Efficient De-noising Performance of a Combined Algorithm of Translation Invariant (TI) Wavelets and Independent Component Analysis over TI Wavelets for Speech-Auditory Brainstem Responses
In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University of Ottawa, from 10 different human subjects. Here the de-noising techniques we have considered are Yule-Walker Multiband Filter, Cascaded Yu...
Saved in:
Published in | Procedia computer science Vol. 54; pp. 829 - 837 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2015.06.097 |
Cover
Abstract | In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University of Ottawa, from 10 different human subjects. Here the de-noising techniques we have considered are Yule-Walker Multiband Filter, Cascaded Yule-Walker-Comb Filter, Conventional Wavelet Transform estimation filters: Daubechies, Symlet, Coiflet Wavelet families, Translation Invariant (TI) Wavelet Transform estimation filter, FAST Independent Component Analysis (FASTICA) De-noising Technique, Combined algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis” De-noising technique. The performance measures we have considered are Mean Square Error (MSE) and Signal-to-Noise-Ratio (SNR) values. Out of these techniques we found that cascading of Yule-Walker filter and Comb-Peak filter gave better De-noising performance than Yule-Walker Multiband Filter. Then conventional Wavelets performed far better than the cascaded filter, in those Daubechies family of wavelets worked better than all. Then FASTICA Algorithm worked near to the performance of Conventional Wavelets but far better than cascaded filter. Then we have utilized Translation Invariant (TI) wavelet algorithm which provided the excellent performance than above all. Then we have utilized combined Algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis – CSTIICA” algorithm which found to be, it may perform better than TI wavelets algorithm. Ultimately TI and CSTIICA algorithms are found to be may be the best auditory artifact removal techniques and can be highly useful in auditory EEG data analysis to the best. |
---|---|
AbstractList | In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University of Ottawa, from 10 different human subjects. Here the de-noising techniques we have considered are Yule-Walker Multiband Filter, Cascaded Yule-Walker-Comb Filter, Conventional Wavelet Transform estimation filters: Daubechies, Symlet, Coiflet Wavelet families, Translation Invariant (TI) Wavelet Transform estimation filter, FAST Independent Component Analysis (FASTICA) De-noising Technique, Combined algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis” De-noising technique. The performance measures we have considered are Mean Square Error (MSE) and Signal-to-Noise-Ratio (SNR) values. Out of these techniques we found that cascading of Yule-Walker filter and Comb-Peak filter gave better De-noising performance than Yule-Walker Multiband Filter. Then conventional Wavelets performed far better than the cascaded filter, in those Daubechies family of wavelets worked better than all. Then FASTICA Algorithm worked near to the performance of Conventional Wavelets but far better than cascaded filter. Then we have utilized Translation Invariant (TI) wavelet algorithm which provided the excellent performance than above all. Then we have utilized combined Algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis – CSTIICA” algorithm which found to be, it may perform better than TI wavelets algorithm. Ultimately TI and CSTIICA algorithms are found to be may be the best auditory artifact removal techniques and can be highly useful in auditory EEG data analysis to the best. |
Author | Narayanam, Ranganadh |
Author_xml | – sequence: 1 givenname: Ranganadh surname: Narayanam fullname: Narayanam, Ranganadh email: ranganadh.narayanam@gmail.com organization: IFHE, Shankarapalli Road, Hyderabad |
BookMark | eNqFkU1PxCAQhonRxM9f4IWjHlqhtHT34GFdvzYx0egaj4TCVNm00ABusr_NPyerJhoPymGYMHneYebdRZvWWUDokJKcEspPFvngnQp5QWiVE56Tcb2BduiorjNSkfHmj3wbHYSwIOmw0WhM6x30dtG2RhmwEZ9DZp0Jxj7jO_Ct8720CrBrscRT1zfGgsaT7tl5E1_69fvcSxs6GY2zeGaX0huZdI7ms2P8JJfQQQxYWp1qGgZIIVWT0pD-n7KJld0qmIDdEjyez76Z1Bs_DADqJZu8ahOdX-EzL40NEXp8DyEpBAj7aKuVXYCDr3sPPV5ezKfX2c3t1Ww6uclUwVmdKeC60KAbDiNFK8pL2jRFycu2IVISUleMcF6WNeWsgbrVjdSqZFXBdMk1K9geYp-6yrsQPLRi8KaXfiUoEWsLxEJ8WCDWFgjCRbIgUeNflDLxY1cxjdL9w55-spDGWhrwIqw9UqCNBxWFduZP_h3cMqm3 |
CitedBy_id | crossref_primary_10_1089_ees_2019_0393 |
Cites_doi | 10.1097/00001756-199511270-00021 10.1109/TBME.2005.851499 10.1109/IEMBS.2001.1020587 10.5121/csit.2013.3636 10.1016/j.clinph.2004.04.003 10.1109/IJCNN.2007.4371184 10.1097/01.aud.0000179687.71662.6e 10.1109/JPROC.2003.823141 |
ContentType | Journal Article |
Copyright | 2015 The Authors |
Copyright_xml | – notice: 2015 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2015.06.097 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 837 |
ExternalDocumentID | 10_1016_j_procs_2015_06_097 S1877050915014210 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c2637-ce6d2dedb6e8c151641bb2464fb0aa00753066447163be7fdbadc43523d46d323 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Jul 03 08:35:08 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Wed May 17 01:33:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wavelets FASTICA Translation invariance ICA SNR MSE |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2637-ce6d2dedb6e8c151641bb2464fb0aa00753066447163be7fdbadc43523d46d323 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050915014210 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2015_06_097 crossref_citationtrail_10_1016_j_procs_2015_06_097 elsevier_sciencedirect_doi_10_1016_j_procs_2015_06_097 |
PublicationCentury | 2000 |
PublicationDate | 2015 2015-00-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | Procedia computer science |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | S. Julier and J. K. Uhlmann, Unscented Filtering and Nonlinear Estimation vol. 115, (2010). G. Inuso, F. La Foresta, N. Mammone and F. C. Morabito, Wavelet-ICA Methodology for Efficient Artifact Removal from Electroencephalographic Recordings, In the M. I. Bhatti, A. Pervaiz and M. H. Baig, EEG Signal Decomposition and Improved Spectral Analysis using Wavelet Transform, In P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, Removal of Ocular Artifacts in the EEG through Wavelet Transform without using an EOG Reference Channel R. H. Dajani, D. Purcell, W. Wong, H. Kunov and T. W. Picton, Recording Human Evoked Potentials that Follow the Pitch Contour of a Natural Vowel Ranganadh Narayanam, Brain-Activity-Filters: Efficient Performance of Translation-Invariant (TI) Wavelets Approach for Speech-Auditory Brainstem Responses of Human Subjects Ranganadh Narayanam, Robust Detection of Speech Auditory Brainstem Responses using Voice Activity Detection (VAD) Algorithms pp. 125-150, (1995). pp. 1524-1529, (2007). Ranganadh Narayanam, An Efficient Peak Valley Detection based VAD Algorithm for Robust Detection of Speech Auditory Brainstem Responses pp. 1614-1618, (2005). vol. 92, no. 3, pp. 401-421, (2004). (2014). R. R. Coifman and D. L. Donoho, Translation Invariant Denoising (2013). K. L. Johnson, G.T. Nicol and N. Kraus, Brain Stem Response to Speech: A Biological Marker of Auditory Processing. Ear & Hearing, vol. 26, pp. 424-434, (2005). (2012). pp. 229-259, (2005). vol. 2, pp. 1862-1864, (2008). C. S. Herrmann, M. Grigutsch and N. A. Busch, EEG Oscillations and Wavelet Analysis. Event-related Potentials: A Methods Handbook,. N. Russo, T. Nicol, G. Musacchia and N. Kraus, Brainstem Responses to Speech Syllables vol. 1, no. 3, (2008). G. C. Galbraith, P.W. Arbagey and R. Branski, Intelligible Speech Encoded in the Human Brain Stem Frequency Following Response, vol. 6, pp. 2363-2367, (2004). vol. 8, no. 9, pp. 87-92, (2008). P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, A Wavelet based Statistical Method for De-noising of Ocular Artifacts in. EEG Signals 10.1016/j.procs.2015.06.097_bib0005 10.1016/j.procs.2015.06.097_bib0015 10.1016/j.procs.2015.06.097_bib0025 10.1016/j.procs.2015.06.097_bib0060 10.1016/j.procs.2015.06.097_bib0070 10.1016/j.procs.2015.06.097_bib0035 10.1016/j.procs.2015.06.097_bib0045 10.1016/j.procs.2015.06.097_bib0055 10.1016/j.procs.2015.06.097_bib0010 10.1016/j.procs.2015.06.097_bib0065 10.1016/j.procs.2015.06.097_bib0020 10.1016/j.procs.2015.06.097_bib0030 10.1016/j.procs.2015.06.097_bib0040 10.1016/j.procs.2015.06.097_bib0050 |
References_xml | – reference: , vol. 1, no. 3, (2008). – reference: , pp. 125-150, (1995). – reference: S. Julier and J. K. Uhlmann, Unscented Filtering and Nonlinear Estimation, – reference: M. I. Bhatti, A. Pervaiz and M. H. Baig, EEG Signal Decomposition and Improved Spectral Analysis using Wavelet Transform, In – reference: , (2012). – reference: , vol. 92, no. 3, pp. 401-421, (2004). – reference: P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, Removal of Ocular Artifacts in the EEG through Wavelet Transform without using an EOG Reference Channel, – reference: K. L. Johnson, G.T. Nicol and N. Kraus, Brain Stem Response to Speech: A Biological Marker of Auditory Processing. Ear & Hearing, vol. 26, pp. 424-434, (2005). – reference: G. C. Galbraith, P.W. Arbagey and R. Branski, Intelligible Speech Encoded in the Human Brain Stem Frequency Following Response, vol. 6, pp. 2363-2367, (2004). – reference: , vol. 8, no. 9, pp. 87-92, (2008). – reference: , pp. 229-259, (2005). – reference: , vol. 2, pp. 1862-1864, (2008). – reference: C. S. Herrmann, M. Grigutsch and N. A. Busch, EEG Oscillations and Wavelet Analysis. Event-related Potentials: A Methods Handbook,. – reference: R. R. Coifman and D. L. Donoho, Translation Invariant Denoising, – reference: R. H. Dajani, D. Purcell, W. Wong, H. Kunov and T. W. Picton, Recording Human Evoked Potentials that Follow the Pitch Contour of a Natural Vowel, – reference: , pp. 1524-1529, (2007). – reference: P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, A Wavelet based Statistical Method for De-noising of Ocular Artifacts in. EEG Signals, – reference: , pp. 1614-1618, (2005). – reference: , (2014). – reference: , vol. 115, (2010). – reference: Ranganadh Narayanam, Brain-Activity-Filters: Efficient Performance of Translation-Invariant (TI) Wavelets Approach for Speech-Auditory Brainstem Responses of Human Subjects, – reference: Ranganadh Narayanam, An Efficient Peak Valley Detection based VAD Algorithm for Robust Detection of Speech Auditory Brainstem Responses, – reference: Ranganadh Narayanam, Robust Detection of Speech Auditory Brainstem Responses using Voice Activity Detection (VAD) Algorithms, – reference: , (2013). – reference: G. Inuso, F. La Foresta, N. Mammone and F. C. Morabito, Wavelet-ICA Methodology for Efficient Artifact Removal from Electroencephalographic Recordings, In the – reference: N. Russo, T. Nicol, G. Musacchia and N. Kraus, Brainstem Responses to Speech Syllables, – ident: 10.1016/j.procs.2015.06.097_bib0035 doi: 10.1097/00001756-199511270-00021 – ident: 10.1016/j.procs.2015.06.097_bib0015 doi: 10.1109/TBME.2005.851499 – ident: 10.1016/j.procs.2015.06.097_bib0040 doi: 10.1109/IEMBS.2001.1020587 – ident: 10.1016/j.procs.2015.06.097_bib0050 – ident: 10.1016/j.procs.2015.06.097_bib0045 – ident: 10.1016/j.procs.2015.06.097_bib0070 – ident: 10.1016/j.procs.2015.06.097_bib0010 doi: 10.5121/csit.2013.3636 – ident: 10.1016/j.procs.2015.06.097_bib0030 doi: 10.1016/j.clinph.2004.04.003 – ident: 10.1016/j.procs.2015.06.097_bib0055 doi: 10.1109/IJCNN.2007.4371184 – ident: 10.1016/j.procs.2015.06.097_bib0025 doi: 10.1097/01.aud.0000179687.71662.6e – ident: 10.1016/j.procs.2015.06.097_bib0060 doi: 10.1109/JPROC.2003.823141 – ident: 10.1016/j.procs.2015.06.097_bib0065 – ident: 10.1016/j.procs.2015.06.097_bib0020 – ident: 10.1016/j.procs.2015.06.097_bib0005 |
SSID | ssj0000388917 |
Score | 1.9923835 |
Snippet | In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 829 |
SubjectTerms | FASTICA ICA MSE SNR Translation invariance Wavelets |
Title | Efficient De-noising Performance of a Combined Algorithm of Translation Invariant (TI) Wavelets and Independent Component Analysis over TI Wavelets for Speech-Auditory Brainstem Responses |
URI | https://dx.doi.org/10.1016/j.procs.2015.06.097 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTdz8KBgWJvUtB7XF66iiK64t9I0ibui7bJWwd_mn3MmbX2AePDWppk0ZNJ8k3TmG8Y2LWLebqgFl7GyPBQi4Fo5yZWWiBgyy0LPW3BxqU5vw7PeXm-MHTaxMORWWa_91ZruV-u6pFWPZms4GLRugjiKiL0koF9jwodZUVQpBfH1Dj7PWYjtZN8n3qX6nAQa8iHv5kU4QbTdwZ7n8STyp98A6hvonMywqdpahHbVoVk2ZvM5Nt1kYoD6w5xn78eeCQIBBI4sz4sBnQDA1VdQABQOUkBB3AhbA-3H-2I0KPtPVO7hqnKJg07-iptnHG3Y6na24S6lvBTlM6S5wWdNxtySWhoWOV01rCZAvqDQ7XzJ4LvhZmht1udtiv0oRm9wQBkpiDsarivnXPu8wG5PjruHp7xOy8AzoWTEM6uMMNZoZeMMDQYVBloL1KnTu2lKNghuQ9DMwp2Y1DZyRqcmQ6tMSBMqI4VcZOM5dnGJgTTOOUMM_JELUZlxlAZpgKq3DhuM42UmGl0kWc1ZTqkzHpPGOe0h8QpMSIEJuejtR8ts51NoWFF2_F1dNUpOfsy8BEHlL8GV_wquskm6qw5y1th4OXqx62jalHqDTbTPr-_ON_wc_gASJvu- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOilvIp4MwcOVKq1xA5OOC4vbXgJlUXdWxTHdtkKktUSkPht_DlmnISHhDj0FjkZx_I4_macmW8Y27KIeTuhFlzGyvJQiIBr5SRXWiJiyDwPPW_B-YXqXYcng93BBDtoc2EorLLZ--s93e_WTUunmc3OaDjsXAVxFBF7SUC_xgSlWU2hNaCIQD8Z7L8etBDdyZ6vvEsCnCRa9iEf50VAQbzdwa4n8iT2p88Q6h3qHM-y7425CN16RHNswhbzbKYtxQDNl7nAno88FQQiCBxaXpRDOgKAy7esACgdZICC6AlbA93bv-V4WN3cUbvHqzomDpLiEb1nnG7Y7ic_4U9GhSmqe8gKg_fakrkV9TQqC7pqaU2AgkGhn7zJ4LvhamRtfsO7lPxRjp9gn0pSEHk0_K6jc-39D3Z9fNQ_6PGmLgPPhZIRz60ywlijlY1ztBhUGGgtUKlO72QZGSHoh6Cdha6Y1DZyRmcmR7NMSBMqI4VcZJMFDnGJgTTOOUMU_JELUZtxlAVZgLq3DjuM42UmWl2keUNaTrUzbtM2Ou1f6hWYkgJTitHbi5bZr1ehUc3Z8fXjqlVy-mHppYgqXwmu_K_gJpvu9c_P0rPk4nSVfaM79anOGpusxg92He2cSm_4dfwC2pL9Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+De-noising+Performance+of+a+Combined+Algorithm+of+Translation+Invariant+%28TI%29+Wavelets+and+Independent+Component+Analysis+over+TI+Wavelets+for+Speech-Auditory+Brainstem+Responses&rft.jtitle=Procedia+computer+science&rft.au=Narayanam%2C+Ranganadh&rft.date=2015&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=54&rft.spage=829&rft.epage=837&rft_id=info:doi/10.1016%2Fj.procs.2015.06.097&rft.externalDocID=S1877050915014210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |