FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry

This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 66; no. 10; pp. 2584 - 2599
Main Authors Dai, Jisheng, Liu, An, Lau, Vincent K. N.
Format Journal Article
LanguageEnglish
Published IEEE 15.05.2018
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2018.2807390

Cover

Abstract This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at least two shortcomings of these DFT-based methods: first, they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs; and second, they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above-mentioned shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary two-dimensional-array antenna geometry, and propose an efficient sparse Bayesian learning approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.
AbstractList This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at least two shortcomings of these DFT-based methods: first, they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs; and second, they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above-mentioned shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary two-dimensional-array antenna geometry, and propose an efficient sparse Bayesian learning approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.
Author Dai, Jisheng
Liu, An
Lau, Vincent K. N.
Author_xml – sequence: 1
  givenname: Jisheng
  orcidid: 0000-0002-0462-4414
  surname: Dai
  fullname: Dai, Jisheng
  email: jsdai@ujs.edu.cn
  organization: Department of Electronic Engineering, Jiangsu University, Zhenjiang, China
– sequence: 2
  givenname: An
  orcidid: 0000-0002-3943-5234
  surname: Liu
  fullname: Liu, An
  email: anliu@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Vincent K. N.
  surname: Lau
  fullname: Lau, Vincent K. N.
  email: eeknlau@ust.hk
  organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
BookMark eNp9kE1LAzEURYNUsK3uBTf5A1PzMZOPZem0tdBSwYruhiST0Eg7I0kQ5t87tcWFC1fvbc59754RGDRtYwG4x2iCMZKPu5fnCUFYTIhAnEp0BYZY5jhDOWeDfkcFzQrB32_AKMYPhHCeSzYE5aIs4UbF6L8s3Kw2Wzjbq6axBziPyR9V8m0D33zaw2nQPgUVOkjKbBqC6uDStkebQncLrp06RHt3mWPwupjvZk_ZertczabrzBBGU0ZorXiOC80Nw7g2RGjDJcJaU1dba4hTgjmktZKC2oIS5XLhasGEwpwSQscAnXNNaGMM1lWfof8xdBVG1clC1VuoThaqi4UeYX8Q49NPq76LP_wHPpxBb639vSOIFAXl9BvE1Ws-
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JIOT_2024_3399562
crossref_primary_10_1016_j_dsp_2023_104044
crossref_primary_10_1109_TVT_2022_3150421
crossref_primary_10_1016_j_icte_2024_08_003
crossref_primary_10_1016_j_dsp_2019_102640
crossref_primary_10_1016_j_dsp_2022_103878
crossref_primary_10_1109_LWC_2023_3309712
crossref_primary_10_1109_JSAC_2020_3005490
crossref_primary_10_1109_TVT_2021_3123147
crossref_primary_10_3390_electronics12234722
crossref_primary_10_1109_TSP_2020_2986551
crossref_primary_10_1109_TCOMM_2020_2998141
crossref_primary_10_1109_TWC_2020_2971193
crossref_primary_10_1109_TSP_2022_3207269
crossref_primary_10_1109_LCOMM_2023_3290035
crossref_primary_10_1109_TSP_2019_2928977
crossref_primary_10_1016_j_sigpro_2024_109825
crossref_primary_10_1109_TGCN_2022_3146188
crossref_primary_10_1109_TVT_2019_2908379
crossref_primary_10_1109_TWC_2020_3047866
crossref_primary_10_1109_ACCESS_2020_2991084
crossref_primary_10_1109_TWC_2019_2928298
crossref_primary_10_1109_TCOMM_2023_3258484
crossref_primary_10_1016_j_jfranklin_2023_12_050
crossref_primary_10_1109_TWC_2023_3297995
crossref_primary_10_1109_TSP_2019_2943226
crossref_primary_10_1109_JSYST_2020_2990350
crossref_primary_10_1109_ACCESS_2019_2949152
crossref_primary_10_1109_TSP_2021_3101989
crossref_primary_10_1587_transcom_2021EBP3064
crossref_primary_10_1109_JSTSP_2019_2908652
crossref_primary_10_1109_TWC_2021_3120926
crossref_primary_10_1016_j_dsp_2022_103739
crossref_primary_10_1109_ACCESS_2019_2911549
crossref_primary_10_1109_TVT_2023_3291693
crossref_primary_10_1109_TSP_2025_3532953
crossref_primary_10_1109_JIOT_2023_3311044
crossref_primary_10_3389_frsip_2022_837870
crossref_primary_10_1109_TCOMM_2020_2999624
crossref_primary_10_1109_TWC_2024_3351212
crossref_primary_10_1016_j_apacoust_2024_110514
crossref_primary_10_1007_s11276_020_02528_4
crossref_primary_10_1016_j_phycom_2019_100771
crossref_primary_10_1109_TII_2021_3119002
crossref_primary_10_1109_TWC_2024_3407586
crossref_primary_10_1109_TSP_2022_3171065
crossref_primary_10_1109_LCOMM_2024_3422421
crossref_primary_10_1109_TWC_2018_2890607
crossref_primary_10_1016_j_phycom_2020_101138
crossref_primary_10_1016_j_icte_2019_03_004
crossref_primary_10_1109_TWC_2019_2917905
crossref_primary_10_1109_JSEN_2024_3419053
crossref_primary_10_1016_j_sigpro_2019_107345
crossref_primary_10_1049_ell2_12933
crossref_primary_10_1109_TVT_2023_3250399
crossref_primary_10_1109_TWC_2024_3496933
crossref_primary_10_1109_TVT_2024_3420136
crossref_primary_10_1016_j_dsp_2022_103793
crossref_primary_10_3390_s20205939
crossref_primary_10_1109_LSP_2023_3324577
crossref_primary_10_1109_TVT_2021_3097767
crossref_primary_10_1587_transfun_2020EAI0001
crossref_primary_10_1109_TSP_2022_3163671
crossref_primary_10_1140_epjp_s13360_025_06093_7
crossref_primary_10_1109_TIM_2023_3303505
crossref_primary_10_3390_electronics8050473
crossref_primary_10_1109_TCOMM_2020_2969905
crossref_primary_10_1109_TWC_2020_2985686
crossref_primary_10_1109_TCOMM_2022_3225174
crossref_primary_10_1109_TSP_2025_3529657
crossref_primary_10_1109_TSP_2019_2956677
crossref_primary_10_1109_LWC_2019_2953265
crossref_primary_10_1109_TSP_2021_3106741
crossref_primary_10_1109_LSP_2018_2881927
crossref_primary_10_1109_TWC_2023_3269624
crossref_primary_10_1016_j_chemolab_2020_104088
crossref_primary_10_1109_LCOMM_2020_3044117
crossref_primary_10_1109_TWC_2024_3366705
crossref_primary_10_1109_TWC_2021_3071719
crossref_primary_10_1109_JSTSP_2019_2925786
crossref_primary_10_1109_ACCESS_2021_3081497
crossref_primary_10_1109_TVT_2022_3153966
crossref_primary_10_1109_JSYST_2021_3111284
crossref_primary_10_1016_j_dsp_2024_104595
crossref_primary_10_1109_LCOMM_2023_3346914
crossref_primary_10_1016_j_dsp_2022_103541
crossref_primary_10_1109_JSEN_2023_3324793
crossref_primary_10_1109_TWC_2020_3045922
crossref_primary_10_1109_JSAC_2021_3126050
crossref_primary_10_1109_TWC_2024_3491181
crossref_primary_10_1016_j_dsp_2018_08_004
crossref_primary_10_1587_transinf_2019EDP7277
crossref_primary_10_1049_cmu2_12811
crossref_primary_10_1109_TII_2020_2993586
crossref_primary_10_1109_TSP_2019_2949502
crossref_primary_10_1109_TSP_2020_3031056
crossref_primary_10_1109_ACCESS_2019_2949945
crossref_primary_10_1109_TVT_2023_3271214
crossref_primary_10_1109_TVT_2022_3195498
crossref_primary_10_1109_TSP_2018_2889952
crossref_primary_10_1109_OJVT_2023_3339799
crossref_primary_10_1109_JSAC_2025_3536550
crossref_primary_10_1109_TWC_2023_3328784
crossref_primary_10_1002_ett_4162
crossref_primary_10_1109_TSP_2019_2904018
crossref_primary_10_1109_JIOT_2021_3085659
crossref_primary_10_1109_LWC_2024_3381589
crossref_primary_10_1016_j_dsp_2021_103059
crossref_primary_10_1109_LWC_2022_3177429
crossref_primary_10_1109_ACCESS_2019_2926790
crossref_primary_10_1109_LSP_2018_2878617
crossref_primary_10_1109_TWC_2023_3345329
crossref_primary_10_1109_JSTSP_2024_3408071
crossref_primary_10_1109_TCOMM_2020_2990723
crossref_primary_10_1109_TVT_2023_3290207
crossref_primary_10_1109_TWC_2020_3045272
crossref_primary_10_1109_TWC_2021_3099727
crossref_primary_10_1109_JSAC_2022_3191124
crossref_primary_10_1109_TWC_2021_3121301
crossref_primary_10_1007_s40012_019_00216_z
crossref_primary_10_1109_TWC_2024_3414119
crossref_primary_10_1186_s13634_021_00792_w
crossref_primary_10_1109_TSP_2020_2964198
crossref_primary_10_1109_LWC_2022_3152323
crossref_primary_10_1109_TIM_2022_3214501
crossref_primary_10_1016_j_phycom_2021_101512
crossref_primary_10_3390_s21165298
crossref_primary_10_1109_LWC_2020_3023851
crossref_primary_10_1109_TCCN_2024_3414577
crossref_primary_10_1109_TCOMM_2023_3261385
crossref_primary_10_1109_TSP_2019_2896179
crossref_primary_10_1109_TSP_2018_2883852
crossref_primary_10_1109_TCOMM_2022_3141401
Cites_doi 10.1109/MSP.2011.2178495
10.1109/TIT.2005.862083
10.1109/TSP.2015.2463260
10.1109/ISWCS.2012.6328480
10.1109/TSP.2014.2324991
10.1109/TWC.2014.2339330
10.1109/TSP.2017.2773420
10.1109/GlobalSIP.2015.7418182
10.1109/TIT.2006.871582
10.1109/TWC.2016.2553021
10.1109/TSP.2004.831016
10.1109/MCOM.2014.6736761
10.1109/JSYST.2015.2448661
10.1109/TWC.2010.092810.091092
10.1109/TSP.2015.2502550
10.1109/TSP.2015.2446444
10.1002/ett.928
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TWC.2016.2535310
10.1109/JSTSP.2014.2317671
10.1109/JSAC.2013.130205
10.1016/j.sigpro.2017.05.020
10.1109/TWC.2016.2608342
10.1109/LSP.2016.2636319
10.1109/TIT.2008.929958
10.1109/TSP.2007.914345
10.1109/TSP.2016.2616326
10.1109/TIT.2003.809594
10.1109/JSTSP.2014.2313020
10.1109/TSP.2016.2601299
10.1109/TCOMM.2015.2508809
10.1109/TSP.2012.2222378
10.1109/78.738251
10.1017/CBO9780511807213
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2018.2807390
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2599
ExternalDocumentID 10_1109_TSP_2018_2807390
8298537
Genre orig-research
GrantInformation_xml – fundername: Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-Aged Teachers and Presidents
– fundername: National Natural Science Foundation of China
  grantid: 61571211; 61571383
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c263t-23da7415b7c611dc28bc7901bb3fdeec2fa86f0bba983e532af48fd868a173223
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Tue Jul 01 02:53:16 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-23da7415b7c611dc28bc7901bb3fdeec2fa86f0bba983e532af48fd868a173223
ORCID 0000-0002-3943-5234
0000-0002-0462-4414
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSP_2018_2807390
ieee_primary_8298537
crossref_citationtrail_10_1109_TSP_2018_2807390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May15,-15
2018-5-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May15,-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref37
rao (ref10) 2014; 62
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref17
ref38
ref16
tipping (ref23) 2001; 1
ref19
ref18
(ref36) 2012
(ref41) 2015
ref24
ref26
ref20
ding (ref22) 2016
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
wright (ref40) 1999; 35
ref5
ding (ref21) 0
razaviyayn (ref25) 2014
References_xml – ident: ref2
  doi: 10.1109/MSP.2011.2178495
– ident: ref33
  doi: 10.1109/TIT.2005.862083
– year: 2012
  ident: ref36
  article-title: Universal mobile telecommunications system (UMTS); Spatial channel model for multiple input multiple output (MIMO) simulations
– ident: ref8
  doi: 10.1109/TSP.2015.2463260
– ident: ref9
  doi: 10.1109/ISWCS.2012.6328480
– volume: 62
  start-page: 3261
  year: 2014
  ident: ref10
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2324991
– ident: ref11
  doi: 10.1109/TWC.2014.2339330
– ident: ref29
  doi: 10.1109/TSP.2017.2773420
– ident: ref20
  doi: 10.1109/GlobalSIP.2015.7418182
– ident: ref32
  doi: 10.1109/TIT.2006.871582
– start-page: 1
  year: 0
  ident: ref21
  article-title: Compressed downlink channel estimation based on dictionary learning in FDD massive MIMO systems
  publication-title: Proc IEEE Global Commun Conf
– year: 2015
  ident: ref41
  article-title: 3rd generation partnership project; Technical specification group radio access network; Study on 3D channel model for LTE
– ident: ref12
  doi: 10.1109/TWC.2016.2553021
– year: 2014
  ident: ref25
  article-title: Successive convex approximation: Analysis and applications
– ident: ref34
  doi: 10.1109/TSP.2004.831016
– ident: ref4
  doi: 10.1109/MCOM.2014.6736761
– ident: ref3
  doi: 10.1109/JSYST.2015.2448661
– ident: ref1
  doi: 10.1109/TWC.2010.092810.091092
– ident: ref16
  doi: 10.1109/TSP.2015.2502550
– ident: ref14
  doi: 10.1109/TSP.2015.2446444
– ident: ref37
  doi: 10.1002/ett.928
– year: 2016
  ident: ref22
  article-title: Dictionary learning based sparse channel representation and estimation for FDD massive MIMO systems
– ident: ref39
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref13
  doi: 10.1109/TWC.2016.2535310
– ident: ref7
  doi: 10.1109/JSTSP.2014.2317671
– ident: ref5
  doi: 10.1109/JSAC.2013.130205
– ident: ref28
  doi: 10.1016/j.sigpro.2017.05.020
– ident: ref18
  doi: 10.1109/TWC.2016.2608342
– ident: ref30
  doi: 10.1109/LSP.2016.2636319
– ident: ref31
  doi: 10.1109/TIT.2008.929958
– volume: 1
  start-page: 211
  year: 2001
  ident: ref23
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J Mach Learn Res
– ident: ref24
  doi: 10.1109/TSP.2007.914345
– ident: ref19
  doi: 10.1109/TSP.2016.2616326
– ident: ref6
  doi: 10.1109/TIT.2003.809594
– ident: ref15
  doi: 10.1109/JSTSP.2014.2313020
– ident: ref26
  doi: 10.1109/TSP.2016.2601299
– ident: ref17
  doi: 10.1109/TCOMM.2015.2508809
– ident: ref27
  doi: 10.1109/TSP.2012.2222378
– volume: 35
  start-page: 67
  year: 1999
  ident: ref40
  article-title: Numerical optimization
  publication-title: Springer Science
– ident: ref38
  doi: 10.1109/78.738251
– ident: ref35
  doi: 10.1017/CBO9780511807213
SSID ssj0014496
Score 2.629821
Snippet This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2584
SubjectTerms Channel estimation
Discrete Fourier transforms
Downlink
Geometry
majorization-minimization (MM)
massive multiple-input multiple-output (MIMO)
MIMO communication
off-grid refinement
Scattering
sparse Bayesian learning (SBL)
Training
Title FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry
URI https://ieeexplore.ieee.org/document/8298537
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xTnF3nwRTDdmrRp-jjc5hSqghvurSRtisPZSeke5l_vpe3KEBHfSklKuLvkfund_Q6hK2onpriLE6a4Q5zYFkQ6cBgql8bMTRS1i3Y-wSMfTZyHqTttoJu6FkZrXSSfacs8FrH8eBEtza-yjqA-eBdvC22BmZW1WnXEwHGKXlwAFxhxhTddhyS7fmf88mxyuIRlmF-YOX03XNBGT5XCpQz3ULBeTJlJ8m4tc2VFXz94Gv-72n20W2FL3CuN4QA1dHqIdjYYB1uoP-z3cQCAGQ45HNwHT9iUF6R6jgew18syRvw6y9_gK2pWlORj2ie9LJMrfKcXHzrPVkdoMhyMb0ekaqRAIspZTiiLpUEOyou4bccRFSryAAgoxZJY64gmUvCkq5T0BdMuozJxRBILLqTtwY5nx6iZLlJ9gjDXymXccOxI8H9wfwbBSoCMMgGkxH2njTpr2YZRxTJuml3Mw-K20fVD0EZotBFW2mij63rGZ8mw8cfYlpFzPa4S8envr8_QtplsYv22e46aebbUFwAhcnVZ2M43BBK_-w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADr4EYzxy4INFtTdI0PSK2MR4FJIbYrUraVEyMDU3dAX49TttNE0KIW1WlUWQn9pfa_gxwSt3UFncJh2nBHZ640lEcjaH2aMK8VFM3b-cT3ovOM7_peb0FOJ_Vwhhj8uQzU7OPeSw_GcUT-6usLmmA3sVfhGX0-9wrqrVmMQPO825cCBiY40m_Nw1KNoJ69-nRZnHJmuV-Ydb-zjmhua4quVNpb0A4XU6RS_JWm2S6Fn_9YGr873o3Yb1El-Si2A5bsGCG27A2xzlYgWa72SQhQmY0cyS8Dh-ILTAYmgFp4WkvChnJSz97xVl0Py_KJ7TpXIzH6pNcmdG7ycafO_DcbnUvO07ZSsGJqWCZQ1miLHbQfixcN4mp1LGPUEBrlibGxDRVUqQNrVUgmfEYVSmXaSKFVK6PZ57twtJwNDR7QITRHhOWZUehB8QbNApWIWhUKWIlEfAq1KeyjeKSZ9y2uxhE-X2jEUSojchqIyq1UYWz2RcfBcfGH2MrVs6zcaWI939_fQIrnW54F91d398ewKqdyEb-Xe8QlrLxxBwhoMj0cb6PvgFCfcNI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDD+Massive+MIMO+Channel+Estimation+With+Arbitrary+2D-Array+Geometry&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Dai%2C+Jisheng&rft.au=Liu%2C+An&rft.au=Lau%2C+Vincent+K.+N.&rft.date=2018-05-15&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=66&rft.issue=10&rft.spage=2584&rft.epage=2599&rft_id=info:doi/10.1109%2FTSP.2018.2807390&rft.externalDocID=8298537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon