Distributed constrained online convex optimization with adaptive quantization

In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each client is associated with a local constraint function and time-varying local loss functions, which are disclosed sequentially. The clients seek to...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 169; p. 111828
Main Author Cao, Xuanyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each client is associated with a local constraint function and time-varying local loss functions, which are disclosed sequentially. The clients seek to minimize the accumulated total loss subject to the total constraint by choosing sequential decisions based on causal information of the loss functions. Existing distributed constrained OCO algorithms require clients to send their raw decisions to the server, leading to large communication overhead unaffordable in many applications. To reduce the communication cost, we devise an adaptive quantization method, where the center and the radius of the quantizer are adjusted in an adaptive manner as the OCO algorithm progresses. We first examine the scenario of full information feedback, where the complete information of the loss functions is revealed at each time. We propose a distributed online saddle point algorithm with adaptive quantization, which can reduce the communication overhead considerably. The performance of this algorithm is analyzed, and an O(T) regret bound and an O(T34) constraint violation bound are established, which are the same as (in order sense) those for existing algorithm transmitting raw decisions without quantization. We further extend the adaptive quantization method to the scenario of bandit feedback, where only the values of the local loss functions at two points are revealed at each time. A bandit OCO algorithm with adaptive quantization is developed and is shown to possess the same (in order sense) regret and constraint violation bounds as in the full information feedback case. Finally, numerical results on distributed online rate control problem are presented to corroborate the efficacy of the proposed algorithms.
AbstractList In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each client is associated with a local constraint function and time-varying local loss functions, which are disclosed sequentially. The clients seek to minimize the accumulated total loss subject to the total constraint by choosing sequential decisions based on causal information of the loss functions. Existing distributed constrained OCO algorithms require clients to send their raw decisions to the server, leading to large communication overhead unaffordable in many applications. To reduce the communication cost, we devise an adaptive quantization method, where the center and the radius of the quantizer are adjusted in an adaptive manner as the OCO algorithm progresses. We first examine the scenario of full information feedback, where the complete information of the loss functions is revealed at each time. We propose a distributed online saddle point algorithm with adaptive quantization, which can reduce the communication overhead considerably. The performance of this algorithm is analyzed, and an O(T) regret bound and an O(T34) constraint violation bound are established, which are the same as (in order sense) those for existing algorithm transmitting raw decisions without quantization. We further extend the adaptive quantization method to the scenario of bandit feedback, where only the values of the local loss functions at two points are revealed at each time. A bandit OCO algorithm with adaptive quantization is developed and is shown to possess the same (in order sense) regret and constraint violation bounds as in the full information feedback case. Finally, numerical results on distributed online rate control problem are presented to corroborate the efficacy of the proposed algorithms.
ArticleNumber 111828
Author Cao, Xuanyu
Author_xml – sequence: 1
  givenname: Xuanyu
  surname: Cao
  fullname: Cao, Xuanyu
  email: eexcao@ust.hk
  organization: Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
BookMark eNqFUM1OAyEY5FAT2-o77AvsCgtd6FHrb1LjRc-EhY_IpgsVaP15emnaxKOn-WYmM_kyMzTxwQNCFcENwaS7Ghq1y2FU2WnVtLhlDSFEtGKCphjjRU3wUpyjWUpDoaw4U_R861KOrt9lMJUOvhDlfLmD3xQ8SHv4qsI2u9H9lObgq0-X3ytlVNH2UH3slM8n6wKdWbVJcHnCOXq7v3tdPdbrl4en1fW61m1Hc90yIIr1xlAQHCxRYDtqMGUUDF1Si1ul-IKBoJyLrtcA2HJqLIWeCcM5nSNx7NUxpBTBym10o4rfkmB5mEIO8m8KeZhCHqco0ZtjFMp_ewdRJu3AazAugs7SBPd_yS90RnPN
Cites_doi 10.1109/TAC.2018.2884653
10.1016/j.automatica.2023.111186
10.1016/j.sysconle.2012.06.004
10.1109/TAC.2016.2600597
10.1109/LCSYS.2023.3282021
10.1109/TSP.2019.2932876
10.1109/TAC.2020.3014095
10.1109/TAC.2020.3031018
10.1109/TCYB.2017.2755720
10.1109/TAC.2021.3057601
10.1109/TAC.2016.2627401
10.1109/TKDE.2012.191
10.1287/opre.2015.1408
10.1109/TSP.2015.2504341
10.1561/2400000013
10.1109/TAC.2020.3030883
10.1109/TSP.2020.2964200
10.1109/TSP.2017.2750109
10.1109/JSTSP.2015.2404790
10.1109/TAC.2020.3021011
10.1109/TAC.2022.3230766
10.1109/TSP.2015.2449255
10.1007/s10994-007-5016-8
10.1016/j.automatica.2022.110590
10.1109/TSP.2020.3031073
10.1109/TNSE.2014.2363554
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2024.111828
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_automatica_2024_111828
S0005109824003224
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62203373
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c263t-24e1a4bdd3e87ef1aef63d0343ed393f02aa754e837786bcee0f73df3eb48d773
IEDL.DBID .~1
ISSN 0005-1098
IngestDate Tue Jul 01 00:45:08 EDT 2025
Sat Sep 07 15:50:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Bandit feedback
Online convex optimization
Distributed optimization
Adaptive quantization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-24e1a4bdd3e87ef1aef63d0343ed393f02aa754e837786bcee0f73df3eb48d773
ParticipantIDs crossref_primary_10_1016_j_automatica_2024_111828
elsevier_sciencedirect_doi_10_1016_j_automatica_2024_111828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cao, Liu (b5) 2019; 64
(pp. 3252–3261).
(pp. 3478–3487).
Pu, Zeilinger, Jones (b23) 2017; 62
Tu, Wang, Hong, Wang, Yuan, Shi (b27) 2022; 35
Li, Xie, Li (b17) 2023
Yuan, Xu, Zhao, Rong (b34) 2012; 61
Li, Yi, Xie (b18) 2021; 66
Zhang, Shi, Zhang, Lu, Yuan (b36) 2023; 7
Yuan, Ho, Jiang (b32) 2018; 48
Magnússon, Shokri-Ghadikolaei, Li (b19) 2020; 68
Paternain, Ribeiro (b22) 2017; 62
Cao, Başar (b4) 2023; 156
Hall, Willett (b11) 2015; 9
Mateos-Nunez, Cortés (b21) 2014; 1
Yuan, Zhang, Ho, Zheng, Xu (b35) 2022; 146
Besbes, Gur, Zeevi (b3) 2015; 63
Chen, Ling, Giannakis (b6) 2017; 65
Yi, Li, Xie, Johansson (b29) 2020; 68
Zhu, Chen (b37) 2015; 64
Agarwal, A., Dekel, O., & Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-point bandit feedback. In
Gorbunov, E., Kovalev, D., Makarenko, D., & Richtárik, P. (2020). Linearly converging error compensated SGD. In
Yi, Li, Yang, Xie, Chai, Johansson (b30) 2021; 66
Doan, Maguluri, Romberg (b7) 2021; 66
Yan, Sundaram, Vishwanathan, Qi (b28) 2013; 25
Stich, S. U., Cordonnier, J.-B., & Jaggi, M. (2018). Sparsified SGD with memory. In
Yi, Li, Yang, Xie, Chai, Johansson (b31) 2023; 68
Mahdavi, Jin, Yang (b20) 2012; 13
Reisizadeh, Mokhtari, Hassani, Pedarsani (b24) 2019; 67
Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In
(pp. 385–394).
Karimireddy, S. P., Rebjock, Q., Stich, S., & Jaggi, M. (2019). Error feedback fixes signSGD and other gradient compression schemes. In
Koloskova, A., Stich, S., & Jaggi, M. (2019). Decentralized stochastic optimization and gossip algorithms with compressed communication. In
Hazan, Agarwal, Kale (b13) 2007; 69
(pp. 28–40).
Hazan (b12) 2016; 2
(pp. 560–569).
Tang, H., Gan, S., Zhang, C., Zhang, T., & Liu, J. (2018). Communication compression for decentralized training. In
.
Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., & Anandkumar, A. (2018). signSGD: Compressed optimisation for non-convex problems. In
Doan, Maguluri, Romberg (b8) 2021; 66
Flaxman, A. D., Kalai, A. T., Kalai, A. T., & McMahan, H. B. (2005). Online convex optimization in the bandit setting: gradient descent without a gradient. In
Yuan, Proutiere, Shi (b33) 2022; 67
Koppel, Jakubiec, Ribeiro (b16) 2015; 63
(pp. 928–936).
Reisizadeh (10.1016/j.automatica.2024.111828_b24) 2019; 67
Yi (10.1016/j.automatica.2024.111828_b29) 2020; 68
Hall (10.1016/j.automatica.2024.111828_b11) 2015; 9
Yuan (10.1016/j.automatica.2024.111828_b35) 2022; 146
Hazan (10.1016/j.automatica.2024.111828_b12) 2016; 2
Besbes (10.1016/j.automatica.2024.111828_b3) 2015; 63
Li (10.1016/j.automatica.2024.111828_b17) 2023
Cao (10.1016/j.automatica.2024.111828_b4) 2023; 156
Cao (10.1016/j.automatica.2024.111828_b5) 2019; 64
Mateos-Nunez (10.1016/j.automatica.2024.111828_b21) 2014; 1
Yan (10.1016/j.automatica.2024.111828_b28) 2013; 25
Yuan (10.1016/j.automatica.2024.111828_b34) 2012; 61
Doan (10.1016/j.automatica.2024.111828_b7) 2021; 66
Li (10.1016/j.automatica.2024.111828_b18) 2021; 66
Chen (10.1016/j.automatica.2024.111828_b6) 2017; 65
10.1016/j.automatica.2024.111828_b25
Koppel (10.1016/j.automatica.2024.111828_b16) 2015; 63
10.1016/j.automatica.2024.111828_b26
Pu (10.1016/j.automatica.2024.111828_b23) 2017; 62
Zhang (10.1016/j.automatica.2024.111828_b36) 2023; 7
Yuan (10.1016/j.automatica.2024.111828_b33) 2022; 67
Tu (10.1016/j.automatica.2024.111828_b27) 2022; 35
Hazan (10.1016/j.automatica.2024.111828_b13) 2007; 69
Magnússon (10.1016/j.automatica.2024.111828_b19) 2020; 68
Yi (10.1016/j.automatica.2024.111828_b30) 2021; 66
Mahdavi (10.1016/j.automatica.2024.111828_b20) 2012; 13
10.1016/j.automatica.2024.111828_b9
Yi (10.1016/j.automatica.2024.111828_b31) 2023; 68
Yuan (10.1016/j.automatica.2024.111828_b32) 2018; 48
Zhu (10.1016/j.automatica.2024.111828_b37) 2015; 64
10.1016/j.automatica.2024.111828_b2
10.1016/j.automatica.2024.111828_b1
10.1016/j.automatica.2024.111828_b10
Doan (10.1016/j.automatica.2024.111828_b8) 2021; 66
10.1016/j.automatica.2024.111828_b14
10.1016/j.automatica.2024.111828_b38
10.1016/j.automatica.2024.111828_b15
Paternain (10.1016/j.automatica.2024.111828_b22) 2017; 62
References_xml – volume: 66
  start-page: 3575
  year: 2021
  end-page: 3591
  ident: b18
  article-title: Distributed online optimization for multi-agent networks with coupled inequality constraints
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 385–394).
– volume: 7
  start-page: 1837
  year: 2023
  end-page: 1842
  ident: b36
  article-title: Quantized distributed online projection-free convex optimization
  publication-title: IEEE Control Systems Letters
– reference: Flaxman, A. D., Kalai, A. T., Kalai, A. T., & McMahan, H. B. (2005). Online convex optimization in the bandit setting: gradient descent without a gradient. In
– reference: Gorbunov, E., Kovalev, D., Makarenko, D., & Richtárik, P. (2020). Linearly converging error compensated SGD. In
– reference: (pp. 3478–3487).
– volume: 156
  year: 2023
  ident: b4
  article-title: Decentralized online convex optimization with compressed communications
  publication-title: Automatica
– volume: 68
  start-page: 731
  year: 2020
  end-page: 746
  ident: b29
  article-title: Distributed online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Transactions on Signal Processing
– volume: 67
  start-page: 4934
  year: 2019
  end-page: 4947
  ident: b24
  article-title: An exact quantized decentralized gradient descent algorithm
  publication-title: IEEE Transactions on Signal Processing
– volume: 68
  start-page: 2875
  year: 2023
  end-page: 2890
  ident: b31
  article-title: Regret and cumulative constraint violation analysis for distributed online constrained convex optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 68
  start-page: 6101
  year: 2020
  end-page: 6116
  ident: b19
  article-title: On maintaining linear convergence of distributed learning and optimization under limited communication
  publication-title: IEEE Transactions on Signal Processing
– reference: (pp. 928–936).
– reference: (pp. 28–40).
– volume: 66
  start-page: 4620
  year: 2021
  end-page: 4635
  ident: b30
  article-title: Distributed bandit online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Transactions on Automatic Control
– reference: Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In
– year: 2023
  ident: b17
  article-title: A survey on distributed online optimization and game
– volume: 66
  start-page: 2191
  year: 2021
  end-page: 2205
  ident: b8
  article-title: Fast convergence rates of distributed subgradient methods with adaptive quantization
  publication-title: IEEE Transactions on Automatic Control
– volume: 62
  start-page: 2807
  year: 2017
  end-page: 2822
  ident: b22
  article-title: Online learning of feasible strategies in unknown environments
  publication-title: IEEE Transactions on Automatic Control
– volume: 25
  start-page: 2483
  year: 2013
  end-page: 2493
  ident: b28
  article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 48
  start-page: 3045
  year: 2018
  end-page: 3055
  ident: b32
  article-title: An adaptive primal–dual subgradient algorithm for online distributed constrained optimization
  publication-title: IEEE Transactions on Cybernetics
– reference: Karimireddy, S. P., Rebjock, Q., Stich, S., & Jaggi, M. (2019). Error feedback fixes signSGD and other gradient compression schemes. In
– reference: Koloskova, A., Stich, S., & Jaggi, M. (2019). Decentralized stochastic optimization and gossip algorithms with compressed communication. In
– volume: 9
  start-page: 647
  year: 2015
  end-page: 662
  ident: b11
  article-title: Online convex optimization in dynamic environments
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 67
  start-page: 1089
  year: 2022
  end-page: 1104
  ident: b33
  article-title: Distributed online optimization with long-term constraints
  publication-title: IEEE Transactions on Automatic Control
– reference: Stich, S. U., Cordonnier, J.-B., & Jaggi, M. (2018). Sparsified SGD with memory. In
– volume: 146
  year: 2022
  ident: b35
  article-title: Distributed online bandit optimization under random quantization
  publication-title: Automatica
– volume: 63
  start-page: 5149
  year: 2015
  end-page: 5164
  ident: b16
  article-title: A saddle point algorithm for networked online convex optimization
  publication-title: IEEE Transactions on Signal Processing
– reference: Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., & Anandkumar, A. (2018). signSGD: Compressed optimisation for non-convex problems. In
– volume: 63
  start-page: 1227
  year: 2015
  end-page: 1244
  ident: b3
  article-title: Non-stationary stochastic optimization
  publication-title: Operations Research
– reference: Tang, H., Gan, S., Zhang, C., Zhang, T., & Liu, J. (2018). Communication compression for decentralized training. In
– volume: 13
  start-page: 2503
  year: 2012
  end-page: 2528
  ident: b20
  article-title: Trading regret for efficiency: online convex optimization with long term constraints
  publication-title: Journal of Machine Learning Research
– volume: 35
  start-page: 34492
  year: 2022
  end-page: 34504
  ident: b27
  article-title: Distributed online convex optimization with compressed communication
  publication-title: Advances in Neural Information Processing Systems
– volume: 64
  start-page: 2665
  year: 2019
  end-page: 2680
  ident: b5
  article-title: Online convex optimization with time-varying constraints and bandit feedback
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 3252–3261).
– reference: .
– volume: 66
  start-page: 4469
  year: 2021
  end-page: 4484
  ident: b7
  article-title: Convergence rates of distributed gradient methods under random quantization: A stochastic approximation approach
  publication-title: IEEE Transactions on Automatic Control
– volume: 1
  start-page: 23
  year: 2014
  end-page: 37
  ident: b21
  article-title: Distributed online convex optimization over jointly connected digraphs
  publication-title: IEEE Transactions on Network Science and Engineering
– reference: (pp. 560–569).
– volume: 65
  start-page: 6350
  year: 2017
  end-page: 6364
  ident: b6
  article-title: An online convex optimization approach to proactive network resource allocation
  publication-title: IEEE Transactions on Signal Processing
– volume: 69
  start-page: 169
  year: 2007
  end-page: 192
  ident: b13
  article-title: Logarithmic regret algorithms for online convex optimization
  publication-title: Machine Learning
– volume: 62
  start-page: 2107
  year: 2017
  end-page: 2120
  ident: b23
  article-title: Quantization design for distributed optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 64
  start-page: 1700
  year: 2015
  end-page: 1713
  ident: b37
  article-title: Quantized consensus by the ADMM: Probabilistic versus deterministic quantizers
  publication-title: IEEE Transactions on Signal Processing
– reference: Agarwal, A., Dekel, O., & Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-point bandit feedback. In
– volume: 2
  start-page: 157
  year: 2016
  end-page: 325
  ident: b12
  article-title: Introduction to online convex optimization
  publication-title: Foundations and Trends®in Optimization
– volume: 61
  start-page: 1053
  year: 2012
  end-page: 1061
  ident: b34
  article-title: Distributed dual averaging method for multi-agent optimization with quantized communication
  publication-title: Systems & Control Letters
– volume: 64
  start-page: 2665
  issue: 7
  year: 2019
  ident: 10.1016/j.automatica.2024.111828_b5
  article-title: Online convex optimization with time-varying constraints and bandit feedback
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2018.2884653
– volume: 156
  year: 2023
  ident: 10.1016/j.automatica.2024.111828_b4
  article-title: Decentralized online convex optimization with compressed communications
  publication-title: Automatica
  doi: 10.1016/j.automatica.2023.111186
– volume: 61
  start-page: 1053
  issue: 11
  year: 2012
  ident: 10.1016/j.automatica.2024.111828_b34
  article-title: Distributed dual averaging method for multi-agent optimization with quantized communication
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2012.06.004
– volume: 62
  start-page: 2107
  issue: 5
  year: 2017
  ident: 10.1016/j.automatica.2024.111828_b23
  article-title: Quantization design for distributed optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2600597
– volume: 7
  start-page: 1837
  year: 2023
  ident: 10.1016/j.automatica.2024.111828_b36
  article-title: Quantized distributed online projection-free convex optimization
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2023.3282021
– ident: 10.1016/j.automatica.2024.111828_b38
– volume: 67
  start-page: 4934
  issue: 19
  year: 2019
  ident: 10.1016/j.automatica.2024.111828_b24
  article-title: An exact quantized decentralized gradient descent algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2019.2932876
– volume: 66
  start-page: 2191
  issue: 5
  year: 2021
  ident: 10.1016/j.automatica.2024.111828_b8
  article-title: Fast convergence rates of distributed subgradient methods with adaptive quantization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2020.3014095
– ident: 10.1016/j.automatica.2024.111828_b15
– volume: 66
  start-page: 4469
  issue: 10
  year: 2021
  ident: 10.1016/j.automatica.2024.111828_b7
  article-title: Convergence rates of distributed gradient methods under random quantization: A stochastic approximation approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2020.3031018
– volume: 48
  start-page: 3045
  issue: 11
  year: 2018
  ident: 10.1016/j.automatica.2024.111828_b32
  article-title: An adaptive primal–dual subgradient algorithm for online distributed constrained optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2755720
– volume: 67
  start-page: 1089
  issue: 3
  year: 2022
  ident: 10.1016/j.automatica.2024.111828_b33
  article-title: Distributed online optimization with long-term constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2021.3057601
– volume: 62
  start-page: 2807
  issue: 6
  year: 2017
  ident: 10.1016/j.automatica.2024.111828_b22
  article-title: Online learning of feasible strategies in unknown environments
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2627401
– ident: 10.1016/j.automatica.2024.111828_b25
– volume: 25
  start-page: 2483
  issue: 11
  year: 2013
  ident: 10.1016/j.automatica.2024.111828_b28
  article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.191
– volume: 63
  start-page: 1227
  issue: 5
  year: 2015
  ident: 10.1016/j.automatica.2024.111828_b3
  article-title: Non-stationary stochastic optimization
  publication-title: Operations Research
  doi: 10.1287/opre.2015.1408
– ident: 10.1016/j.automatica.2024.111828_b9
– volume: 64
  start-page: 1700
  issue: 7
  year: 2015
  ident: 10.1016/j.automatica.2024.111828_b37
  article-title: Quantized consensus by the ADMM: Probabilistic versus deterministic quantizers
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2015.2504341
– year: 2023
  ident: 10.1016/j.automatica.2024.111828_b17
– volume: 2
  start-page: 157
  issue: 3–4
  year: 2016
  ident: 10.1016/j.automatica.2024.111828_b12
  article-title: Introduction to online convex optimization
  publication-title: Foundations and Trends®in Optimization
  doi: 10.1561/2400000013
– volume: 35
  start-page: 34492
  year: 2022
  ident: 10.1016/j.automatica.2024.111828_b27
  article-title: Distributed online convex optimization with compressed communication
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.automatica.2024.111828_b1
– volume: 66
  start-page: 4620
  issue: 10
  year: 2021
  ident: 10.1016/j.automatica.2024.111828_b30
  article-title: Distributed bandit online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2020.3030883
– volume: 68
  start-page: 731
  year: 2020
  ident: 10.1016/j.automatica.2024.111828_b29
  article-title: Distributed online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2020.2964200
– ident: 10.1016/j.automatica.2024.111828_b10
– volume: 13
  start-page: 2503
  issue: 1
  year: 2012
  ident: 10.1016/j.automatica.2024.111828_b20
  article-title: Trading regret for efficiency: online convex optimization with long term constraints
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.automatica.2024.111828_b14
– volume: 65
  start-page: 6350
  issue: 24
  year: 2017
  ident: 10.1016/j.automatica.2024.111828_b6
  article-title: An online convex optimization approach to proactive network resource allocation
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2017.2750109
– volume: 9
  start-page: 647
  issue: 4
  year: 2015
  ident: 10.1016/j.automatica.2024.111828_b11
  article-title: Online convex optimization in dynamic environments
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2015.2404790
– volume: 66
  start-page: 3575
  issue: 8
  year: 2021
  ident: 10.1016/j.automatica.2024.111828_b18
  article-title: Distributed online optimization for multi-agent networks with coupled inequality constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2020.3021011
– volume: 68
  start-page: 2875
  issue: 5
  year: 2023
  ident: 10.1016/j.automatica.2024.111828_b31
  article-title: Regret and cumulative constraint violation analysis for distributed online constrained convex optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2022.3230766
– volume: 63
  start-page: 5149
  issue: 19
  year: 2015
  ident: 10.1016/j.automatica.2024.111828_b16
  article-title: A saddle point algorithm for networked online convex optimization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2015.2449255
– volume: 69
  start-page: 169
  issue: 2–3
  year: 2007
  ident: 10.1016/j.automatica.2024.111828_b13
  article-title: Logarithmic regret algorithms for online convex optimization
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5016-8
– volume: 146
  year: 2022
  ident: 10.1016/j.automatica.2024.111828_b35
  article-title: Distributed online bandit optimization under random quantization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110590
– ident: 10.1016/j.automatica.2024.111828_b2
– volume: 68
  start-page: 6101
  year: 2020
  ident: 10.1016/j.automatica.2024.111828_b19
  article-title: On maintaining linear convergence of distributed learning and optimization under limited communication
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2020.3031073
– volume: 1
  start-page: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.automatica.2024.111828_b21
  article-title: Distributed online convex optimization over jointly connected digraphs
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2014.2363554
– ident: 10.1016/j.automatica.2024.111828_b26
SSID ssj0004182
Score 2.4656816
Snippet In this paper, we study distributed constrained online convex optimization (OCO) problem in a system consisting of a parameter server and n clients. Each...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111828
SubjectTerms Adaptive quantization
Bandit feedback
Distributed optimization
Online convex optimization
Title Distributed constrained online convex optimization with adaptive quantization
URI https://dx.doi.org/10.1016/j.automatica.2024.111828
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXvQg_sT5Y-Tgta5tsibF05iOqWwnB7uFpHmFCW5TOvDk325ek-IEwYO3piVQvj6-91K-9z1CrpnkMgPQEdcijTiwPMrr5hwjktTGxqUU7EaeTLPxjD_O-_MWGTa9MCirDNzvOb1m63CnF9DsrRcL7PHFgMolqiBdWKInKOcCo_zm81vmwRPpHcNrx81cBjWP13jpTbWqnVHRgSjlyB8S57L_lqK20s7ogOyHepEO_CsdkhYsj8jelovgMZncofktzq0CSwus93Dsg7v2Lhi0FpZ_0JUjh9fQdUnx9yvVVq-R7ejbxuEbHp2Q2ej-eTiOwpSEqEgzVkUph0RzYy0DKaBMNJQZszHjDCzLWRmnWos-B3cSFTIzLinGpWC2ZGC4tEKwU9JerpZwRihAkYm0FFZIy0uT61wkLtIKV-UYExveIUkDjFp7MwzVqMRe1DeYCsFUHswOuW0QVD8-rHKc_efu83_tviC7uPKtg5ekXb1v4MrVEJXp1kHSJTuDh6fx9AsXEcoc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09a8MwED3SZGg7lH7S9NNDVxPbUiyZTqFtcJqPKYFsQrJkSKFJWhzoz6_OlkkKhQ7djIXAPB_vTuLeO4AHwimPjZE-lSzyqSGJn5TiHMXCSAfKphRUI48ncTqjr_PuvAFPtRYG2yod91ecXrK1e9NxaHbWiwVqfDGgEo5dkDYs6R600J2q24RWbzBMJ1t5ZMgr0_DSdDPhrqGnavOSm2JVmqOiCVFEkUI4jmb_LUvtZJ7-MRy5ktHrVV91Ag2zPIXDHSPBMxg_o_8tjq4y2suw5MPJD_a5MsLwyt7yL29l-eHdCS89vIH1pJZrJDzvY2MhdkvnMOu_TJ9S3w1K8LMoJoUfURNKqrQmhjOTh9LkMdEBocRokpA8iKRkXWrsYZTxWNm8GOSM6JwYRblmjFxAc7lamkvwjMliFuVMM65prhKZsNAGW2YLHaUCRdsQ1sCIdeWHIepGsTexBVMgmKICsw2PNYLix78Vlrb_3H31r933sJ9OxyMxGkyG13CAK5WS8AaaxefG3NqSolB3LmS-AQzszM0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+constrained+online+convex+optimization+with+adaptive+quantization&rft.jtitle=Automatica+%28Oxford%29&rft.au=Cao%2C+Xuanyu&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.volume=169&rft_id=info:doi/10.1016%2Fj.automatica.2024.111828&rft.externalDocID=S0005109824003224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon