FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry
This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at...
Saved in:
Published in | IEEE transactions on signal processing Vol. 66; no. 10; pp. 2584 - 2599 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
15.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2018.2807390 |
Cover
Abstract | This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at least two shortcomings of these DFT-based methods: first, they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs; and second, they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above-mentioned shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary two-dimensional-array antenna geometry, and propose an efficient sparse Bayesian learning approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance. |
---|---|
AbstractList | This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at least two shortcomings of these DFT-based methods: first, they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs; and second, they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above-mentioned shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary two-dimensional-array antenna geometry, and propose an efficient sparse Bayesian learning approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance. |
Author | Dai, Jisheng Liu, An Lau, Vincent K. N. |
Author_xml | – sequence: 1 givenname: Jisheng orcidid: 0000-0002-0462-4414 surname: Dai fullname: Dai, Jisheng email: jsdai@ujs.edu.cn organization: Department of Electronic Engineering, Jiangsu University, Zhenjiang, China – sequence: 2 givenname: An orcidid: 0000-0002-3943-5234 surname: Liu fullname: Liu, An email: anliu@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Vincent K. N. surname: Lau fullname: Lau, Vincent K. N. email: eeknlau@ust.hk organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong |
BookMark | eNp9kE1LAzEURYNUsK3uBTf5A1PzMZOPZem0tdBSwYruhiST0Eg7I0kQ5t87tcWFC1fvbc59754RGDRtYwG4x2iCMZKPu5fnCUFYTIhAnEp0BYZY5jhDOWeDfkcFzQrB32_AKMYPhHCeSzYE5aIs4UbF6L8s3Kw2Wzjbq6axBziPyR9V8m0D33zaw2nQPgUVOkjKbBqC6uDStkebQncLrp06RHt3mWPwupjvZk_ZertczabrzBBGU0ZorXiOC80Nw7g2RGjDJcJaU1dba4hTgjmktZKC2oIS5XLhasGEwpwSQscAnXNNaGMM1lWfof8xdBVG1clC1VuoThaqi4UeYX8Q49NPq76LP_wHPpxBb639vSOIFAXl9BvE1Ws- |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3399562 crossref_primary_10_1016_j_dsp_2023_104044 crossref_primary_10_1109_TVT_2022_3150421 crossref_primary_10_1016_j_icte_2024_08_003 crossref_primary_10_1016_j_dsp_2019_102640 crossref_primary_10_1016_j_dsp_2022_103878 crossref_primary_10_1109_LWC_2023_3309712 crossref_primary_10_1109_JSAC_2020_3005490 crossref_primary_10_1109_TVT_2021_3123147 crossref_primary_10_3390_electronics12234722 crossref_primary_10_1109_TSP_2020_2986551 crossref_primary_10_1109_TCOMM_2020_2998141 crossref_primary_10_1109_TWC_2020_2971193 crossref_primary_10_1109_TSP_2022_3207269 crossref_primary_10_1109_LCOMM_2023_3290035 crossref_primary_10_1109_TSP_2019_2928977 crossref_primary_10_1016_j_sigpro_2024_109825 crossref_primary_10_1109_TGCN_2022_3146188 crossref_primary_10_1109_TVT_2019_2908379 crossref_primary_10_1109_TWC_2020_3047866 crossref_primary_10_1109_ACCESS_2020_2991084 crossref_primary_10_1109_TWC_2019_2928298 crossref_primary_10_1109_TCOMM_2023_3258484 crossref_primary_10_1016_j_jfranklin_2023_12_050 crossref_primary_10_1109_TWC_2023_3297995 crossref_primary_10_1109_TSP_2019_2943226 crossref_primary_10_1109_JSYST_2020_2990350 crossref_primary_10_1109_ACCESS_2019_2949152 crossref_primary_10_1109_TSP_2021_3101989 crossref_primary_10_1587_transcom_2021EBP3064 crossref_primary_10_1109_JSTSP_2019_2908652 crossref_primary_10_1109_TWC_2021_3120926 crossref_primary_10_1016_j_dsp_2022_103739 crossref_primary_10_1109_ACCESS_2019_2911549 crossref_primary_10_1109_TVT_2023_3291693 crossref_primary_10_1109_TSP_2025_3532953 crossref_primary_10_1109_JIOT_2023_3311044 crossref_primary_10_3389_frsip_2022_837870 crossref_primary_10_1109_TCOMM_2020_2999624 crossref_primary_10_1109_TWC_2024_3351212 crossref_primary_10_1016_j_apacoust_2024_110514 crossref_primary_10_1007_s11276_020_02528_4 crossref_primary_10_1016_j_phycom_2019_100771 crossref_primary_10_1109_TII_2021_3119002 crossref_primary_10_1109_TWC_2024_3407586 crossref_primary_10_1109_TSP_2022_3171065 crossref_primary_10_1109_LCOMM_2024_3422421 crossref_primary_10_1109_TWC_2018_2890607 crossref_primary_10_1016_j_phycom_2020_101138 crossref_primary_10_1016_j_icte_2019_03_004 crossref_primary_10_1109_TWC_2019_2917905 crossref_primary_10_1109_JSEN_2024_3419053 crossref_primary_10_1016_j_sigpro_2019_107345 crossref_primary_10_1049_ell2_12933 crossref_primary_10_1109_TVT_2023_3250399 crossref_primary_10_1109_TWC_2024_3496933 crossref_primary_10_1109_TVT_2024_3420136 crossref_primary_10_1016_j_dsp_2022_103793 crossref_primary_10_3390_s20205939 crossref_primary_10_1109_LSP_2023_3324577 crossref_primary_10_1109_TVT_2021_3097767 crossref_primary_10_1587_transfun_2020EAI0001 crossref_primary_10_1109_TSP_2022_3163671 crossref_primary_10_1140_epjp_s13360_025_06093_7 crossref_primary_10_1109_TIM_2023_3303505 crossref_primary_10_3390_electronics8050473 crossref_primary_10_1109_TCOMM_2020_2969905 crossref_primary_10_1109_TWC_2020_2985686 crossref_primary_10_1109_TCOMM_2022_3225174 crossref_primary_10_1109_TSP_2025_3529657 crossref_primary_10_1109_TSP_2019_2956677 crossref_primary_10_1109_LWC_2019_2953265 crossref_primary_10_1109_TSP_2021_3106741 crossref_primary_10_1109_LSP_2018_2881927 crossref_primary_10_1109_TWC_2023_3269624 crossref_primary_10_1016_j_chemolab_2020_104088 crossref_primary_10_1109_LCOMM_2020_3044117 crossref_primary_10_1109_TWC_2024_3366705 crossref_primary_10_1109_TWC_2021_3071719 crossref_primary_10_1109_JSTSP_2019_2925786 crossref_primary_10_1109_ACCESS_2021_3081497 crossref_primary_10_1109_TVT_2022_3153966 crossref_primary_10_1109_JSYST_2021_3111284 crossref_primary_10_1016_j_dsp_2024_104595 crossref_primary_10_1109_LCOMM_2023_3346914 crossref_primary_10_1016_j_dsp_2022_103541 crossref_primary_10_1109_JSEN_2023_3324793 crossref_primary_10_1109_TWC_2020_3045922 crossref_primary_10_1109_JSAC_2021_3126050 crossref_primary_10_1109_TWC_2024_3491181 crossref_primary_10_1016_j_dsp_2018_08_004 crossref_primary_10_1587_transinf_2019EDP7277 crossref_primary_10_1049_cmu2_12811 crossref_primary_10_1109_TII_2020_2993586 crossref_primary_10_1109_TSP_2019_2949502 crossref_primary_10_1109_TSP_2020_3031056 crossref_primary_10_1109_ACCESS_2019_2949945 crossref_primary_10_1109_TVT_2023_3271214 crossref_primary_10_1109_TVT_2022_3195498 crossref_primary_10_1109_TSP_2018_2889952 crossref_primary_10_1109_OJVT_2023_3339799 crossref_primary_10_1109_JSAC_2025_3536550 crossref_primary_10_1109_TWC_2023_3328784 crossref_primary_10_1002_ett_4162 crossref_primary_10_1109_TSP_2019_2904018 crossref_primary_10_1109_JIOT_2021_3085659 crossref_primary_10_1109_LWC_2024_3381589 crossref_primary_10_1016_j_dsp_2021_103059 crossref_primary_10_1109_LWC_2022_3177429 crossref_primary_10_1109_ACCESS_2019_2926790 crossref_primary_10_1109_LSP_2018_2878617 crossref_primary_10_1109_TWC_2023_3345329 crossref_primary_10_1109_JSTSP_2024_3408071 crossref_primary_10_1109_TCOMM_2020_2990723 crossref_primary_10_1109_TVT_2023_3290207 crossref_primary_10_1109_TWC_2020_3045272 crossref_primary_10_1109_TWC_2021_3099727 crossref_primary_10_1109_JSAC_2022_3191124 crossref_primary_10_1109_TWC_2021_3121301 crossref_primary_10_1007_s40012_019_00216_z crossref_primary_10_1109_TWC_2024_3414119 crossref_primary_10_1186_s13634_021_00792_w crossref_primary_10_1109_TSP_2020_2964198 crossref_primary_10_1109_LWC_2022_3152323 crossref_primary_10_1109_TIM_2022_3214501 crossref_primary_10_1016_j_phycom_2021_101512 crossref_primary_10_3390_s21165298 crossref_primary_10_1109_LWC_2020_3023851 crossref_primary_10_1109_TCCN_2024_3414577 crossref_primary_10_1109_TCOMM_2023_3261385 crossref_primary_10_1109_TSP_2019_2896179 crossref_primary_10_1109_TSP_2018_2883852 crossref_primary_10_1109_TCOMM_2022_3141401 |
Cites_doi | 10.1109/MSP.2011.2178495 10.1109/TIT.2005.862083 10.1109/TSP.2015.2463260 10.1109/ISWCS.2012.6328480 10.1109/TSP.2014.2324991 10.1109/TWC.2014.2339330 10.1109/TSP.2017.2773420 10.1109/GlobalSIP.2015.7418182 10.1109/TIT.2006.871582 10.1109/TWC.2016.2553021 10.1109/TSP.2004.831016 10.1109/MCOM.2014.6736761 10.1109/JSYST.2015.2448661 10.1109/TWC.2010.092810.091092 10.1109/TSP.2015.2502550 10.1109/TSP.2015.2446444 10.1002/ett.928 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TWC.2016.2535310 10.1109/JSTSP.2014.2317671 10.1109/JSAC.2013.130205 10.1016/j.sigpro.2017.05.020 10.1109/TWC.2016.2608342 10.1109/LSP.2016.2636319 10.1109/TIT.2008.929958 10.1109/TSP.2007.914345 10.1109/TSP.2016.2616326 10.1109/TIT.2003.809594 10.1109/JSTSP.2014.2313020 10.1109/TSP.2016.2601299 10.1109/TCOMM.2015.2508809 10.1109/TSP.2012.2222378 10.1109/78.738251 10.1017/CBO9780511807213 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TSP.2018.2807390 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 2599 |
ExternalDocumentID | 10_1109_TSP_2018_2807390 8298537 |
Genre | orig-research |
GrantInformation_xml | – fundername: Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-Aged Teachers and Presidents – fundername: National Natural Science Foundation of China grantid: 61571211; 61571383 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c263t-23da7415b7c611dc28bc7901bb3fdeec2fa86f0bba983e532af48fd868a173223 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Tue Jul 01 02:53:16 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c263t-23da7415b7c611dc28bc7901bb3fdeec2fa86f0bba983e532af48fd868a173223 |
ORCID | 0000-0002-3943-5234 0000-0002-0462-4414 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TSP_2018_2807390 ieee_primary_8298537 crossref_citationtrail_10_1109_TSP_2018_2807390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May15,-15 2018-5-15 |
PublicationDateYYYYMMDD | 2018-05-15 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May15,-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref12 ref37 rao (ref10) 2014; 62 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref39 ref17 ref38 ref16 tipping (ref23) 2001; 1 ref19 ref18 (ref36) 2012 (ref41) 2015 ref24 ref26 ref20 ding (ref22) 2016 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 wright (ref40) 1999; 35 ref5 ding (ref21) 0 razaviyayn (ref25) 2014 |
References_xml | – ident: ref2 doi: 10.1109/MSP.2011.2178495 – ident: ref33 doi: 10.1109/TIT.2005.862083 – year: 2012 ident: ref36 article-title: Universal mobile telecommunications system (UMTS); Spatial channel model for multiple input multiple output (MIMO) simulations – ident: ref8 doi: 10.1109/TSP.2015.2463260 – ident: ref9 doi: 10.1109/ISWCS.2012.6328480 – volume: 62 start-page: 3261 year: 2014 ident: ref10 article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2324991 – ident: ref11 doi: 10.1109/TWC.2014.2339330 – ident: ref29 doi: 10.1109/TSP.2017.2773420 – ident: ref20 doi: 10.1109/GlobalSIP.2015.7418182 – ident: ref32 doi: 10.1109/TIT.2006.871582 – start-page: 1 year: 0 ident: ref21 article-title: Compressed downlink channel estimation based on dictionary learning in FDD massive MIMO systems publication-title: Proc IEEE Global Commun Conf – year: 2015 ident: ref41 article-title: 3rd generation partnership project; Technical specification group radio access network; Study on 3D channel model for LTE – ident: ref12 doi: 10.1109/TWC.2016.2553021 – year: 2014 ident: ref25 article-title: Successive convex approximation: Analysis and applications – ident: ref34 doi: 10.1109/TSP.2004.831016 – ident: ref4 doi: 10.1109/MCOM.2014.6736761 – ident: ref3 doi: 10.1109/JSYST.2015.2448661 – ident: ref1 doi: 10.1109/TWC.2010.092810.091092 – ident: ref16 doi: 10.1109/TSP.2015.2502550 – ident: ref14 doi: 10.1109/TSP.2015.2446444 – ident: ref37 doi: 10.1002/ett.928 – year: 2016 ident: ref22 article-title: Dictionary learning based sparse channel representation and estimation for FDD massive MIMO systems – ident: ref39 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref13 doi: 10.1109/TWC.2016.2535310 – ident: ref7 doi: 10.1109/JSTSP.2014.2317671 – ident: ref5 doi: 10.1109/JSAC.2013.130205 – ident: ref28 doi: 10.1016/j.sigpro.2017.05.020 – ident: ref18 doi: 10.1109/TWC.2016.2608342 – ident: ref30 doi: 10.1109/LSP.2016.2636319 – ident: ref31 doi: 10.1109/TIT.2008.929958 – volume: 1 start-page: 211 year: 2001 ident: ref23 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J Mach Learn Res – ident: ref24 doi: 10.1109/TSP.2007.914345 – ident: ref19 doi: 10.1109/TSP.2016.2616326 – ident: ref6 doi: 10.1109/TIT.2003.809594 – ident: ref15 doi: 10.1109/JSTSP.2014.2313020 – ident: ref26 doi: 10.1109/TSP.2016.2601299 – ident: ref17 doi: 10.1109/TCOMM.2015.2508809 – ident: ref27 doi: 10.1109/TSP.2012.2222378 – volume: 35 start-page: 67 year: 1999 ident: ref40 article-title: Numerical optimization publication-title: Springer Science – ident: ref38 doi: 10.1109/78.738251 – ident: ref35 doi: 10.1017/CBO9780511807213 |
SSID | ssj0014496 |
Score | 2.629821 |
Snippet | This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2584 |
SubjectTerms | Channel estimation Discrete Fourier transforms Downlink Geometry majorization-minimization (MM) massive multiple-input multiple-output (MIMO) MIMO communication off-grid refinement Scattering sparse Bayesian learning (SBL) Training |
Title | FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry |
URI | https://ieeexplore.ieee.org/document/8298537 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xTnF3nwRTDdmrRp-jjc5hSqghvurSRtisPZSeke5l_vpe3KEBHfSklKuLvkfund_Q6hK2onpriLE6a4Q5zYFkQ6cBgql8bMTRS1i3Y-wSMfTZyHqTttoJu6FkZrXSSfacs8FrH8eBEtza-yjqA-eBdvC22BmZW1WnXEwHGKXlwAFxhxhTddhyS7fmf88mxyuIRlmF-YOX03XNBGT5XCpQz3ULBeTJlJ8m4tc2VFXz94Gv-72n20W2FL3CuN4QA1dHqIdjYYB1uoP-z3cQCAGQ45HNwHT9iUF6R6jgew18syRvw6y9_gK2pWlORj2ie9LJMrfKcXHzrPVkdoMhyMb0ekaqRAIspZTiiLpUEOyou4bccRFSryAAgoxZJY64gmUvCkq5T0BdMuozJxRBILLqTtwY5nx6iZLlJ9gjDXymXccOxI8H9wfwbBSoCMMgGkxH2njTpr2YZRxTJuml3Mw-K20fVD0EZotBFW2mij63rGZ8mw8cfYlpFzPa4S8envr8_QtplsYv22e46aebbUFwAhcnVZ2M43BBK_-w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADr4EYzxy4INFtTdI0PSK2MR4FJIbYrUraVEyMDU3dAX49TttNE0KIW1WlUWQn9pfa_gxwSt3UFncJh2nBHZ640lEcjaH2aMK8VFM3b-cT3ovOM7_peb0FOJ_Vwhhj8uQzU7OPeSw_GcUT-6usLmmA3sVfhGX0-9wrqrVmMQPO825cCBiY40m_Nw1KNoJ69-nRZnHJmuV-Ydb-zjmhua4quVNpb0A4XU6RS_JWm2S6Fn_9YGr873o3Yb1El-Si2A5bsGCG27A2xzlYgWa72SQhQmY0cyS8Dh-ILTAYmgFp4WkvChnJSz97xVl0Py_KJ7TpXIzH6pNcmdG7ycafO_DcbnUvO07ZSsGJqWCZQ1miLHbQfixcN4mp1LGPUEBrlibGxDRVUqQNrVUgmfEYVSmXaSKFVK6PZ57twtJwNDR7QITRHhOWZUehB8QbNApWIWhUKWIlEfAq1KeyjeKSZ9y2uxhE-X2jEUSojchqIyq1UYWz2RcfBcfGH2MrVs6zcaWI939_fQIrnW54F91d398ewKqdyEb-Xe8QlrLxxBwhoMj0cb6PvgFCfcNI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDD+Massive+MIMO+Channel+Estimation+With+Arbitrary+2D-Array+Geometry&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Dai%2C+Jisheng&rft.au=Liu%2C+An&rft.au=Lau%2C+Vincent+K.+N.&rft.date=2018-05-15&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=66&rft.issue=10&rft.spage=2584&rft.epage=2599&rft_id=info:doi/10.1109%2FTSP.2018.2807390&rft.externalDocID=8298537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |