A Driver State Detection System-Combining a Capacitive Hand Detection Sensor With Physiological Sensors
With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In this paper, a driver state detection system based on cellular neural networks (CNNs) to monitor the driver's stress level is presented. W...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 66; no. 4; pp. 624 - 636 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In this paper, a driver state detection system based on cellular neural networks (CNNs) to monitor the driver's stress level is presented. We propose to include a capacitive-based wireless hand detection (position and touch) sensor for a steering wheel utilizing ink-jet printed sensor mats as an input sensor in order to improve the performance. A driving simulator platform providing a realistic virtual traffic environment is utilized to conduct a study with 22 participants for the evaluation of the proposed system. Each participant is driving in two different scenarios, each representing one of the two no-stress/stress driver states. A "threefold" cross validation is applied to evaluate our concept. The subject dependence is considered carefully by separating the training and testing data. Furthermore, the CNN approach is benchmarked against other state-of-the-art machine learning techniques. The results show a significant improvement combining sensor inputs from different driver inherent domains, giving a total related detection accuracy of 92%. Besides that, this paper shows that in case of including the capacitive hand detection sensor, the accuracy increases by 10%. These findings indicate that adding a subject-independent sensor, such as the proposed capacitive hand detection sensor, can significantly improve the detection performance. |
---|---|
AbstractList | With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In this paper, a driver state detection system based on cellular neural networks (CNNs) to monitor the driver's stress level is presented. We propose to include a capacitive-based wireless hand detection (position and touch) sensor for a steering wheel utilizing ink-jet printed sensor mats as an input sensor in order to improve the performance. A driving simulator platform providing a realistic virtual traffic environment is utilized to conduct a study with 22 participants for the evaluation of the proposed system. Each participant is driving in two different scenarios, each representing one of the two no-stress/stress driver states. A "threefold" cross validation is applied to evaluate our concept. The subject dependence is considered carefully by separating the training and testing data. Furthermore, the CNN approach is benchmarked against other state-of-the-art machine learning techniques. The results show a significant improvement combining sensor inputs from different driver inherent domains, giving a total related detection accuracy of 92%. Besides that, this paper shows that in case of including the capacitive hand detection sensor, the accuracy increases by 10%. These findings indicate that adding a subject-independent sensor, such as the proposed capacitive hand detection sensor, can significantly improve the detection performance. |
Author | Muhlbacher-Karrer, Stephan Kyamakya, Kyandoghere Zangl, Hubert Ali, Mouhannad Hamid, Raiyan Mosa, Ahmad Haj Faller, Lisa-Marie |
Author_xml | – sequence: 1 givenname: Stephan surname: Muhlbacher-Karrer fullname: Muhlbacher-Karrer, Stephan email: stephan.muehlbacher-karrer@aau.at organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria – sequence: 2 givenname: Ahmad Haj surname: Mosa fullname: Mosa, Ahmad Haj organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria – sequence: 3 givenname: Lisa-Marie surname: Faller fullname: Faller, Lisa-Marie organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria – sequence: 4 givenname: Mouhannad surname: Ali fullname: Ali, Mouhannad organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria – sequence: 5 givenname: Raiyan surname: Hamid fullname: Hamid, Raiyan organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria – sequence: 6 givenname: Hubert surname: Zangl fullname: Zangl, Hubert organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria – sequence: 7 givenname: Kyandoghere surname: Kyamakya fullname: Kyamakya, Kyandoghere organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria |
BookMark | eNp9kE1LAzEQhoNUsFbvgpf8ga3JZjebHMtWbaGi0IrHZZqPNrLdlCQI_fduaRHx4Glg5n1mmOcaDTrfGYTuKBlTSuTDav4yzgnl45wXpCjFBRrSsqwyyXk-QENCqMhkUfIrdB3jJyGk4kU1RJsJngb3ZQJeJkgGT00yKjnf4eUhJrPLar9bu851Gwy4hj0ol_o4nkGnf4dNF33AHy5t8dv2EJ1v_cYpaM-TeIMuLbTR3J7rCL0_Pa7qWbZ4fZ7Xk0Wmcs5SxrRgpS2lIJbbQlgJqsiBS8GkytdaSQZaa9EHBFVUU2UY6Zt2DVZYKCo2QuS0VwUfYzC22Qe3g3BoKGmOoppeVHMU1ZxF9Qj_g_Q_wvGtFMC1_4H3J9AZY37uVIJRxiv2DUDceTk |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_3390_s22134717 crossref_primary_10_1016_j_conengprac_2022_105294 crossref_primary_10_1111_tops_12669 crossref_primary_10_1109_TIM_2019_2904332 crossref_primary_10_1016_j_trip_2024_101098 crossref_primary_10_1016_j_measurement_2019_03_064 crossref_primary_10_1109_TIM_2017_2779329 crossref_primary_10_1016_j_apergo_2024_104244 crossref_primary_10_1038_s41598_021_00812_7 crossref_primary_10_1109_TIM_2018_2885608 crossref_primary_10_3390_s20092588 crossref_primary_10_1109_JSEN_2019_2962874 crossref_primary_10_1016_j_neucom_2020_04_133 crossref_primary_10_1109_ACCESS_2019_2959398 crossref_primary_10_1016_j_bbe_2019_01_004 crossref_primary_10_1109_TITS_2019_2956598 crossref_primary_10_1002_aisy_202100211 crossref_primary_10_1109_TCSS_2017_2766884 crossref_primary_10_1109_TIM_2023_3250232 crossref_primary_10_3390_app11083321 crossref_primary_10_3390_s18061905 crossref_primary_10_1007_s00530_024_01302_2 crossref_primary_10_1109_TCE_2024_3366988 crossref_primary_10_1155_2022_2673191 crossref_primary_10_3390_c8020026 crossref_primary_10_1109_TITS_2021_3108851 crossref_primary_10_1109_ACCESS_2022_3221145 crossref_primary_10_1109_TIM_2020_2988744 crossref_primary_10_1109_TIM_2021_3094619 crossref_primary_10_1109_ACCESS_2022_3219844 crossref_primary_10_1186_s40537_024_00890_0 crossref_primary_10_1007_s42452_019_0276_z crossref_primary_10_3390_s22228593 crossref_primary_10_3390_safety6040055 crossref_primary_10_1109_TIM_2021_3109745 crossref_primary_10_1088_1742_6596_1651_1_012188 crossref_primary_10_1109_ACCESS_2020_2977716 crossref_primary_10_1145_3519267 crossref_primary_10_3390_s24082469 crossref_primary_10_1016_j_bspc_2021_102419 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_1051_e3sconf_202339905002 crossref_primary_10_3390_electronics9122092 crossref_primary_10_1016_j_eswa_2023_122056 crossref_primary_10_1109_TIM_2022_3147329 |
Cites_doi | 10.1109/TIM.2013.2278562 10.1109/82.222815 10.1109/TIM.2003.816812 10.1016/j.trc.2013.10.004 10.1109/TPAMI.2008.26 10.1109/34.709601 10.1016/j.eswa.2006.02.005 10.1016/j.cnsns.2010.12.017 10.1109/TITB.2009.2034649 10.1109/MMVIP.2008.4749553 10.1109/ITSC.2009.5309881 10.1109/JSEN.2014.2384276 10.1109/TITS.2010.2092770 10.3390/s120201288 10.1109/TIM.2015.2433611 10.1109/TIM.2008.922074 10.1109/4.364437 10.1142/S0218127408022585 10.1016/j.cmpb.2013.07.024 10.1109/TIM.2014.2313035 10.1111/j.1469-8986.2009.00972.x 10.1109/19.997824 10.1109/TITS.2005.848368 10.1109/MPRV.2011.54 10.1109/TCSI.2003.812611 10.1016/j.aap.2009.05.001 10.1016/j.patcog.2008.01.018 10.1109/ISCAS.1998.703935 10.1007/978-3-642-35289-8_36 10.1109/SAS.2016.7479878 10.1109/TAP.2014.2309957 10.1109/TCSII.2006.886244 10.1145/1656274.1656278 10.1109/MIM.2011.6041380 10.1007/978-3-658-05734-3_52 10.1109/TIM.2007.909411 10.1109/TNNLS.2012.2198074 10.1109/TIM.2011.2130070 10.1109/IROS.2013.6697134 10.1016/S0925-2312(99)00177-0 10.1109/TITS.2007.895298 10.1109/31.7601 10.1109/JSEN.2014.2366915 10.1109/TBME.2011.2163715 10.1016/j.eswa.2011.04.149 10.1109/ICBBE.2009.5162679 10.1109/ETFA.2008.4638468 10.1016/0013-4694(87)90206-9 10.1109/ICSPC.2007.4728467 10.1109/TIM.2004.851071 10.1080/13658810210137004 10.1109/IMTC.2008.4547283 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION |
DOI | 10.1109/TIM.2016.2640458 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 636 |
ExternalDocumentID | 10_1109_TIM_2016_2640458 7831367 |
Genre | orig-research |
GrantInformation_xml | – fundername: Austrian Research Promotion Agency (FFG) grantid: 842547 – fundername: DEWI Project through the ARTEMIS Joint Undertaking grantid: 621353 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c263t-3d835f5980f6f48f9ac42a69839c2bdc93addd859881c1d1ce30c93fbaf8fa473 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 02:02:30 EDT 2025 Tue Aug 26 16:43:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-3d835f5980f6f48f9ac42a69839c2bdc93addd859881c1d1ce30c93fbaf8fa473 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7831367 |
PageCount | 13 |
ParticipantIDs | ieee_primary_7831367 crossref_primary_10_1109_TIM_2016_2640458 crossref_citationtrail_10_1109_TIM_2016_2640458 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-April 2017-4-00 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-April |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | takahashi (ref63) 2005 ref57 ref13 (ref49) 2014 ref56 ref12 ref59 ref15 ref58 ref14 ref55 ref11 ref10 ref17 ref16 (ref1) 2010 evarts (ref29) 2013 kaija (ref32) 2008 ref51 ref46 jaeger (ref19) 2012 ref45 ref47 ref42 ref44 (ref53) 2016 ref43 yan (ref73) 2012; 23 (ref28) 2015 bian (ref41) 2015 ref8 ref7 (ref65) 2013 van der heijden (ref67) 2005 ref9 ref4 ref3 ref6 ref5 srivastava (ref71) 2007; 8 ref35 jaeger (ref18) 2001; 148 ho (ref72) 1998; 20 ref34 ref37 ref36 ref31 fukunaga (ref66) 2013 ref74 ref33 ref2 ref39 kim (ref40) 2008; 30 ref38 (ref50) 2015 (ref54) 2016 su (ref69) 2011 ref68 ref24 ref23 ref26 ref25 ref64 ref20 ref22 ref21 konar (ref61) 2014 güzelocak (ref30) 2013 mühlbacher-karrer (ref48) 2015 ref60 ref62 (ref52) 2016 lukoševi?ius (ref70) 2012 (ref27) 2013 |
References_xml | – year: 2015 ident: ref28 publication-title: Hands off Detection-HOD Datasheet IEE a Sense for Inovation – volume: 8 start-page: 1277 year: 2007 ident: ref71 article-title: Bayesian quadratic discriminant analysis publication-title: J Mach Learn Res – ident: ref6 doi: 10.1109/TIM.2013.2278562 – start-page: 109 year: 2011 ident: ref69 article-title: Particle swarm optimization with time-varying acceleration coefficients based on cellular neural network for color image noise cancellation publication-title: Proc Int Conf Digital Telecommun (ICDT) – ident: ref20 doi: 10.1109/82.222815 – ident: ref25 doi: 10.1109/TIM.2003.816812 – ident: ref43 doi: 10.1016/j.trc.2013.10.004 – volume: 30 start-page: 2067 year: 2008 ident: ref40 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.26 – volume: 20 start-page: 832 year: 1998 ident: ref72 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – ident: ref59 doi: 10.1016/j.eswa.2006.02.005 – ident: ref12 doi: 10.1016/j.cnsns.2010.12.017 – year: 2015 ident: ref50 publication-title: CapTouch Programmable Controller for Single- Electrode Capacitance Sensors - AD7147 – ident: ref62 doi: 10.1109/TITB.2009.2034649 – ident: ref16 doi: 10.1109/MMVIP.2008.4749553 – year: 2014 ident: ref49 publication-title: nRF51822-Product Specification – year: 2013 ident: ref66 publication-title: Introduction to statistical pattern recognition – ident: ref45 doi: 10.1109/ITSC.2009.5309881 – ident: ref51 doi: 10.1109/JSEN.2014.2384276 – ident: ref46 doi: 10.1109/TITS.2010.2092770 – ident: ref38 doi: 10.3390/s120201288 – ident: ref35 doi: 10.1109/TIM.2015.2433611 – ident: ref5 doi: 10.1109/TIM.2008.922074 – start-page: 1 year: 2008 ident: ref32 article-title: Applicability of inkjet technology for electronics manufacturing publication-title: Proc SMTA Int Conf – year: 2012 ident: ref19 article-title: Long short-term memory in echo state networks: Details of a simulation study – ident: ref21 doi: 10.1109/4.364437 – start-page: 1 year: 2015 ident: ref41 article-title: Physiology-based affect recognition during driving in virtual environment for autism intervention publication-title: Proc 2nd Int Conf Physiol Comput Syst – ident: ref68 doi: 10.1142/S0218127408022585 – ident: ref58 doi: 10.1016/j.cmpb.2013.07.024 – year: 2016 ident: ref53 publication-title: BioRadio-ECG Sensor – ident: ref9 doi: 10.1109/TIM.2014.2313035 – start-page: 1 year: 2015 ident: ref48 article-title: Short range capacitive proximity sensing publication-title: 2nd Workshop on Alternative Sensing for Robot Perception Beyond Laser and Vision – ident: ref57 doi: 10.1111/j.1469-8986.2009.00972.x – ident: ref7 doi: 10.1109/19.997824 – ident: ref39 doi: 10.1109/TITS.2005.848368 – year: 2005 ident: ref67 publication-title: Classification Parameter Estimation and State Estimation An Engineering Approach Using MATLAB – ident: ref3 doi: 10.1109/MPRV.2011.54 – ident: ref22 doi: 10.1109/TCSI.2003.812611 – ident: ref44 doi: 10.1016/j.aap.2009.05.001 – year: 2013 ident: ref27 publication-title: Smart Trunk Opener-STO Datasheet IEE a Sense for Inovation – ident: ref23 doi: 10.1016/j.patcog.2008.01.018 – ident: ref15 doi: 10.1109/ISCAS.1998.703935 – start-page: 659 year: 2012 ident: ref70 article-title: A practical guide to applying echo state networks publication-title: Neural Networks Tricks of the Trade doi: 10.1007/978-3-642-35289-8_36 – year: 2013 ident: ref65 publication-title: MATLAB Version 7 14 0 (R2012a) – ident: ref4 doi: 10.1109/SAS.2016.7479878 – ident: ref34 doi: 10.1109/TAP.2014.2309957 – ident: ref13 doi: 10.1109/TCSII.2006.886244 – ident: ref74 doi: 10.1145/1656274.1656278 – ident: ref33 doi: 10.1109/MIM.2011.6041380 – ident: ref2 doi: 10.1007/978-3-658-05734-3_52 – ident: ref10 doi: 10.1109/TIM.2007.909411 – volume: 23 start-page: 1028 year: 2012 ident: ref73 article-title: Toward automatic time-series forecasting using neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2198074 – year: 2010 ident: ref1 article-title: Distracted driving 2009 – ident: ref37 doi: 10.1109/TIM.2011.2130070 – year: 2016 ident: ref52 publication-title: Empatica Empatica E4 Wristband-EDA Sensor – ident: ref47 doi: 10.1109/IROS.2013.6697134 – ident: ref14 doi: 10.1016/S0925-2312(99)00177-0 – ident: ref42 doi: 10.1109/TITS.2007.895298 – ident: ref64 doi: 10.1109/31.7601 – ident: ref36 doi: 10.1109/JSEN.2014.2366915 – ident: ref56 doi: 10.1109/TBME.2011.2163715 – ident: ref60 doi: 10.1016/j.eswa.2011.04.149 – ident: ref24 doi: 10.1109/ICBBE.2009.5162679 – year: 2013 ident: ref30 article-title: Monitoring and emergency system for motor vehicles – ident: ref31 doi: 10.1109/ETFA.2008.4638468 – volume: 148 start-page: 34 year: 2001 ident: ref18 article-title: The echo state approach to analysing and training recurrent neural networks-with an erratum note – start-page: 1 year: 2005 ident: ref63 article-title: Remarks on emotion recognition from bio-potential signals publication-title: Proc Int Conf Auton Robot Agents – year: 2014 ident: ref61 publication-title: Emotion Recognition A Pattern Analysis Approach – ident: ref55 doi: 10.1016/0013-4694(87)90206-9 – year: 2016 ident: ref54 publication-title: Emotiv Epoc+-EEG Sensor – ident: ref17 doi: 10.1109/ICSPC.2007.4728467 – year: 2013 ident: ref29 article-title: Steering wheel hand position sensing device – ident: ref8 doi: 10.1109/TIM.2004.851071 – ident: ref11 doi: 10.1080/13658810210137004 – ident: ref26 doi: 10.1109/IMTC.2008.4547283 |
SSID | ssj0007647 |
Score | 2.421665 |
Snippet | With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 624 |
SubjectTerms | Artificial neural networks automotive applications Biomedical monitoring capacitive sensors cellular neural networks (CNNs) Electrodes ink-jet printing Monitoring Vehicles Wheels Wireless communication Wireless sensor networks |
Title | A Driver State Detection System-Combining a Capacitive Hand Detection Sensor With Physiological Sensors |
URI | https://ieeexplore.ieee.org/document/7831367 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5sgqAP3sU7efBFsLs0aZo8yuaYwnxS3FtJc1FROpndi7_ek7QbU0R8K-lpCXzpuTRfvgNw7jDEGJYIXLwqjRg1MhLcmoiLNLU0j5M4ID2648MHdjtOxg24XJyFsdYG8plt-cuwl28meuZ_lbVTQb3CWBOaWLhVZ7UWXjflrNLH7OIHjFnBfEuyI9v3NyPP4eItDP5-X_BbCFrqqRJCymATRvPJVEyS19aszFv684dO439nuwUbdW5JrqrFsA0NW-zA-pLi4A6sBsan_tiFpyvSn3pSBgn5JunbMrCyClKJmEfoKfLQPYIo0sOQqgPLiAxVYZaNsQyeTMnjS_lMwrvnzrS-87EHD4Pr-94wqrsuRDrmtIyowaTMJVJ0HHdMOKk0ixWXmEnpODdaUnSJRqCB6Oqu6WpLOzjocuWEUyyl-7BSTAp7AMRwJTmWoFQxxoxLlVC-ySjluaRJbuNDaM-ByHQtSe47Y7xloTTpyAyhyzx0WQ3dIVwsnniv5Dj-sN31oCzsajyOfh8-hrXYR-xAyjmBlXI6s6eYb5T5WVhoX79u0TU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-swEB6xCAEHeGxifz68CxJpm9hx7CNiUVnKqQhukeMFEChFJb3w6xk7adWHEOIWOZPI0jjzjTOfvwH45xBiDEsFLl6VRYwaGQluTcRFlllaJGkSPN275d07dvWQPszA8eQsjLU2kM9sy1-GWr4Z6JH_VdbOBPUKY7Mwj7ifxvVprUnczTirFTJj_IQxLxgXJTuy3b_seRYXbyH8-8rgfyA01VUlgMrFKvTG06m5JC-tUVW09McXpcbfzvcPrDTZJTmpl8MazNhyHZanNAfXYSFwPvX7BjyekLOhp2WQkHGSM1sFXlZJahnzCGNFEfpHEEVOEVR14BmRrirNtDFuhAdDcv9cPZHw7nE4be68b8LdxXn_tBs1fRcinXBaRdRgWuZSKTqOOyacVJolikvMpXRSGC0pBkUj0EDEOjaxtrSDg65QTjjFMroFc-WgtNtADFeS4yaUKsaYcZkSyrcZpbyQNC1ssgPtsSNy3YiS-94Yr3nYnHRkjq7LvevyxnU7cDR54q0W5PjBdsM7ZWLX-GP3--G_sNjt927ym8vb6z1YSjx-B4rOPsxVw5E9wOyjKg7DovsE037Ufg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Driver+State+Detection+System-Combining+a+Capacitive+Hand+Detection+Sensor+With+Physiological+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Muhlbacher-Karrer%2C+Stephan&rft.au=Mosa%2C+Ahmad+Haj&rft.au=Faller%2C+Lisa-Marie&rft.au=Ali%2C+Mouhannad&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=66&rft.issue=4&rft.spage=624&rft.epage=636&rft_id=info:doi/10.1109%2FTIM.2016.2640458&rft.externalDocID=7831367 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |