INTERSPEECH contributor: fullname: yaman |
SSID | ssj0008185 |
Score | 2.215044 |
Snippet | In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines... |
SourceID | crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 901 |
SubjectTerms | Graphics processing units Kernel Mathematical model Polynomials Probabilistic linear discriminant analysis speaker verification Support vector machines Training Vectors |
Title | Using Polynomial Kernel Support Vector Machines for Speaker Verification |
URI | https://ieeexplore.ieee.org/document/6557422 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUR5yQMLEkkTO07iESGqCiiqVIq6RYlzXlqlVZoO8Os5O2lVIQY2y77hdHe6h_35jpA7n7FIaKXQeL3ICXKRO3Ec-o5UggGkQmgwheLwPRxMgpepmLbIw_YvDABY8Bm4Zmnf8vOFWpursl4oBFZy6HD3Iinrv1pbr2sCT40v9Bz0sPHmSdKTvbfxyGC4uIt8cTs_ZicE7cxUsSGlf0SGG2ZqJMnMXVeZq75_9Wn8L7fH5LDJLeljbQwnpAXFKTnY6TjYIQMLEaCjxfzL_EdG6lcoC5hTM90TM3H6aW_x6dBiLGFFMael4yWkMyjxrDTAIqvLMzLpP388DZxmmIKjWMgrJwDuKUxveAw6SDOW88zPpdIooQDSCLeFTEWeCS8POEpTR0gBigdahFEGmp-TdrEo4ILQjKVmvK_UPh6nnEkwPWNijjqWJgPtkvuNfJNl3TMjsbWGJxPURWJ0kTS66JKOkdyWrhHa5d_bV2Sf2XEUBuN1TdpVuYYbTAqq7NZaww-5bbMY |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgADr4IoTw8sSKRN4jiJR4SoAm2qSm1RtyhxLkurtArpAL-es5NWFWJgs-wbTneW7zv78x0hD5ZtezyTEjev6RlOylPD913LEJLbADHnGahEMRy6wdR5n_FZgzxt_8IAgCafQUcN9Vt-upRrdVXWdTnHTA4P3D2ucEX1W2t77qrQUzEMTQPPWH_zKGmK7mA8Uiwu1kHNmO4gsxOEdrqq6KDSOybhRp2KSzLvrMukI79_VWr8r74n5KhGl_S52g6npAH5GTncqTnYIoEmCdDRcvGlfiSjdB-KHBZU9fdELE4_9D0-DTXLEj4polo6XkE8hwLXCkUt0t48J9Pe6-QlMOp2Coa0XVYaDjBTIsBhPmROnNgpS6xUyAwt5EDs4TQXMU8TbqYOQ2tmHkqAZE7GXS-BjF2QZr7M4ZLQxI5Vg1-RWbgcM1uAqhrjM_SyUBi0TR439o1WVdWMSGcbpojQF5HyRVT7ok1aynJbudpoV39P35P9YBIOosHbsH9NDmzdnEIxvm5IsyzWcIsQoUzu9M74AUvGtmU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Polynomial+Kernel+Support+Vector+Machines+for+Speaker+Verification&rft.jtitle=IEEE+signal+processing+letters&rft.au=Yaman%2C+S.&rft.au=Pelecanos%2C+J.&rft.date=2013-09-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=20&rft.issue=9&rft.spage=901&rft.epage=904&rft_id=info:doi/10.1109%2FLSP.2013.2273127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2013_2273127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |