Using Polynomial Kernel Support Vector Machines for Speaker Verification

In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines (PK-SVMs). The proposed approach is rooted in an equivalence relationship between the state-of-the-art probabilistic linear discriminant analysis (PL...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 20; no. 9; pp. 901 - 904
Main Authors Yaman, S., Pelecanos, J.
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines (PK-SVMs). The proposed approach is rooted in an equivalence relationship between the state-of-the-art probabilistic linear discriminant analysis (PLDA) and second degree polynomial kernel methods. We present two techniques for overcoming the memory and computational challenges that PK-SVMs pose. The first of these, a kernel evaluation simplification trick, eliminates the need to explicitly compute dot products for a huge number of training samples. The second technique makes use of the massively parallel processing power of modern graphical processing units. We performed experiments on the Phase I speaker verification track of the DARPA sponsored Robust Automatic Transcription of Speech (RATS) program. We found that, in the multi-session enrollment experiments, second degree PK-SVMs outperformed PLDA across all tasks in terms of the official evaluation metric, and third and fourth degree PK-SVMs provided a performance improvement over the second degree PK-SVMs. Furthermore, for the "30s-30s" task, a linear score combination between the PLDA and PK-SVM based systems provided 27% improvement relative to the PLDA baseline in terms of the official evaluation metric.
AbstractList In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines (PK-SVMs). The proposed approach is rooted in an equivalence relationship between the state-of-the-art probabilistic linear discriminant analysis (PLDA) and second degree polynomial kernel methods. We present two techniques for overcoming the memory and computational challenges that PK-SVMs pose. The first of these, a kernel evaluation simplification trick, eliminates the need to explicitly compute dot products for a huge number of training samples. The second technique makes use of the massively parallel processing power of modern graphical processing units. We performed experiments on the Phase I speaker verification track of the DARPA sponsored Robust Automatic Transcription of Speech (RATS) program. We found that, in the multi-session enrollment experiments, second degree PK-SVMs outperformed PLDA across all tasks in terms of the official evaluation metric, and third and fourth degree PK-SVMs provided a performance improvement over the second degree PK-SVMs. Furthermore, for the "30s-30s" task, a linear score combination between the PLDA and PK-SVM based systems provided 27% improvement relative to the PLDA baseline in terms of the official evaluation metric.
Author Pelecanos, J.
Yaman, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Yaman
  fullname: Yaman, S.
  email: yaman@us.ibm.com
  organization: Stat. Biometrics Group, IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA
– sequence: 2
  givenname: J.
  surname: Pelecanos
  fullname: Pelecanos, J.
  email: jwpeleca@us.ibm.com
  organization: Stat. Biometrics Group, IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA
BookMark eNo9kMtOwzAQRS1UJEphj8QmP5AytuM4WaIKKKKISqVsI8cZgyG1Izss-ve4asVqXveOZs4lmTjvkJAbCnNKob5bbdZzBpTPGZOcMnlGplSIKme8pJOUg4S8rqG6IJcxfgNARSsxJctttO4zW_t-7_zOqj57weCwzza_w-DDmH2gHn3IXpX-sg5jZlKxGVD9YEizYI3VarTeXZFzo_qI16c4I9vHh_fFMl-9PT0v7le5ZiUf8wI5aFECr9AUqmUdb2lXa5N-KFDJ1Ba1El0roCt4utHIpEDNCyNK2aLhMwLHvTr4GAOaZgh2p8K-odAcSDSJRHMg0ZxIJMvt0WIR8V9eCiELxvgfigpcnA
CODEN ISPLEM
CitedBy_id crossref_primary_10_1186_s13636_024_00348_4
crossref_primary_10_1007_s00521_016_2470_x
crossref_primary_10_1007_s00521_014_1596_y
crossref_primary_10_1016_j_eswa_2021_115465
crossref_primary_10_1051_matecconf_20165904003
crossref_primary_10_33769_aupse_992350
crossref_primary_10_1016_j_ins_2018_01_022
crossref_primary_10_1109_TASLP_2014_2341914
crossref_primary_10_1109_TCYB_2016_2634011
crossref_primary_10_1016_j_dsp_2014_05_001
crossref_primary_10_1186_s13636_024_00335_9
crossref_primary_10_1007_s10772_021_09808_0
crossref_primary_10_1109_ACCESS_2023_3332561
crossref_primary_10_6113_JPE_2016_16_2_760
Cites_doi 10.1109/ICASSP.2011.5947437
10.1016/j.csl.2005.06.003
10.1017/CBO9780511809682
10.1145/1961189.1961199
10.21437/Interspeech.2011-53
10.1145/2020408.2020548
10.1109/ICASSP.2011.5947442
10.1109/ICASSP.2013.6639161
10.1109/ICCV.2007.4409052
10.1145/1390156.1390170
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LSP.2013.2273127
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 904
ExternalDocumentID 10_1109_LSP_2013_2273127
6557422
Genre orig-research
GroupedDBID -~X
.DC
0R~
0ZS
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYJJ
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-4e30c56038ef4ab2d3b1d9cf1104ea738e59a5db50d43081f7d3bec34f567bef3
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Fri Aug 23 00:17:33 EDT 2024
Wed Jun 26 19:28:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-4e30c56038ef4ab2d3b1d9cf1104ea738e59a5db50d43081f7d3bec34f567bef3
PageCount 4
ParticipantIDs ieee_primary_6557422
crossref_primary_10_1109_LSP_2013_2273127
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References osuna (ref12) 1997
joachims (ref13) 1999
ref14
ref10
garcia-romero (ref19) 2011
ref2
ref1
ref17
ref16
platt (ref15) 1999
brummer (ref3) 2010
ref4
senoussaoui (ref8) 2011
ref6
ref5
zhu (ref7) 2013
dehak (ref9) 2010
walker (ref18) 2012
yaman (ref11) 2012
References_xml – year: 1999
  ident: ref13
  publication-title: Advances in Kernel Methods Support Vector Learning
  contributor:
    fullname: joachims
– year: 1997
  ident: ref12
  article-title: An improved training algorithm for support vector machines
  publication-title: IEEE Workshop on Neural Networks for Signal Processing
  contributor:
    fullname: osuna
– ident: ref5
  doi: 10.1109/ICASSP.2011.5947437
– ident: ref6
  doi: 10.1016/j.csl.2005.06.003
– year: 2010
  ident: ref3
  article-title: The speaker partitioning problem
  publication-title: IEEE Odyssey Speaker and Language Recognition Workshop
  contributor:
    fullname: brummer
– year: 2012
  ident: ref18
  article-title: The RATS radio traffic collection system
  publication-title: IEEE Odyssey Speaker and Language Recognition Workshop
  contributor:
    fullname: walker
– ident: ref10
  doi: 10.1017/CBO9780511809682
– year: 1999
  ident: ref15
  publication-title: Advances in Kernel Methods Support Vector Learning
  contributor:
    fullname: platt
– year: 2013
  ident: ref7
  article-title: The IBM RATS Phase II speaker recognition system: Overview and analysis
  publication-title: ISCA INTERSPEECH
  contributor:
    fullname: zhu
– year: 2011
  ident: ref8
  article-title: Mixture of PLDA models in i-vector space for gender-independent speaker recognition
  publication-title: ISCA INTERSPEECH
  contributor:
    fullname: senoussaoui
– ident: ref14
  doi: 10.1145/1961189.1961199
– year: 2011
  ident: ref19
  article-title: Analysis of i-vector length normalization in speaker recognition systems
  publication-title: IEEE Interspeech
  doi: 10.21437/Interspeech.2011-53
  contributor:
    fullname: garcia-romero
– ident: ref16
  doi: 10.1145/2020408.2020548
– ident: ref4
  doi: 10.1109/ICASSP.2011.5947442
– year: 2010
  ident: ref9
  article-title: Cosine similarity scoring without score normalization techniques
  publication-title: IEEE Odyssey Speaker and Language Recognition Workshop
  contributor:
    fullname: dehak
– ident: ref2
  doi: 10.1109/ICASSP.2013.6639161
– ident: ref1
  doi: 10.1109/ICCV.2007.4409052
– ident: ref17
  doi: 10.1145/1390156.1390170
– year: 2012
  ident: ref11
  article-title: On the use of non-linear polynomial kernel SVMs in language recognition
  publication-title: ISCA INTERSPEECH
  contributor:
    fullname: yaman
SSID ssj0008185
Score 2.215044
Snippet In this letter, we propose a discriminative modeling approach for the speaker verification problem that uses polynomial kernel support vector machines...
SourceID crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 901
SubjectTerms Graphics processing units
Kernel
Mathematical model
Polynomials
Probabilistic linear discriminant analysis
speaker verification
Support vector machines
Training
Vectors
Title Using Polynomial Kernel Support Vector Machines for Speaker Verification
URI https://ieeexplore.ieee.org/document/6557422
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUR5yQMLEkkTO07iESGqCiiqVIq6RYlzXlqlVZoO8Os5O2lVIQY2y77hdHe6h_35jpA7n7FIaKXQeL3ICXKRO3Ec-o5UggGkQmgwheLwPRxMgpepmLbIw_YvDABY8Bm4Zmnf8vOFWpursl4oBFZy6HD3Iinrv1pbr2sCT40v9Bz0sPHmSdKTvbfxyGC4uIt8cTs_ZicE7cxUsSGlf0SGG2ZqJMnMXVeZq75_9Wn8L7fH5LDJLeljbQwnpAXFKTnY6TjYIQMLEaCjxfzL_EdG6lcoC5hTM90TM3H6aW_x6dBiLGFFMael4yWkMyjxrDTAIqvLMzLpP388DZxmmIKjWMgrJwDuKUxveAw6SDOW88zPpdIooQDSCLeFTEWeCS8POEpTR0gBigdahFEGmp-TdrEo4ILQjKVmvK_UPh6nnEkwPWNijjqWJgPtkvuNfJNl3TMjsbWGJxPURWJ0kTS66JKOkdyWrhHa5d_bV2Sf2XEUBuN1TdpVuYYbTAqq7NZaww-5bbMY
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgADr4IoTw8sSKRN4jiJR4SoAm2qSm1RtyhxLkurtArpAL-es5NWFWJgs-wbTneW7zv78x0hD5ZtezyTEjev6RlOylPD913LEJLbADHnGahEMRy6wdR5n_FZgzxt_8IAgCafQUcN9Vt-upRrdVXWdTnHTA4P3D2ucEX1W2t77qrQUzEMTQPPWH_zKGmK7mA8Uiwu1kHNmO4gsxOEdrqq6KDSOybhRp2KSzLvrMukI79_VWr8r74n5KhGl_S52g6npAH5GTncqTnYIoEmCdDRcvGlfiSjdB-KHBZU9fdELE4_9D0-DTXLEj4polo6XkE8hwLXCkUt0t48J9Pe6-QlMOp2Coa0XVYaDjBTIsBhPmROnNgpS6xUyAwt5EDs4TQXMU8TbqYOQ2tmHkqAZE7GXS-BjF2QZr7M4ZLQxI5Vg1-RWbgcM1uAqhrjM_SyUBi0TR439o1WVdWMSGcbpojQF5HyRVT7ok1aynJbudpoV39P35P9YBIOosHbsH9NDmzdnEIxvm5IsyzWcIsQoUzu9M74AUvGtmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Polynomial+Kernel+Support+Vector+Machines+for+Speaker+Verification&rft.jtitle=IEEE+signal+processing+letters&rft.au=Yaman%2C+S.&rft.au=Pelecanos%2C+J.&rft.date=2013-09-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=20&rft.issue=9&rft.spage=901&rft.epage=904&rft_id=info:doi/10.1109%2FLSP.2013.2273127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2013_2273127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon