Minimization Problems Based on Relative \alpha -Entropy II: Reverse Projection

In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers were called forward ℐ α -projections. Here, a complementary class of minimization problems leading to the so-called reverse ℐ α -projections...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 61; no. 9; pp. 5081 - 5095
Main Authors Ashok Kumar, M., Sundaresan, Rajesh
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2015
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2015.2449312

Cover

Loading…
Abstract In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers were called forward ℐ α -projections. Here, a complementary class of minimization problems leading to the so-called reverse ℐ α -projections are studied. Reverse ℐ α -projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (α > 1) and in constrained compression settings (α <; 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse ℐ α -projection into a forward ℐ α -projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
AbstractList In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers were called forward ℐ α -projections. Here, a complementary class of minimization problems leading to the so-called reverse ℐ α -projections are studied. Reverse ℐ α -projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (α > 1) and in constrained compression settings (α <; 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse ℐ α -projection into a forward ℐ α -projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
Author Sundaresan, Rajesh
Ashok Kumar, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Ashok Kumar
  fullname: Ashok Kumar, M.
  email: ashokm.shree@gmail.com
  organization: Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel
– sequence: 2
  givenname: Rajesh
  surname: Sundaresan
  fullname: Sundaresan, Rajesh
  email: rajeshs@ece.iisc.ernet.in
  organization: Dept. of Electr. & Commun. Eng., Indian Inst. of Sci., Bangalore, India
BookMark eNp9kE1Lw0AQhhepYFu9C17yB1J39iPJetNSNVA_kHgTwnYzwS1pUnZDof56N7Z48OBpmHnnmY93QkZt1yIhl0BnAFRdF3kxYxTkjAmhOLATMgYp01glUozImFLIYiVEdkYm3q9DKiSwMXl-sq3d2C_d266NXl23anDjozvtsYpC5Q2bIO0w-tDN9lNH8aLtXbfdR3l-E8QdOo8DtkYzTDgnp7VuPF4c45S83y-K-WO8fHnI57fL2LCE9zEzoKQysuIrylk4VxpWGZMIyEQla5MlleaITNXUcF4DT1hqQtcqyajQGfApoYe5xnXeO6zLrbMb7fYl0HLwowx-lIMf5dGPgCR_EGP7n7d7p23zH3h1AC0i_u5JgbM0NHwDErtugw
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_LSP_2016_2605818
crossref_primary_10_1109_TIT_2015_2449312
crossref_primary_10_1016_j_jmva_2021_104734
crossref_primary_10_3390_e24111695
crossref_primary_10_1109_TIT_2022_3210436
crossref_primary_10_1109_TIT_2023_3318184
crossref_primary_10_3390_e19090482
crossref_primary_10_1080_02331888_2024_2372596
crossref_primary_10_1109_TIT_2021_3054980
crossref_primary_10_1109_TIT_2022_3215496
crossref_primary_10_1007_s41884_020_00029_z
crossref_primary_10_3390_e20050347
crossref_primary_10_1109_TIT_2016_2595586
crossref_primary_10_3390_e21080778
Cites_doi 10.1109/TIT.2010.2090221
10.1016/j.jmva.2008.02.004
10.1109/ISIT.2002.1023536
10.1093/biomet/85.3.549
10.1002/9780470316436
10.1561/9781933019543
10.1109/TIT.2015.2449312
10.2307/1403770
10.3390/e12020262
10.1017/CBO9780511804441
10.3390/e12061532
10.1016/S0019-9958(65)90332-3
10.1109/TIT.2014.2329490
10.1109/TIT.2014.2320500
10.1214/aos/1176348385
10.1093/biomet/88.3.865
10.1109/TIT.2003.810633
10.1109/18.481781
10.1109/TIT.2006.887466
10.1111/j.2517-6161.1995.tb02050.x
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2015.2449312
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5095
ExternalDocumentID 10_1109_TIT_2015_2449312
7132749
Genre orig-research
GrantInformation_xml – fundername: Council for Scientific and Industrial Research Fellowship
  funderid: 10.13039/501100001332
– fundername: Department of Science and Technology
– fundername: University Grants Commission
  grantid: Part (2B) UGC-CAS-(Ph.IV)
  funderid: 10.13039/501100001501
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c263t-2c1959c5d3b0329315c2dcc64184d5fc86da3ee29f0c33f13627c315b6804a813
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Tue Jul 01 02:16:05 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Aug 26 16:50:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords information geometry
Rényi entropy
Tsallis entropy
robust estimation
relative entropy
power-law family
Best approximant
Pythagorean property
Kullback-Leibler divergence
linear family
projection
exponential family
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-2c1959c5d3b0329315c2dcc64184d5fc86da3ee29f0c33f13627c315b6804a813
PageCount 15
ParticipantIDs crossref_primary_10_1109_TIT_2015_2449312
crossref_citationtrail_10_1109_TIT_2015_2449312
ieee_primary_7132749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Sept.
2015-9-00
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-Sept.
PublicationDecade 2010
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref23
ref15
ref14
ref11
ref10
ref21
tsallis (ref18) 1994; 17
bertsekas (ref22) 2003
ref2
ref17
ref16
ref19
ref8
ref7
csiszár (ref20) 2004; 1
ref9
ref4
ref5
rao (ref3) 1973
windham (ref6) 1995; 57
ashok kumar (ref1) 2015
References_xml – ident: ref16
  doi: 10.1109/TIT.2010.2090221
– ident: ref9
  doi: 10.1016/j.jmva.2008.02.004
– ident: ref12
  doi: 10.1109/ISIT.2002.1023536
– ident: ref4
  doi: 10.1093/biomet/85.3.549
– year: 1973
  ident: ref3
  publication-title: Linear Statistical Inference and its Applications
  doi: 10.1002/9780470316436
– volume: 1
  year: 2004
  ident: ref20
  publication-title: Information Theory and Statistics A Tutorial
  doi: 10.1561/9781933019543
– ident: ref2
  doi: 10.1109/TIT.2015.2449312
– ident: ref5
  doi: 10.2307/1403770
– start-page: 1
  year: 2015
  ident: ref1
  article-title: Relative $\alpha $ -entropy minimizers subject to linear statistical constraints
  publication-title: Proc Nat Conf Commun (NCC)
– ident: ref8
  doi: 10.3390/e12020262
– year: 2003
  ident: ref22
  publication-title: Nonlinear Programming
– ident: ref23
  doi: 10.1017/CBO9780511804441
– ident: ref10
  doi: 10.3390/e12061532
– ident: ref14
  doi: 10.1016/S0019-9958(65)90332-3
– ident: ref17
  doi: 10.1109/TIT.2014.2329490
– ident: ref19
  doi: 10.1109/TIT.2014.2320500
– ident: ref11
  doi: 10.1214/aos/1176348385
– volume: 17
  start-page: 468
  year: 1994
  ident: ref18
  article-title: What are the numbers that experiments provide?
  publication-title: Quim Nova
– ident: ref7
  doi: 10.1093/biomet/88.3.865
– ident: ref21
  doi: 10.1109/TIT.2003.810633
– ident: ref15
  doi: 10.1109/18.481781
– ident: ref13
  doi: 10.1109/TIT.2006.887466
– volume: 57
  start-page: 599
  year: 1995
  ident: ref6
  article-title: Robustifying model fitting
  publication-title: J Roy Statist Soc B Statist Methodol
  doi: 10.1111/j.2517-6161.1995.tb02050.x
SSID ssj0014512
Score 2.3405666
Snippet In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted ℐ α ) were studied. Such minimizers...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 5081
SubjectTerms Best approximant
Entropy
exponential family
information geometry
Kullback-Leibler divergence
linear family
Mathematical model
Maximum likelihood estimation
Minimization
Pollution measurement
power-law family
projection
Pythagorean property
Q measurement
relative entropy
Renyi entropy
robust estimation
Robustness
Tsallis entropy
Title Minimization Problems Based on Relative \alpha -Entropy II: Reverse Projection
URI https://ieeexplore.ieee.org/document/7132749
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5se9IHp5vivJEHXwTbpU3Ti28qG5uw4cMGexDKmqQwL93QTtBf70lvTBER-lDSBEJOwne-5jvnAJz7c_RTFRWGFDwwHOlGeKS4MmSMYOV5MfeEJoqjsTuYOnczPqvBZRULo5TKxGfK1K_ZXb5cirX-VdZFQoUkKqhDHYlbHqtV3Rg43Mozg1t4gJFzlFeSNOhOhhOt4eImQlnALPsbBG3UVMkgpd-EUTmZXEnyZK7TyBSfP_I0_ne2u7BT-JbkOt8Me1BTSQuaZd0GUhzjFmxvJCFsw3i0SBYvRTgmuc8LzLyRG4Q3SbAll8u9K_KQxeUSo6fF7asPMhxe4Uct61B62GMm6kr2YdrvTW4HRlFlwRC2y1LDFjq_jOCSRZQh-Ftc2FII10HuJ7XCy5VzppQdxFQwFluIeJ7AXpHrU2fuW-wAGskyUYdA4lhJfy49SlXgWDE6H_jIwHeFLyQ6Dh3olgsfiiIFua6E8RxmVIQGIZoq1KYKC1N14KIascrTb_zRt62NUPUr1v_o9-Zj2NKDc7nYCTTS17U6Rf8ijc6yjfUFGrjK7Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSD1VaxPvfgRTBp3sl6U2lptCkeUuhBCMnuBuojLdoK-uudTdJQRUTIIWx2w7Kzyzez880MwJkXo54qNKZwZlPF4k6CR8oWCk8RrFw3tV0mDcVg4PSG1u3IHq3ARRULI4TIyWdCla-5L59P2FxelbXRoEIjiq7CGuK-RYtorcpnYNl6kRtcxyOMVsfCKanRduiHksVlqwhm1NSNbyC0VFUlB5VuHYLFdAouyZM6nyUq-_yRqfG_892GrVK7JFfFdtiBFZE1oL6o3EDKg9yAzaU0hE0YBONs_FIGZJL7osTMG7lGgOMEWwrC3LsgD3lkLlE6kt4-_SC-f4kfJbFDyGGPOa0r24VhtxPe9JSyzoLCDMecKQaTGWaYzc1EMxH-dZsZnDHHQuuPS46Xw2NTCIOmGjPNVEfMcxn2ShxPs2JPN_eglk0ysQ8kTQX3Yu5qmqCWnqL6gQ-nnsM8xlF1aEF7sfARK5OQy1oYz1FujGg0QlFFUlRRKaoWnFcjpkUCjj_6NqUQqn7l-h_83nwK670w6Ed9f3B3CBvyRwV57Ahqs9e5OEZtY5ac5JvsC--szj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimization+Problems+Based+on+Relative+%24%5Calpha+%24+-Entropy+II%3A+Reverse+Projection&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Ashok+Kumar%2C+M.&rft.au=Sundaresan%2C+Rajesh&rft.date=2015-09-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=61&rft.issue=9&rft.spage=5081&rft.epage=5095&rft_id=info:doi/10.1109%2FTIT.2015.2449312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2015_2449312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon