Minimization Problems Based on Relative \alpha -Entropy II: Reverse Projection
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers were called forward ℐ α -projections. Here, a complementary class of minimization problems leading to the so-called reverse ℐ α -projections...
Saved in:
Published in | IEEE transactions on information theory Vol. 61; no. 9; pp. 5081 - 5095 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2015.2449312 |
Cover
Loading…
Abstract | In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers were called forward ℐ α -projections. Here, a complementary class of minimization problems leading to the so-called reverse ℐ α -projections are studied. Reverse ℐ α -projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (α > 1) and in constrained compression settings (α <; 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse ℐ α -projection into a forward ℐ α -projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints. |
---|---|
AbstractList | In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers were called forward ℐ α -projections. Here, a complementary class of minimization problems leading to the so-called reverse ℐ α -projections are studied. Reverse ℐ α -projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (α > 1) and in constrained compression settings (α <; 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse ℐ α -projection into a forward ℐ α -projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints. |
Author | Sundaresan, Rajesh Ashok Kumar, M. |
Author_xml | – sequence: 1 givenname: M. surname: Ashok Kumar fullname: Ashok Kumar, M. email: ashokm.shree@gmail.com organization: Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel – sequence: 2 givenname: Rajesh surname: Sundaresan fullname: Sundaresan, Rajesh email: rajeshs@ece.iisc.ernet.in organization: Dept. of Electr. & Commun. Eng., Indian Inst. of Sci., Bangalore, India |
BookMark | eNp9kE1Lw0AQhhepYFu9C17yB1J39iPJetNSNVA_kHgTwnYzwS1pUnZDof56N7Z48OBpmHnnmY93QkZt1yIhl0BnAFRdF3kxYxTkjAmhOLATMgYp01glUozImFLIYiVEdkYm3q9DKiSwMXl-sq3d2C_d266NXl23anDjozvtsYpC5Q2bIO0w-tDN9lNH8aLtXbfdR3l-E8QdOo8DtkYzTDgnp7VuPF4c45S83y-K-WO8fHnI57fL2LCE9zEzoKQysuIrylk4VxpWGZMIyEQla5MlleaITNXUcF4DT1hqQtcqyajQGfApoYe5xnXeO6zLrbMb7fYl0HLwowx-lIMf5dGPgCR_EGP7n7d7p23zH3h1AC0i_u5JgbM0NHwDErtugw |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_LSP_2016_2605818 crossref_primary_10_1109_TIT_2015_2449312 crossref_primary_10_1016_j_jmva_2021_104734 crossref_primary_10_3390_e24111695 crossref_primary_10_1109_TIT_2022_3210436 crossref_primary_10_1109_TIT_2023_3318184 crossref_primary_10_3390_e19090482 crossref_primary_10_1080_02331888_2024_2372596 crossref_primary_10_1109_TIT_2021_3054980 crossref_primary_10_1109_TIT_2022_3215496 crossref_primary_10_1007_s41884_020_00029_z crossref_primary_10_3390_e20050347 crossref_primary_10_1109_TIT_2016_2595586 crossref_primary_10_3390_e21080778 |
Cites_doi | 10.1109/TIT.2010.2090221 10.1016/j.jmva.2008.02.004 10.1109/ISIT.2002.1023536 10.1093/biomet/85.3.549 10.1002/9780470316436 10.1561/9781933019543 10.1109/TIT.2015.2449312 10.2307/1403770 10.3390/e12020262 10.1017/CBO9780511804441 10.3390/e12061532 10.1016/S0019-9958(65)90332-3 10.1109/TIT.2014.2329490 10.1109/TIT.2014.2320500 10.1214/aos/1176348385 10.1093/biomet/88.3.865 10.1109/TIT.2003.810633 10.1109/18.481781 10.1109/TIT.2006.887466 10.1111/j.2517-6161.1995.tb02050.x |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TIT.2015.2449312 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 5095 |
ExternalDocumentID | 10_1109_TIT_2015_2449312 7132749 |
Genre | orig-research |
GrantInformation_xml | – fundername: Council for Scientific and Industrial Research Fellowship funderid: 10.13039/501100001332 – fundername: Department of Science and Technology – fundername: University Grants Commission grantid: Part (2B) UGC-CAS-(Ph.IV) funderid: 10.13039/501100001501 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c263t-2c1959c5d3b0329315c2dcc64184d5fc86da3ee29f0c33f13627c315b6804a813 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Tue Jul 01 02:16:05 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Aug 26 16:50:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | information geometry Rényi entropy Tsallis entropy robust estimation relative entropy power-law family Best approximant Pythagorean property Kullback-Leibler divergence linear family projection exponential family |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-2c1959c5d3b0329315c2dcc64184d5fc86da3ee29f0c33f13627c315b6804a813 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TIT_2015_2449312 crossref_citationtrail_10_1109_TIT_2015_2449312 ieee_primary_7132749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Sept. 2015-9-00 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-Sept. |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref23 ref15 ref14 ref11 ref10 ref21 tsallis (ref18) 1994; 17 bertsekas (ref22) 2003 ref2 ref17 ref16 ref19 ref8 ref7 csiszár (ref20) 2004; 1 ref9 ref4 ref5 rao (ref3) 1973 windham (ref6) 1995; 57 ashok kumar (ref1) 2015 |
References_xml | – ident: ref16 doi: 10.1109/TIT.2010.2090221 – ident: ref9 doi: 10.1016/j.jmva.2008.02.004 – ident: ref12 doi: 10.1109/ISIT.2002.1023536 – ident: ref4 doi: 10.1093/biomet/85.3.549 – year: 1973 ident: ref3 publication-title: Linear Statistical Inference and its Applications doi: 10.1002/9780470316436 – volume: 1 year: 2004 ident: ref20 publication-title: Information Theory and Statistics A Tutorial doi: 10.1561/9781933019543 – ident: ref2 doi: 10.1109/TIT.2015.2449312 – ident: ref5 doi: 10.2307/1403770 – start-page: 1 year: 2015 ident: ref1 article-title: Relative $\alpha $ -entropy minimizers subject to linear statistical constraints publication-title: Proc Nat Conf Commun (NCC) – ident: ref8 doi: 10.3390/e12020262 – year: 2003 ident: ref22 publication-title: Nonlinear Programming – ident: ref23 doi: 10.1017/CBO9780511804441 – ident: ref10 doi: 10.3390/e12061532 – ident: ref14 doi: 10.1016/S0019-9958(65)90332-3 – ident: ref17 doi: 10.1109/TIT.2014.2329490 – ident: ref19 doi: 10.1109/TIT.2014.2320500 – ident: ref11 doi: 10.1214/aos/1176348385 – volume: 17 start-page: 468 year: 1994 ident: ref18 article-title: What are the numbers that experiments provide? publication-title: Quim Nova – ident: ref7 doi: 10.1093/biomet/88.3.865 – ident: ref21 doi: 10.1109/TIT.2003.810633 – ident: ref15 doi: 10.1109/18.481781 – ident: ref13 doi: 10.1109/TIT.2006.887466 – volume: 57 start-page: 599 year: 1995 ident: ref6 article-title: Robustifying model fitting publication-title: J Roy Statist Soc B Statist Methodol doi: 10.1111/j.2517-6161.1995.tb02050.x |
SSID | ssj0014512 |
Score | 2.3405666 |
Snippet | In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5081 |
SubjectTerms | Best approximant Entropy exponential family information geometry Kullback-Leibler divergence linear family Mathematical model Maximum likelihood estimation Minimization Pollution measurement power-law family projection Pythagorean property Q measurement relative entropy Renyi entropy robust estimation Robustness Tsallis entropy |
Title | Minimization Problems Based on Relative \alpha -Entropy II: Reverse Projection |
URI | https://ieeexplore.ieee.org/document/7132749 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5se9IHp5vivJEHXwTbpU3Ti28qG5uw4cMGexDKmqQwL93QTtBf70lvTBER-lDSBEJOwne-5jvnAJz7c_RTFRWGFDwwHOlGeKS4MmSMYOV5MfeEJoqjsTuYOnczPqvBZRULo5TKxGfK1K_ZXb5cirX-VdZFQoUkKqhDHYlbHqtV3Rg43Mozg1t4gJFzlFeSNOhOhhOt4eImQlnALPsbBG3UVMkgpd-EUTmZXEnyZK7TyBSfP_I0_ne2u7BT-JbkOt8Me1BTSQuaZd0GUhzjFmxvJCFsw3i0SBYvRTgmuc8LzLyRG4Q3SbAll8u9K_KQxeUSo6fF7asPMhxe4Uct61B62GMm6kr2YdrvTW4HRlFlwRC2y1LDFjq_jOCSRZQh-Ftc2FII10HuJ7XCy5VzppQdxFQwFluIeJ7AXpHrU2fuW-wAGskyUYdA4lhJfy49SlXgWDE6H_jIwHeFLyQ6Dh3olgsfiiIFua6E8RxmVIQGIZoq1KYKC1N14KIascrTb_zRt62NUPUr1v_o9-Zj2NKDc7nYCTTS17U6Rf8ijc6yjfUFGrjK7Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSD1VaxPvfgRTBp3sl6U2lptCkeUuhBCMnuBuojLdoK-uudTdJQRUTIIWx2w7Kzyzez880MwJkXo54qNKZwZlPF4k6CR8oWCk8RrFw3tV0mDcVg4PSG1u3IHq3ARRULI4TIyWdCla-5L59P2FxelbXRoEIjiq7CGuK-RYtorcpnYNl6kRtcxyOMVsfCKanRduiHksVlqwhm1NSNbyC0VFUlB5VuHYLFdAouyZM6nyUq-_yRqfG_892GrVK7JFfFdtiBFZE1oL6o3EDKg9yAzaU0hE0YBONs_FIGZJL7osTMG7lGgOMEWwrC3LsgD3lkLlE6kt4-_SC-f4kfJbFDyGGPOa0r24VhtxPe9JSyzoLCDMecKQaTGWaYzc1EMxH-dZsZnDHHQuuPS46Xw2NTCIOmGjPNVEfMcxn2ShxPs2JPN_eglk0ysQ8kTQX3Yu5qmqCWnqL6gQ-nnsM8xlF1aEF7sfARK5OQy1oYz1FujGg0QlFFUlRRKaoWnFcjpkUCjj_6NqUQqn7l-h_83nwK670w6Ed9f3B3CBvyRwV57Ahqs9e5OEZtY5ac5JvsC--szj0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimization+Problems+Based+on+Relative+%24%5Calpha+%24+-Entropy+II%3A+Reverse+Projection&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Ashok+Kumar%2C+M.&rft.au=Sundaresan%2C+Rajesh&rft.date=2015-09-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=61&rft.issue=9&rft.spage=5081&rft.epage=5095&rft_id=info:doi/10.1109%2FTIT.2015.2449312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2015_2449312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |