Distributed constrained online convex optimization with adaptive quantization
In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each client is associated with a local constraint function and time-varying local loss functions, which are disclosed sequentially. The clients seek to...
Saved in:
Published in | Automatica (Oxford) Vol. 169; p. 111828 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each client is associated with a local constraint function and time-varying local loss functions, which are disclosed sequentially. The clients seek to minimize the accumulated total loss subject to the total constraint by choosing sequential decisions based on causal information of the loss functions. Existing distributed constrained OCO algorithms require clients to send their raw decisions to the server, leading to large communication overhead unaffordable in many applications. To reduce the communication cost, we devise an adaptive quantization method, where the center and the radius of the quantizer are adjusted in an adaptive manner as the OCO algorithm progresses. We first examine the scenario of full information feedback, where the complete information of the loss functions is revealed at each time. We propose a distributed online saddle point algorithm with adaptive quantization, which can reduce the communication overhead considerably. The performance of this algorithm is analyzed, and an O(T) regret bound and an O(T34) constraint violation bound are established, which are the same as (in order sense) those for existing algorithm transmitting raw decisions without quantization. We further extend the adaptive quantization method to the scenario of bandit feedback, where only the values of the local loss functions at two points are revealed at each time. A bandit OCO algorithm with adaptive quantization is developed and is shown to possess the same (in order sense) regret and constraint violation bounds as in the full information feedback case. Finally, numerical results on distributed online rate control problem are presented to corroborate the efficacy of the proposed algorithms. |
---|---|
AbstractList | In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each client is associated with a local constraint function and time-varying local loss functions, which are disclosed sequentially. The clients seek to minimize the accumulated total loss subject to the total constraint by choosing sequential decisions based on causal information of the loss functions. Existing distributed constrained OCO algorithms require clients to send their raw decisions to the server, leading to large communication overhead unaffordable in many applications. To reduce the communication cost, we devise an adaptive quantization method, where the center and the radius of the quantizer are adjusted in an adaptive manner as the OCO algorithm progresses. We first examine the scenario of full information feedback, where the complete information of the loss functions is revealed at each time. We propose a distributed online saddle point algorithm with adaptive quantization, which can reduce the communication overhead considerably. The performance of this algorithm is analyzed, and an O(T) regret bound and an O(T34) constraint violation bound are established, which are the same as (in order sense) those for existing algorithm transmitting raw decisions without quantization. We further extend the adaptive quantization method to the scenario of bandit feedback, where only the values of the local loss functions at two points are revealed at each time. A bandit OCO algorithm with adaptive quantization is developed and is shown to possess the same (in order sense) regret and constraint violation bounds as in the full information feedback case. Finally, numerical results on distributed online rate control problem are presented to corroborate the efficacy of the proposed algorithms. |
ArticleNumber | 111828 |
Author | Cao, Xuanyu |
Author_xml | – sequence: 1 givenname: Xuanyu surname: Cao fullname: Cao, Xuanyu email: eexcao@ust.hk organization: Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong |
BookMark | eNqFUM1OAyEY5FAT2-o77AvsCgtd6FHrb1LjRc-EhY_IpgsVaP15emnaxKOn-WYmM_kyMzTxwQNCFcENwaS7Ghq1y2FU2WnVtLhlDSFEtGKCphjjRU3wUpyjWUpDoaw4U_R861KOrt9lMJUOvhDlfLmD3xQ8SHv4qsI2u9H9lObgq0-X3ytlVNH2UH3slM8n6wKdWbVJcHnCOXq7v3tdPdbrl4en1fW61m1Hc90yIIr1xlAQHCxRYDtqMGUUDF1Si1ul-IKBoJyLrtcA2HJqLIWeCcM5nSNx7NUxpBTBym10o4rfkmB5mEIO8m8KeZhCHqco0ZtjFMp_ewdRJu3AazAugs7SBPd_yS90RnPN |
Cites_doi | 10.1109/TAC.2018.2884653 10.1016/j.automatica.2023.111186 10.1016/j.sysconle.2012.06.004 10.1109/TAC.2016.2600597 10.1109/LCSYS.2023.3282021 10.1109/TSP.2019.2932876 10.1109/TAC.2020.3014095 10.1109/TAC.2020.3031018 10.1109/TCYB.2017.2755720 10.1109/TAC.2021.3057601 10.1109/TAC.2016.2627401 10.1109/TKDE.2012.191 10.1287/opre.2015.1408 10.1109/TSP.2015.2504341 10.1561/2400000013 10.1109/TAC.2020.3030883 10.1109/TSP.2020.2964200 10.1109/TSP.2017.2750109 10.1109/JSTSP.2015.2404790 10.1109/TAC.2020.3021011 10.1109/TAC.2022.3230766 10.1109/TSP.2015.2449255 10.1007/s10994-007-5016-8 10.1016/j.automatica.2022.110590 10.1109/TSP.2020.3031073 10.1109/TNSE.2014.2363554 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.automatica.2024.111828 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_automatica_2024_111828 S0005109824003224 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62203373 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XPP ZMT ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c263t-24e1a4bdd3e87ef1aef63d0343ed393f02aa754e837786bcee0f73df3eb48d773 |
IEDL.DBID | .~1 |
ISSN | 0005-1098 |
IngestDate | Tue Jul 01 00:45:08 EDT 2025 Sat Sep 07 15:50:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bandit feedback Online convex optimization Distributed optimization Adaptive quantization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-24e1a4bdd3e87ef1aef63d0343ed393f02aa754e837786bcee0f73df3eb48d773 |
ParticipantIDs | crossref_primary_10_1016_j_automatica_2024_111828 elsevier_sciencedirect_doi_10_1016_j_automatica_2024_111828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cao, Liu (b5) 2019; 64 (pp. 3252–3261). (pp. 3478–3487). Pu, Zeilinger, Jones (b23) 2017; 62 Tu, Wang, Hong, Wang, Yuan, Shi (b27) 2022; 35 Li, Xie, Li (b17) 2023 Yuan, Xu, Zhao, Rong (b34) 2012; 61 Li, Yi, Xie (b18) 2021; 66 Zhang, Shi, Zhang, Lu, Yuan (b36) 2023; 7 Yuan, Ho, Jiang (b32) 2018; 48 Magnússon, Shokri-Ghadikolaei, Li (b19) 2020; 68 Paternain, Ribeiro (b22) 2017; 62 Cao, Başar (b4) 2023; 156 Hall, Willett (b11) 2015; 9 Mateos-Nunez, Cortés (b21) 2014; 1 Yuan, Zhang, Ho, Zheng, Xu (b35) 2022; 146 Besbes, Gur, Zeevi (b3) 2015; 63 Chen, Ling, Giannakis (b6) 2017; 65 Yi, Li, Xie, Johansson (b29) 2020; 68 Zhu, Chen (b37) 2015; 64 Agarwal, A., Dekel, O., & Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-point bandit feedback. In Gorbunov, E., Kovalev, D., Makarenko, D., & Richtárik, P. (2020). Linearly converging error compensated SGD. In Yi, Li, Yang, Xie, Chai, Johansson (b30) 2021; 66 Doan, Maguluri, Romberg (b7) 2021; 66 Yan, Sundaram, Vishwanathan, Qi (b28) 2013; 25 Stich, S. U., Cordonnier, J.-B., & Jaggi, M. (2018). Sparsified SGD with memory. In Yi, Li, Yang, Xie, Chai, Johansson (b31) 2023; 68 Mahdavi, Jin, Yang (b20) 2012; 13 Reisizadeh, Mokhtari, Hassani, Pedarsani (b24) 2019; 67 Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In (pp. 385–394). Karimireddy, S. P., Rebjock, Q., Stich, S., & Jaggi, M. (2019). Error feedback fixes signSGD and other gradient compression schemes. In Koloskova, A., Stich, S., & Jaggi, M. (2019). Decentralized stochastic optimization and gossip algorithms with compressed communication. In Hazan, Agarwal, Kale (b13) 2007; 69 (pp. 28–40). Hazan (b12) 2016; 2 (pp. 560–569). Tang, H., Gan, S., Zhang, C., Zhang, T., & Liu, J. (2018). Communication compression for decentralized training. In . Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., & Anandkumar, A. (2018). signSGD: Compressed optimisation for non-convex problems. In Doan, Maguluri, Romberg (b8) 2021; 66 Flaxman, A. D., Kalai, A. T., Kalai, A. T., & McMahan, H. B. (2005). Online convex optimization in the bandit setting: gradient descent without a gradient. In Yuan, Proutiere, Shi (b33) 2022; 67 Koppel, Jakubiec, Ribeiro (b16) 2015; 63 (pp. 928–936). Reisizadeh (10.1016/j.automatica.2024.111828_b24) 2019; 67 Yi (10.1016/j.automatica.2024.111828_b29) 2020; 68 Hall (10.1016/j.automatica.2024.111828_b11) 2015; 9 Yuan (10.1016/j.automatica.2024.111828_b35) 2022; 146 Hazan (10.1016/j.automatica.2024.111828_b12) 2016; 2 Besbes (10.1016/j.automatica.2024.111828_b3) 2015; 63 Li (10.1016/j.automatica.2024.111828_b17) 2023 Cao (10.1016/j.automatica.2024.111828_b4) 2023; 156 Cao (10.1016/j.automatica.2024.111828_b5) 2019; 64 Mateos-Nunez (10.1016/j.automatica.2024.111828_b21) 2014; 1 Yan (10.1016/j.automatica.2024.111828_b28) 2013; 25 Yuan (10.1016/j.automatica.2024.111828_b34) 2012; 61 Doan (10.1016/j.automatica.2024.111828_b7) 2021; 66 Li (10.1016/j.automatica.2024.111828_b18) 2021; 66 Chen (10.1016/j.automatica.2024.111828_b6) 2017; 65 10.1016/j.automatica.2024.111828_b25 Koppel (10.1016/j.automatica.2024.111828_b16) 2015; 63 10.1016/j.automatica.2024.111828_b26 Pu (10.1016/j.automatica.2024.111828_b23) 2017; 62 Zhang (10.1016/j.automatica.2024.111828_b36) 2023; 7 Yuan (10.1016/j.automatica.2024.111828_b33) 2022; 67 Tu (10.1016/j.automatica.2024.111828_b27) 2022; 35 Hazan (10.1016/j.automatica.2024.111828_b13) 2007; 69 Magnússon (10.1016/j.automatica.2024.111828_b19) 2020; 68 Yi (10.1016/j.automatica.2024.111828_b30) 2021; 66 Mahdavi (10.1016/j.automatica.2024.111828_b20) 2012; 13 10.1016/j.automatica.2024.111828_b9 Yi (10.1016/j.automatica.2024.111828_b31) 2023; 68 Yuan (10.1016/j.automatica.2024.111828_b32) 2018; 48 Zhu (10.1016/j.automatica.2024.111828_b37) 2015; 64 10.1016/j.automatica.2024.111828_b2 10.1016/j.automatica.2024.111828_b1 10.1016/j.automatica.2024.111828_b10 Doan (10.1016/j.automatica.2024.111828_b8) 2021; 66 10.1016/j.automatica.2024.111828_b14 10.1016/j.automatica.2024.111828_b38 10.1016/j.automatica.2024.111828_b15 Paternain (10.1016/j.automatica.2024.111828_b22) 2017; 62 |
References_xml | – volume: 66 start-page: 3575 year: 2021 end-page: 3591 ident: b18 article-title: Distributed online optimization for multi-agent networks with coupled inequality constraints publication-title: IEEE Transactions on Automatic Control – reference: (pp. 385–394). – volume: 7 start-page: 1837 year: 2023 end-page: 1842 ident: b36 article-title: Quantized distributed online projection-free convex optimization publication-title: IEEE Control Systems Letters – reference: Flaxman, A. D., Kalai, A. T., Kalai, A. T., & McMahan, H. B. (2005). Online convex optimization in the bandit setting: gradient descent without a gradient. In – reference: Gorbunov, E., Kovalev, D., Makarenko, D., & Richtárik, P. (2020). Linearly converging error compensated SGD. In – reference: (pp. 3478–3487). – volume: 156 year: 2023 ident: b4 article-title: Decentralized online convex optimization with compressed communications publication-title: Automatica – volume: 68 start-page: 731 year: 2020 end-page: 746 ident: b29 article-title: Distributed online convex optimization with time-varying coupled inequality constraints publication-title: IEEE Transactions on Signal Processing – volume: 67 start-page: 4934 year: 2019 end-page: 4947 ident: b24 article-title: An exact quantized decentralized gradient descent algorithm publication-title: IEEE Transactions on Signal Processing – volume: 68 start-page: 2875 year: 2023 end-page: 2890 ident: b31 article-title: Regret and cumulative constraint violation analysis for distributed online constrained convex optimization publication-title: IEEE Transactions on Automatic Control – volume: 68 start-page: 6101 year: 2020 end-page: 6116 ident: b19 article-title: On maintaining linear convergence of distributed learning and optimization under limited communication publication-title: IEEE Transactions on Signal Processing – reference: (pp. 928–936). – reference: (pp. 28–40). – volume: 66 start-page: 4620 year: 2021 end-page: 4635 ident: b30 article-title: Distributed bandit online convex optimization with time-varying coupled inequality constraints publication-title: IEEE Transactions on Automatic Control – reference: Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In – year: 2023 ident: b17 article-title: A survey on distributed online optimization and game – volume: 66 start-page: 2191 year: 2021 end-page: 2205 ident: b8 article-title: Fast convergence rates of distributed subgradient methods with adaptive quantization publication-title: IEEE Transactions on Automatic Control – volume: 62 start-page: 2807 year: 2017 end-page: 2822 ident: b22 article-title: Online learning of feasible strategies in unknown environments publication-title: IEEE Transactions on Automatic Control – volume: 25 start-page: 2483 year: 2013 end-page: 2493 ident: b28 article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 48 start-page: 3045 year: 2018 end-page: 3055 ident: b32 article-title: An adaptive primal–dual subgradient algorithm for online distributed constrained optimization publication-title: IEEE Transactions on Cybernetics – reference: Karimireddy, S. P., Rebjock, Q., Stich, S., & Jaggi, M. (2019). Error feedback fixes signSGD and other gradient compression schemes. In – reference: Koloskova, A., Stich, S., & Jaggi, M. (2019). Decentralized stochastic optimization and gossip algorithms with compressed communication. In – volume: 9 start-page: 647 year: 2015 end-page: 662 ident: b11 article-title: Online convex optimization in dynamic environments publication-title: IEEE Journal of Selected Topics in Signal Processing – volume: 67 start-page: 1089 year: 2022 end-page: 1104 ident: b33 article-title: Distributed online optimization with long-term constraints publication-title: IEEE Transactions on Automatic Control – reference: Stich, S. U., Cordonnier, J.-B., & Jaggi, M. (2018). Sparsified SGD with memory. In – volume: 146 year: 2022 ident: b35 article-title: Distributed online bandit optimization under random quantization publication-title: Automatica – volume: 63 start-page: 5149 year: 2015 end-page: 5164 ident: b16 article-title: A saddle point algorithm for networked online convex optimization publication-title: IEEE Transactions on Signal Processing – reference: Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., & Anandkumar, A. (2018). signSGD: Compressed optimisation for non-convex problems. In – volume: 63 start-page: 1227 year: 2015 end-page: 1244 ident: b3 article-title: Non-stationary stochastic optimization publication-title: Operations Research – reference: Tang, H., Gan, S., Zhang, C., Zhang, T., & Liu, J. (2018). Communication compression for decentralized training. In – volume: 13 start-page: 2503 year: 2012 end-page: 2528 ident: b20 article-title: Trading regret for efficiency: online convex optimization with long term constraints publication-title: Journal of Machine Learning Research – volume: 35 start-page: 34492 year: 2022 end-page: 34504 ident: b27 article-title: Distributed online convex optimization with compressed communication publication-title: Advances in Neural Information Processing Systems – volume: 64 start-page: 2665 year: 2019 end-page: 2680 ident: b5 article-title: Online convex optimization with time-varying constraints and bandit feedback publication-title: IEEE Transactions on Automatic Control – reference: (pp. 3252–3261). – reference: . – volume: 66 start-page: 4469 year: 2021 end-page: 4484 ident: b7 article-title: Convergence rates of distributed gradient methods under random quantization: A stochastic approximation approach publication-title: IEEE Transactions on Automatic Control – volume: 1 start-page: 23 year: 2014 end-page: 37 ident: b21 article-title: Distributed online convex optimization over jointly connected digraphs publication-title: IEEE Transactions on Network Science and Engineering – reference: (pp. 560–569). – volume: 65 start-page: 6350 year: 2017 end-page: 6364 ident: b6 article-title: An online convex optimization approach to proactive network resource allocation publication-title: IEEE Transactions on Signal Processing – volume: 69 start-page: 169 year: 2007 end-page: 192 ident: b13 article-title: Logarithmic regret algorithms for online convex optimization publication-title: Machine Learning – volume: 62 start-page: 2107 year: 2017 end-page: 2120 ident: b23 article-title: Quantization design for distributed optimization publication-title: IEEE Transactions on Automatic Control – volume: 64 start-page: 1700 year: 2015 end-page: 1713 ident: b37 article-title: Quantized consensus by the ADMM: Probabilistic versus deterministic quantizers publication-title: IEEE Transactions on Signal Processing – reference: Agarwal, A., Dekel, O., & Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-point bandit feedback. In – volume: 2 start-page: 157 year: 2016 end-page: 325 ident: b12 article-title: Introduction to online convex optimization publication-title: Foundations and Trends®in Optimization – volume: 61 start-page: 1053 year: 2012 end-page: 1061 ident: b34 article-title: Distributed dual averaging method for multi-agent optimization with quantized communication publication-title: Systems & Control Letters – volume: 64 start-page: 2665 issue: 7 year: 2019 ident: 10.1016/j.automatica.2024.111828_b5 article-title: Online convex optimization with time-varying constraints and bandit feedback publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2018.2884653 – volume: 156 year: 2023 ident: 10.1016/j.automatica.2024.111828_b4 article-title: Decentralized online convex optimization with compressed communications publication-title: Automatica doi: 10.1016/j.automatica.2023.111186 – volume: 61 start-page: 1053 issue: 11 year: 2012 ident: 10.1016/j.automatica.2024.111828_b34 article-title: Distributed dual averaging method for multi-agent optimization with quantized communication publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2012.06.004 – volume: 62 start-page: 2107 issue: 5 year: 2017 ident: 10.1016/j.automatica.2024.111828_b23 article-title: Quantization design for distributed optimization publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2600597 – volume: 7 start-page: 1837 year: 2023 ident: 10.1016/j.automatica.2024.111828_b36 article-title: Quantized distributed online projection-free convex optimization publication-title: IEEE Control Systems Letters doi: 10.1109/LCSYS.2023.3282021 – ident: 10.1016/j.automatica.2024.111828_b38 – volume: 67 start-page: 4934 issue: 19 year: 2019 ident: 10.1016/j.automatica.2024.111828_b24 article-title: An exact quantized decentralized gradient descent algorithm publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2019.2932876 – volume: 66 start-page: 2191 issue: 5 year: 2021 ident: 10.1016/j.automatica.2024.111828_b8 article-title: Fast convergence rates of distributed subgradient methods with adaptive quantization publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2020.3014095 – ident: 10.1016/j.automatica.2024.111828_b15 – volume: 66 start-page: 4469 issue: 10 year: 2021 ident: 10.1016/j.automatica.2024.111828_b7 article-title: Convergence rates of distributed gradient methods under random quantization: A stochastic approximation approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2020.3031018 – volume: 48 start-page: 3045 issue: 11 year: 2018 ident: 10.1016/j.automatica.2024.111828_b32 article-title: An adaptive primal–dual subgradient algorithm for online distributed constrained optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2755720 – volume: 67 start-page: 1089 issue: 3 year: 2022 ident: 10.1016/j.automatica.2024.111828_b33 article-title: Distributed online optimization with long-term constraints publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2021.3057601 – volume: 62 start-page: 2807 issue: 6 year: 2017 ident: 10.1016/j.automatica.2024.111828_b22 article-title: Online learning of feasible strategies in unknown environments publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2627401 – ident: 10.1016/j.automatica.2024.111828_b25 – volume: 25 start-page: 2483 issue: 11 year: 2013 ident: 10.1016/j.automatica.2024.111828_b28 article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.191 – volume: 63 start-page: 1227 issue: 5 year: 2015 ident: 10.1016/j.automatica.2024.111828_b3 article-title: Non-stationary stochastic optimization publication-title: Operations Research doi: 10.1287/opre.2015.1408 – ident: 10.1016/j.automatica.2024.111828_b9 – volume: 64 start-page: 1700 issue: 7 year: 2015 ident: 10.1016/j.automatica.2024.111828_b37 article-title: Quantized consensus by the ADMM: Probabilistic versus deterministic quantizers publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2015.2504341 – year: 2023 ident: 10.1016/j.automatica.2024.111828_b17 – volume: 2 start-page: 157 issue: 3–4 year: 2016 ident: 10.1016/j.automatica.2024.111828_b12 article-title: Introduction to online convex optimization publication-title: Foundations and Trends®in Optimization doi: 10.1561/2400000013 – volume: 35 start-page: 34492 year: 2022 ident: 10.1016/j.automatica.2024.111828_b27 article-title: Distributed online convex optimization with compressed communication publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.automatica.2024.111828_b1 – volume: 66 start-page: 4620 issue: 10 year: 2021 ident: 10.1016/j.automatica.2024.111828_b30 article-title: Distributed bandit online convex optimization with time-varying coupled inequality constraints publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2020.3030883 – volume: 68 start-page: 731 year: 2020 ident: 10.1016/j.automatica.2024.111828_b29 article-title: Distributed online convex optimization with time-varying coupled inequality constraints publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2020.2964200 – ident: 10.1016/j.automatica.2024.111828_b10 – volume: 13 start-page: 2503 issue: 1 year: 2012 ident: 10.1016/j.automatica.2024.111828_b20 article-title: Trading regret for efficiency: online convex optimization with long term constraints publication-title: Journal of Machine Learning Research – ident: 10.1016/j.automatica.2024.111828_b14 – volume: 65 start-page: 6350 issue: 24 year: 2017 ident: 10.1016/j.automatica.2024.111828_b6 article-title: An online convex optimization approach to proactive network resource allocation publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2017.2750109 – volume: 9 start-page: 647 issue: 4 year: 2015 ident: 10.1016/j.automatica.2024.111828_b11 article-title: Online convex optimization in dynamic environments publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2015.2404790 – volume: 66 start-page: 3575 issue: 8 year: 2021 ident: 10.1016/j.automatica.2024.111828_b18 article-title: Distributed online optimization for multi-agent networks with coupled inequality constraints publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2020.3021011 – volume: 68 start-page: 2875 issue: 5 year: 2023 ident: 10.1016/j.automatica.2024.111828_b31 article-title: Regret and cumulative constraint violation analysis for distributed online constrained convex optimization publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2022.3230766 – volume: 63 start-page: 5149 issue: 19 year: 2015 ident: 10.1016/j.automatica.2024.111828_b16 article-title: A saddle point algorithm for networked online convex optimization publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2015.2449255 – volume: 69 start-page: 169 issue: 2–3 year: 2007 ident: 10.1016/j.automatica.2024.111828_b13 article-title: Logarithmic regret algorithms for online convex optimization publication-title: Machine Learning doi: 10.1007/s10994-007-5016-8 – volume: 146 year: 2022 ident: 10.1016/j.automatica.2024.111828_b35 article-title: Distributed online bandit optimization under random quantization publication-title: Automatica doi: 10.1016/j.automatica.2022.110590 – ident: 10.1016/j.automatica.2024.111828_b2 – volume: 68 start-page: 6101 year: 2020 ident: 10.1016/j.automatica.2024.111828_b19 article-title: On maintaining linear convergence of distributed learning and optimization under limited communication publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2020.3031073 – volume: 1 start-page: 23 issue: 1 year: 2014 ident: 10.1016/j.automatica.2024.111828_b21 article-title: Distributed online convex optimization over jointly connected digraphs publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2014.2363554 – ident: 10.1016/j.automatica.2024.111828_b26 |
SSID | ssj0004182 |
Score | 2.4656816 |
Snippet | In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 111828 |
SubjectTerms | Adaptive quantization Bandit feedback Distributed optimization Online convex optimization |
Title | Distributed constrained online convex optimization with adaptive quantization |
URI | https://dx.doi.org/10.1016/j.automatica.2024.111828 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXvQg_sT5Y-Tgta5tsibF05iOqWwnB7uFpHmFCW5TOvDk325ek-IEwYO3piVQvj6-91K-9z1CrpnkMgPQEdcijTiwPMrr5hwjktTGxqUU7EaeTLPxjD_O-_MWGTa9MCirDNzvOb1m63CnF9DsrRcL7PHFgMolqiBdWKInKOcCo_zm81vmwRPpHcNrx81cBjWP13jpTbWqnVHRgSjlyB8S57L_lqK20s7ogOyHepEO_CsdkhYsj8jelovgMZncofktzq0CSwus93Dsg7v2Lhi0FpZ_0JUjh9fQdUnx9yvVVq-R7ejbxuEbHp2Q2ej-eTiOwpSEqEgzVkUph0RzYy0DKaBMNJQZszHjDCzLWRmnWos-B3cSFTIzLinGpWC2ZGC4tEKwU9JerpZwRihAkYm0FFZIy0uT61wkLtIKV-UYExveIUkDjFp7MwzVqMRe1DeYCsFUHswOuW0QVD8-rHKc_efu83_tviC7uPKtg5ekXb1v4MrVEJXp1kHSJTuDh6fx9AsXEcoc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09a8MwED3SZGg7lH7S9NNDVxPbUiyZTqFtcJqPKYFsQrJkSKFJWhzoz6_OlkkKhQ7djIXAPB_vTuLeO4AHwimPjZE-lSzyqSGJn5TiHMXCSAfKphRUI48ncTqjr_PuvAFPtRYG2yod91ecXrK1e9NxaHbWiwVqfDGgEo5dkDYs6R600J2q24RWbzBMJ1t5ZMgr0_DSdDPhrqGnavOSm2JVmqOiCVFEkUI4jmb_LUvtZJ7-MRy5ktHrVV91Ag2zPIXDHSPBMxg_o_8tjq4y2suw5MPJD_a5MsLwyt7yL29l-eHdCS89vIH1pJZrJDzvY2MhdkvnMOu_TJ9S3w1K8LMoJoUfURNKqrQmhjOTh9LkMdEBocRokpA8iKRkXWrsYZTxWNm8GOSM6JwYRblmjFxAc7lamkvwjMliFuVMM65prhKZsNAGW2YLHaUCRdsQ1sCIdeWHIepGsTexBVMgmKICsw2PNYLix78Vlrb_3H31r933sJ9OxyMxGkyG13CAK5WS8AaaxefG3NqSolB3LmS-AQzszM0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+constrained+online+convex+optimization+with+adaptive+quantization&rft.jtitle=Automatica+%28Oxford%29&rft.au=Cao%2C+Xuanyu&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.volume=169&rft_id=info:doi/10.1016%2Fj.automatica.2024.111828&rft.externalDocID=S0005109824003224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |