A Driver State Detection System-Combining a Capacitive Hand Detection Sensor With Physiological Sensors

With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In this paper, a driver state detection system based on cellular neural networks (CNNs) to monitor the driver's stress level is presented. W...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 66; no. 4; pp. 624 - 636
Main Authors Muhlbacher-Karrer, Stephan, Mosa, Ahmad Haj, Faller, Lisa-Marie, Ali, Mouhannad, Hamid, Raiyan, Zangl, Hubert, Kyamakya, Kyandoghere
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In this paper, a driver state detection system based on cellular neural networks (CNNs) to monitor the driver's stress level is presented. We propose to include a capacitive-based wireless hand detection (position and touch) sensor for a steering wheel utilizing ink-jet printed sensor mats as an input sensor in order to improve the performance. A driving simulator platform providing a realistic virtual traffic environment is utilized to conduct a study with 22 participants for the evaluation of the proposed system. Each participant is driving in two different scenarios, each representing one of the two no-stress/stress driver states. A "threefold" cross validation is applied to evaluate our concept. The subject dependence is considered carefully by separating the training and testing data. Furthermore, the CNN approach is benchmarked against other state-of-the-art machine learning techniques. The results show a significant improvement combining sensor inputs from different driver inherent domains, giving a total related detection accuracy of 92%. Besides that, this paper shows that in case of including the capacitive hand detection sensor, the accuracy increases by 10%. These findings indicate that adding a subject-independent sensor, such as the proposed capacitive hand detection sensor, can significantly improve the detection performance.
AbstractList With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In this paper, a driver state detection system based on cellular neural networks (CNNs) to monitor the driver's stress level is presented. We propose to include a capacitive-based wireless hand detection (position and touch) sensor for a steering wheel utilizing ink-jet printed sensor mats as an input sensor in order to improve the performance. A driving simulator platform providing a realistic virtual traffic environment is utilized to conduct a study with 22 participants for the evaluation of the proposed system. Each participant is driving in two different scenarios, each representing one of the two no-stress/stress driver states. A "threefold" cross validation is applied to evaluate our concept. The subject dependence is considered carefully by separating the training and testing data. Furthermore, the CNN approach is benchmarked against other state-of-the-art machine learning techniques. The results show a significant improvement combining sensor inputs from different driver inherent domains, giving a total related detection accuracy of 92%. Besides that, this paper shows that in case of including the capacitive hand detection sensor, the accuracy increases by 10%. These findings indicate that adding a subject-independent sensor, such as the proposed capacitive hand detection sensor, can significantly improve the detection performance.
Author Muhlbacher-Karrer, Stephan
Kyamakya, Kyandoghere
Zangl, Hubert
Ali, Mouhannad
Hamid, Raiyan
Mosa, Ahmad Haj
Faller, Lisa-Marie
Author_xml – sequence: 1
  givenname: Stephan
  surname: Muhlbacher-Karrer
  fullname: Muhlbacher-Karrer, Stephan
  email: stephan.muehlbacher-karrer@aau.at
  organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria
– sequence: 2
  givenname: Ahmad Haj
  surname: Mosa
  fullname: Mosa, Ahmad Haj
  organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria
– sequence: 3
  givenname: Lisa-Marie
  surname: Faller
  fullname: Faller, Lisa-Marie
  organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria
– sequence: 4
  givenname: Mouhannad
  surname: Ali
  fullname: Ali, Mouhannad
  organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria
– sequence: 5
  givenname: Raiyan
  surname: Hamid
  fullname: Hamid, Raiyan
  organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria
– sequence: 6
  givenname: Hubert
  surname: Zangl
  fullname: Zangl, Hubert
  organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria
– sequence: 7
  givenname: Kyandoghere
  surname: Kyamakya
  fullname: Kyamakya, Kyandoghere
  organization: Inst. of Smart Syst. Technol., Alpen-Adria-Univ. Klagenfurt, Klagenfurt, Austria
BookMark eNp9kE1LAzEQhoNUsFbvgpf8ga3JZjebHMtWbaGi0IrHZZqPNrLdlCQI_fduaRHx4Glg5n1mmOcaDTrfGYTuKBlTSuTDav4yzgnl45wXpCjFBRrSsqwyyXk-QENCqMhkUfIrdB3jJyGk4kU1RJsJngb3ZQJeJkgGT00yKjnf4eUhJrPLar9bu851Gwy4hj0ol_o4nkGnf4dNF33AHy5t8dv2EJ1v_cYpaM-TeIMuLbTR3J7rCL0_Pa7qWbZ4fZ7Xk0Wmcs5SxrRgpS2lIJbbQlgJqsiBS8GkytdaSQZaa9EHBFVUU2UY6Zt2DVZYKCo2QuS0VwUfYzC22Qe3g3BoKGmOoppeVHMU1ZxF9Qj_g_Q_wvGtFMC1_4H3J9AZY37uVIJRxiv2DUDceTk
CODEN IEIMAO
CitedBy_id crossref_primary_10_3390_s22134717
crossref_primary_10_1016_j_conengprac_2022_105294
crossref_primary_10_1111_tops_12669
crossref_primary_10_1109_TIM_2019_2904332
crossref_primary_10_1016_j_trip_2024_101098
crossref_primary_10_1016_j_measurement_2019_03_064
crossref_primary_10_1109_TIM_2017_2779329
crossref_primary_10_1016_j_apergo_2024_104244
crossref_primary_10_1038_s41598_021_00812_7
crossref_primary_10_1109_TIM_2018_2885608
crossref_primary_10_3390_s20092588
crossref_primary_10_1109_JSEN_2019_2962874
crossref_primary_10_1016_j_neucom_2020_04_133
crossref_primary_10_1109_ACCESS_2019_2959398
crossref_primary_10_1016_j_bbe_2019_01_004
crossref_primary_10_1109_TITS_2019_2956598
crossref_primary_10_1002_aisy_202100211
crossref_primary_10_1109_TCSS_2017_2766884
crossref_primary_10_1109_TIM_2023_3250232
crossref_primary_10_3390_app11083321
crossref_primary_10_3390_s18061905
crossref_primary_10_1007_s00530_024_01302_2
crossref_primary_10_1109_TCE_2024_3366988
crossref_primary_10_1155_2022_2673191
crossref_primary_10_3390_c8020026
crossref_primary_10_1109_TITS_2021_3108851
crossref_primary_10_1109_ACCESS_2022_3221145
crossref_primary_10_1109_TIM_2020_2988744
crossref_primary_10_1109_TIM_2021_3094619
crossref_primary_10_1109_ACCESS_2022_3219844
crossref_primary_10_1186_s40537_024_00890_0
crossref_primary_10_1007_s42452_019_0276_z
crossref_primary_10_3390_s22228593
crossref_primary_10_3390_safety6040055
crossref_primary_10_1109_TIM_2021_3109745
crossref_primary_10_1088_1742_6596_1651_1_012188
crossref_primary_10_1109_ACCESS_2020_2977716
crossref_primary_10_1145_3519267
crossref_primary_10_3390_s24082469
crossref_primary_10_1016_j_bspc_2021_102419
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_1051_e3sconf_202339905002
crossref_primary_10_3390_electronics9122092
crossref_primary_10_1016_j_eswa_2023_122056
crossref_primary_10_1109_TIM_2022_3147329
Cites_doi 10.1109/TIM.2013.2278562
10.1109/82.222815
10.1109/TIM.2003.816812
10.1016/j.trc.2013.10.004
10.1109/TPAMI.2008.26
10.1109/34.709601
10.1016/j.eswa.2006.02.005
10.1016/j.cnsns.2010.12.017
10.1109/TITB.2009.2034649
10.1109/MMVIP.2008.4749553
10.1109/ITSC.2009.5309881
10.1109/JSEN.2014.2384276
10.1109/TITS.2010.2092770
10.3390/s120201288
10.1109/TIM.2015.2433611
10.1109/TIM.2008.922074
10.1109/4.364437
10.1142/S0218127408022585
10.1016/j.cmpb.2013.07.024
10.1109/TIM.2014.2313035
10.1111/j.1469-8986.2009.00972.x
10.1109/19.997824
10.1109/TITS.2005.848368
10.1109/MPRV.2011.54
10.1109/TCSI.2003.812611
10.1016/j.aap.2009.05.001
10.1016/j.patcog.2008.01.018
10.1109/ISCAS.1998.703935
10.1007/978-3-642-35289-8_36
10.1109/SAS.2016.7479878
10.1109/TAP.2014.2309957
10.1109/TCSII.2006.886244
10.1145/1656274.1656278
10.1109/MIM.2011.6041380
10.1007/978-3-658-05734-3_52
10.1109/TIM.2007.909411
10.1109/TNNLS.2012.2198074
10.1109/TIM.2011.2130070
10.1109/IROS.2013.6697134
10.1016/S0925-2312(99)00177-0
10.1109/TITS.2007.895298
10.1109/31.7601
10.1109/JSEN.2014.2366915
10.1109/TBME.2011.2163715
10.1016/j.eswa.2011.04.149
10.1109/ICBBE.2009.5162679
10.1109/ETFA.2008.4638468
10.1016/0013-4694(87)90206-9
10.1109/ICSPC.2007.4728467
10.1109/TIM.2004.851071
10.1080/13658810210137004
10.1109/IMTC.2008.4547283
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIM.2016.2640458
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 636
ExternalDocumentID 10_1109_TIM_2016_2640458
7831367
Genre orig-research
GrantInformation_xml – fundername: Austrian Research Promotion Agency (FFG)
  grantid: 842547
– fundername: DEWI Project through the ARTEMIS Joint Undertaking
  grantid: 621353
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c263t-3d835f5980f6f48f9ac42a69839c2bdc93addd859881c1d1ce30c93fbaf8fa473
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 02:02:30 EDT 2025
Tue Aug 26 16:43:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-3d835f5980f6f48f9ac42a69839c2bdc93addd859881c1d1ce30c93fbaf8fa473
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7831367
PageCount 13
ParticipantIDs ieee_primary_7831367
crossref_primary_10_1109_TIM_2016_2640458
crossref_citationtrail_10_1109_TIM_2016_2640458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-April
2017-4-00
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References takahashi (ref63) 2005
ref57
ref13
(ref49) 2014
ref56
ref12
ref59
ref15
ref58
ref14
ref55
ref11
ref10
ref17
ref16
(ref1) 2010
evarts (ref29) 2013
kaija (ref32) 2008
ref51
ref46
jaeger (ref19) 2012
ref45
ref47
ref42
ref44
(ref53) 2016
ref43
yan (ref73) 2012; 23
(ref28) 2015
bian (ref41) 2015
ref8
ref7
(ref65) 2013
van der heijden (ref67) 2005
ref9
ref4
ref3
ref6
ref5
srivastava (ref71) 2007; 8
ref35
jaeger (ref18) 2001; 148
ho (ref72) 1998; 20
ref34
ref37
ref36
ref31
fukunaga (ref66) 2013
ref74
ref33
ref2
ref39
kim (ref40) 2008; 30
ref38
(ref50) 2015
(ref54) 2016
su (ref69) 2011
ref68
ref24
ref23
ref26
ref25
ref64
ref20
ref22
ref21
konar (ref61) 2014
güzelocak (ref30) 2013
mühlbacher-karrer (ref48) 2015
ref60
ref62
(ref52) 2016
lukoševi?ius (ref70) 2012
(ref27) 2013
References_xml – year: 2015
  ident: ref28
  publication-title: Hands off Detection-HOD Datasheet IEE a Sense for Inovation
– volume: 8
  start-page: 1277
  year: 2007
  ident: ref71
  article-title: Bayesian quadratic discriminant analysis
  publication-title: J Mach Learn Res
– ident: ref6
  doi: 10.1109/TIM.2013.2278562
– start-page: 109
  year: 2011
  ident: ref69
  article-title: Particle swarm optimization with time-varying acceleration coefficients based on cellular neural network for color image noise cancellation
  publication-title: Proc Int Conf Digital Telecommun (ICDT)
– ident: ref20
  doi: 10.1109/82.222815
– ident: ref25
  doi: 10.1109/TIM.2003.816812
– ident: ref43
  doi: 10.1016/j.trc.2013.10.004
– volume: 30
  start-page: 2067
  year: 2008
  ident: ref40
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.26
– volume: 20
  start-page: 832
  year: 1998
  ident: ref72
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– ident: ref59
  doi: 10.1016/j.eswa.2006.02.005
– ident: ref12
  doi: 10.1016/j.cnsns.2010.12.017
– year: 2015
  ident: ref50
  publication-title: CapTouch Programmable Controller for Single- Electrode Capacitance Sensors - AD7147
– ident: ref62
  doi: 10.1109/TITB.2009.2034649
– ident: ref16
  doi: 10.1109/MMVIP.2008.4749553
– year: 2014
  ident: ref49
  publication-title: nRF51822-Product Specification
– year: 2013
  ident: ref66
  publication-title: Introduction to statistical pattern recognition
– ident: ref45
  doi: 10.1109/ITSC.2009.5309881
– ident: ref51
  doi: 10.1109/JSEN.2014.2384276
– ident: ref46
  doi: 10.1109/TITS.2010.2092770
– ident: ref38
  doi: 10.3390/s120201288
– ident: ref35
  doi: 10.1109/TIM.2015.2433611
– ident: ref5
  doi: 10.1109/TIM.2008.922074
– start-page: 1
  year: 2008
  ident: ref32
  article-title: Applicability of inkjet technology for electronics manufacturing
  publication-title: Proc SMTA Int Conf
– year: 2012
  ident: ref19
  article-title: Long short-term memory in echo state networks: Details of a simulation study
– ident: ref21
  doi: 10.1109/4.364437
– start-page: 1
  year: 2015
  ident: ref41
  article-title: Physiology-based affect recognition during driving in virtual environment for autism intervention
  publication-title: Proc 2nd Int Conf Physiol Comput Syst
– ident: ref68
  doi: 10.1142/S0218127408022585
– ident: ref58
  doi: 10.1016/j.cmpb.2013.07.024
– year: 2016
  ident: ref53
  publication-title: BioRadio-ECG Sensor
– ident: ref9
  doi: 10.1109/TIM.2014.2313035
– start-page: 1
  year: 2015
  ident: ref48
  article-title: Short range capacitive proximity sensing
  publication-title: 2nd Workshop on Alternative Sensing for Robot Perception Beyond Laser and Vision
– ident: ref57
  doi: 10.1111/j.1469-8986.2009.00972.x
– ident: ref7
  doi: 10.1109/19.997824
– ident: ref39
  doi: 10.1109/TITS.2005.848368
– year: 2005
  ident: ref67
  publication-title: Classification Parameter Estimation and State Estimation An Engineering Approach Using MATLAB
– ident: ref3
  doi: 10.1109/MPRV.2011.54
– ident: ref22
  doi: 10.1109/TCSI.2003.812611
– ident: ref44
  doi: 10.1016/j.aap.2009.05.001
– year: 2013
  ident: ref27
  publication-title: Smart Trunk Opener-STO Datasheet IEE a Sense for Inovation
– ident: ref23
  doi: 10.1016/j.patcog.2008.01.018
– ident: ref15
  doi: 10.1109/ISCAS.1998.703935
– start-page: 659
  year: 2012
  ident: ref70
  article-title: A practical guide to applying echo state networks
  publication-title: Neural Networks Tricks of the Trade
  doi: 10.1007/978-3-642-35289-8_36
– year: 2013
  ident: ref65
  publication-title: MATLAB Version 7 14 0 (R2012a)
– ident: ref4
  doi: 10.1109/SAS.2016.7479878
– ident: ref34
  doi: 10.1109/TAP.2014.2309957
– ident: ref13
  doi: 10.1109/TCSII.2006.886244
– ident: ref74
  doi: 10.1145/1656274.1656278
– ident: ref33
  doi: 10.1109/MIM.2011.6041380
– ident: ref2
  doi: 10.1007/978-3-658-05734-3_52
– ident: ref10
  doi: 10.1109/TIM.2007.909411
– volume: 23
  start-page: 1028
  year: 2012
  ident: ref73
  article-title: Toward automatic time-series forecasting using neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2198074
– year: 2010
  ident: ref1
  article-title: Distracted driving 2009
– ident: ref37
  doi: 10.1109/TIM.2011.2130070
– year: 2016
  ident: ref52
  publication-title: Empatica Empatica E4 Wristband-EDA Sensor
– ident: ref47
  doi: 10.1109/IROS.2013.6697134
– ident: ref14
  doi: 10.1016/S0925-2312(99)00177-0
– ident: ref42
  doi: 10.1109/TITS.2007.895298
– ident: ref64
  doi: 10.1109/31.7601
– ident: ref36
  doi: 10.1109/JSEN.2014.2366915
– ident: ref56
  doi: 10.1109/TBME.2011.2163715
– ident: ref60
  doi: 10.1016/j.eswa.2011.04.149
– ident: ref24
  doi: 10.1109/ICBBE.2009.5162679
– year: 2013
  ident: ref30
  article-title: Monitoring and emergency system for motor vehicles
– ident: ref31
  doi: 10.1109/ETFA.2008.4638468
– volume: 148
  start-page: 34
  year: 2001
  ident: ref18
  article-title: The echo state approach to analysing and training recurrent neural networks-with an erratum note
– start-page: 1
  year: 2005
  ident: ref63
  article-title: Remarks on emotion recognition from bio-potential signals
  publication-title: Proc Int Conf Auton Robot Agents
– year: 2014
  ident: ref61
  publication-title: Emotion Recognition A Pattern Analysis Approach
– ident: ref55
  doi: 10.1016/0013-4694(87)90206-9
– year: 2016
  ident: ref54
  publication-title: Emotiv Epoc+-EEG Sensor
– ident: ref17
  doi: 10.1109/ICSPC.2007.4728467
– year: 2013
  ident: ref29
  article-title: Steering wheel hand position sensing device
– ident: ref8
  doi: 10.1109/TIM.2004.851071
– ident: ref11
  doi: 10.1080/13658810210137004
– ident: ref26
  doi: 10.1109/IMTC.2008.4547283
SSID ssj0007647
Score 2.421665
Snippet With respect to automotive safety, the driver plays a crucial role. Stress level, tiredness, and distraction of the driver are therefore of high interest. In...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 624
SubjectTerms Artificial neural networks
automotive applications
Biomedical monitoring
capacitive sensors
cellular neural networks (CNNs)
Electrodes
ink-jet printing
Monitoring
Vehicles
Wheels
Wireless communication
Wireless sensor networks
Title A Driver State Detection System-Combining a Capacitive Hand Detection Sensor With Physiological Sensors
URI https://ieeexplore.ieee.org/document/7831367
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5sgqAP3sU7efBFsLs0aZo8yuaYwnxS3FtJc1FROpndi7_ek7QbU0R8K-lpCXzpuTRfvgNw7jDEGJYIXLwqjRg1MhLcmoiLNLU0j5M4ID2648MHdjtOxg24XJyFsdYG8plt-cuwl28meuZ_lbVTQb3CWBOaWLhVZ7UWXjflrNLH7OIHjFnBfEuyI9v3NyPP4eItDP5-X_BbCFrqqRJCymATRvPJVEyS19aszFv684dO439nuwUbdW5JrqrFsA0NW-zA-pLi4A6sBsan_tiFpyvSn3pSBgn5JunbMrCyClKJmEfoKfLQPYIo0sOQqgPLiAxVYZaNsQyeTMnjS_lMwrvnzrS-87EHD4Pr-94wqrsuRDrmtIyowaTMJVJ0HHdMOKk0ixWXmEnpODdaUnSJRqCB6Oqu6WpLOzjocuWEUyyl-7BSTAp7AMRwJTmWoFQxxoxLlVC-ySjluaRJbuNDaM-ByHQtSe47Y7xloTTpyAyhyzx0WQ3dIVwsnniv5Dj-sN31oCzsajyOfh8-hrXYR-xAyjmBlXI6s6eYb5T5WVhoX79u0TU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-swEB6xCAEHeGxifz68CxJpm9hx7CNiUVnKqQhukeMFEChFJb3w6xk7adWHEOIWOZPI0jjzjTOfvwH45xBiDEsFLl6VRYwaGQluTcRFlllaJGkSPN275d07dvWQPszA8eQsjLU2kM9sy1-GWr4Z6JH_VdbOBPUKY7Mwj7ifxvVprUnczTirFTJj_IQxLxgXJTuy3b_seRYXbyH8-8rgfyA01VUlgMrFKvTG06m5JC-tUVW09McXpcbfzvcPrDTZJTmpl8MazNhyHZanNAfXYSFwPvX7BjyekLOhp2WQkHGSM1sFXlZJahnzCGNFEfpHEEVOEVR14BmRrirNtDFuhAdDcv9cPZHw7nE4be68b8LdxXn_tBs1fRcinXBaRdRgWuZSKTqOOyacVJolikvMpXRSGC0pBkUj0EDEOjaxtrSDg65QTjjFMroFc-WgtNtADFeS4yaUKsaYcZkSyrcZpbyQNC1ssgPtsSNy3YiS-94Yr3nYnHRkjq7LvevyxnU7cDR54q0W5PjBdsM7ZWLX-GP3--G_sNjt927ym8vb6z1YSjx-B4rOPsxVw5E9wOyjKg7DovsE037Ufg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Driver+State+Detection+System-Combining+a+Capacitive+Hand+Detection+Sensor+With+Physiological+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Muhlbacher-Karrer%2C+Stephan&rft.au=Mosa%2C+Ahmad+Haj&rft.au=Faller%2C+Lisa-Marie&rft.au=Ali%2C+Mouhannad&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=66&rft.issue=4&rft.spage=624&rft.epage=636&rft_id=info:doi/10.1109%2FTIM.2016.2640458&rft.externalDocID=7831367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon