Efficient De-noising Performance of a Combined Algorithm of Translation Invariant (TI) Wavelets and Independent Component Analysis over TI Wavelets for Speech-Auditory Brainstem Responses

In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University of Ottawa, from 10 different human subjects. Here the de-noising techniques we have considered are Yule-Walker Multiband Filter, Cascaded Yu...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 54; pp. 829 - 837
Main Author Narayanam, Ranganadh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2015
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2015.06.097

Cover

Abstract In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University of Ottawa, from 10 different human subjects. Here the de-noising techniques we have considered are Yule-Walker Multiband Filter, Cascaded Yule-Walker-Comb Filter, Conventional Wavelet Transform estimation filters: Daubechies, Symlet, Coiflet Wavelet families, Translation Invariant (TI) Wavelet Transform estimation filter, FAST Independent Component Analysis (FASTICA) De-noising Technique, Combined algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis” De-noising technique. The performance measures we have considered are Mean Square Error (MSE) and Signal-to-Noise-Ratio (SNR) values. Out of these techniques we found that cascading of Yule-Walker filter and Comb-Peak filter gave better De-noising performance than Yule-Walker Multiband Filter. Then conventional Wavelets performed far better than the cascaded filter, in those Daubechies family of wavelets worked better than all. Then FASTICA Algorithm worked near to the performance of Conventional Wavelets but far better than cascaded filter. Then we have utilized Translation Invariant (TI) wavelet algorithm which provided the excellent performance than above all. Then we have utilized combined Algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis – CSTIICA” algorithm which found to be, it may perform better than TI wavelets algorithm. Ultimately TI and CSTIICA algorithms are found to be may be the best auditory artifact removal techniques and can be highly useful in auditory EEG data analysis to the best.
AbstractList In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University of Ottawa, from 10 different human subjects. Here the de-noising techniques we have considered are Yule-Walker Multiband Filter, Cascaded Yule-Walker-Comb Filter, Conventional Wavelet Transform estimation filters: Daubechies, Symlet, Coiflet Wavelet families, Translation Invariant (TI) Wavelet Transform estimation filter, FAST Independent Component Analysis (FASTICA) De-noising Technique, Combined algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis” De-noising technique. The performance measures we have considered are Mean Square Error (MSE) and Signal-to-Noise-Ratio (SNR) values. Out of these techniques we found that cascading of Yule-Walker filter and Comb-Peak filter gave better De-noising performance than Yule-Walker Multiband Filter. Then conventional Wavelets performed far better than the cascaded filter, in those Daubechies family of wavelets worked better than all. Then FASTICA Algorithm worked near to the performance of Conventional Wavelets but far better than cascaded filter. Then we have utilized Translation Invariant (TI) wavelet algorithm which provided the excellent performance than above all. Then we have utilized combined Algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis – CSTIICA” algorithm which found to be, it may perform better than TI wavelets algorithm. Ultimately TI and CSTIICA algorithms are found to be may be the best auditory artifact removal techniques and can be highly useful in auditory EEG data analysis to the best.
Author Narayanam, Ranganadh
Author_xml – sequence: 1
  givenname: Ranganadh
  surname: Narayanam
  fullname: Narayanam, Ranganadh
  email: ranganadh.narayanam@gmail.com
  organization: IFHE, Shankarapalli Road, Hyderabad
BookMark eNqFkU1PxCAQhonRxM9f4IWjHlqhtHT34GFdvzYx0egaj4TCVNm00ABusr_NPyerJhoPymGYMHneYebdRZvWWUDokJKcEspPFvngnQp5QWiVE56Tcb2BduiorjNSkfHmj3wbHYSwIOmw0WhM6x30dtG2RhmwEZ9DZp0Jxj7jO_Ct8720CrBrscRT1zfGgsaT7tl5E1_69fvcSxs6GY2zeGaX0huZdI7ms2P8JJfQQQxYWp1qGgZIIVWT0pD-n7KJld0qmIDdEjyez76Z1Bs_DADqJZu8ahOdX-EzL40NEXp8DyEpBAj7aKuVXYCDr3sPPV5ezKfX2c3t1Ww6uclUwVmdKeC60KAbDiNFK8pL2jRFycu2IVISUleMcF6WNeWsgbrVjdSqZFXBdMk1K9geYp-6yrsQPLRi8KaXfiUoEWsLxEJ8WCDWFgjCRbIgUeNflDLxY1cxjdL9w55-spDGWhrwIqw9UqCNBxWFduZP_h3cMqm3
CitedBy_id crossref_primary_10_1089_ees_2019_0393
Cites_doi 10.1097/00001756-199511270-00021
10.1109/TBME.2005.851499
10.1109/IEMBS.2001.1020587
10.5121/csit.2013.3636
10.1016/j.clinph.2004.04.003
10.1109/IJCNN.2007.4371184
10.1097/01.aud.0000179687.71662.6e
10.1109/JPROC.2003.823141
ContentType Journal Article
Copyright 2015 The Authors
Copyright_xml – notice: 2015 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2015.06.097
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 837
ExternalDocumentID 10_1016_j_procs_2015_06_097
S1877050915014210
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c2637-ce6d2dedb6e8c151641bb2464fb0aa00753066447163be7fdbadc43523d46d323
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Thu Jul 03 08:35:08 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Wed May 17 01:33:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wavelets
FASTICA
Translation invariance
ICA
SNR
MSE
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2637-ce6d2dedb6e8c151641bb2464fb0aa00753066447163be7fdbadc43523d46d323
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050915014210
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_procs_2015_06_097
crossref_citationtrail_10_1016_j_procs_2015_06_097
elsevier_sciencedirect_doi_10_1016_j_procs_2015_06_097
PublicationCentury 2000
PublicationDate 2015
2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References S. Julier and J. K. Uhlmann, Unscented Filtering and Nonlinear Estimation
vol. 115, (2010).
G. Inuso, F. La Foresta, N. Mammone and F. C. Morabito, Wavelet-ICA Methodology for Efficient Artifact Removal from Electroencephalographic Recordings, In the
M. I. Bhatti, A. Pervaiz and M. H. Baig, EEG Signal Decomposition and Improved Spectral Analysis using Wavelet Transform, In
P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, Removal of Ocular Artifacts in the EEG through Wavelet Transform without using an EOG Reference Channel
R. H. Dajani, D. Purcell, W. Wong, H. Kunov and T. W. Picton, Recording Human Evoked Potentials that Follow the Pitch Contour of a Natural Vowel
Ranganadh Narayanam, Brain-Activity-Filters: Efficient Performance of Translation-Invariant (TI) Wavelets Approach for Speech-Auditory Brainstem Responses of Human Subjects
Ranganadh Narayanam, Robust Detection of Speech Auditory Brainstem Responses using Voice Activity Detection (VAD) Algorithms
pp. 125-150, (1995).
pp. 1524-1529, (2007).
Ranganadh Narayanam, An Efficient Peak Valley Detection based VAD Algorithm for Robust Detection of Speech Auditory Brainstem Responses
pp. 1614-1618, (2005).
vol. 92, no. 3, pp. 401-421, (2004).
(2014).
R. R. Coifman and D. L. Donoho, Translation Invariant Denoising
(2013).
K. L. Johnson, G.T. Nicol and N. Kraus, Brain Stem Response to Speech: A Biological Marker of Auditory Processing. Ear & Hearing, vol. 26, pp. 424-434, (2005).
(2012).
pp. 229-259, (2005).
vol. 2, pp. 1862-1864, (2008).
C. S. Herrmann, M. Grigutsch and N. A. Busch, EEG Oscillations and Wavelet Analysis. Event-related Potentials: A Methods Handbook,.
N. Russo, T. Nicol, G. Musacchia and N. Kraus, Brainstem Responses to Speech Syllables
vol. 1, no. 3, (2008).
G. C. Galbraith, P.W. Arbagey and R. Branski, Intelligible Speech Encoded in the Human Brain Stem Frequency Following Response, vol. 6, pp. 2363-2367, (2004).
vol. 8, no. 9, pp. 87-92, (2008).
P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, A Wavelet based Statistical Method for De-noising of Ocular Artifacts in. EEG Signals
10.1016/j.procs.2015.06.097_bib0005
10.1016/j.procs.2015.06.097_bib0015
10.1016/j.procs.2015.06.097_bib0025
10.1016/j.procs.2015.06.097_bib0060
10.1016/j.procs.2015.06.097_bib0070
10.1016/j.procs.2015.06.097_bib0035
10.1016/j.procs.2015.06.097_bib0045
10.1016/j.procs.2015.06.097_bib0055
10.1016/j.procs.2015.06.097_bib0010
10.1016/j.procs.2015.06.097_bib0065
10.1016/j.procs.2015.06.097_bib0020
10.1016/j.procs.2015.06.097_bib0030
10.1016/j.procs.2015.06.097_bib0040
10.1016/j.procs.2015.06.097_bib0050
References_xml – reference: , vol. 1, no. 3, (2008).
– reference: , pp. 125-150, (1995).
– reference: S. Julier and J. K. Uhlmann, Unscented Filtering and Nonlinear Estimation,
– reference: M. I. Bhatti, A. Pervaiz and M. H. Baig, EEG Signal Decomposition and Improved Spectral Analysis using Wavelet Transform, In
– reference: , (2012).
– reference: , vol. 92, no. 3, pp. 401-421, (2004).
– reference: P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, Removal of Ocular Artifacts in the EEG through Wavelet Transform without using an EOG Reference Channel,
– reference: K. L. Johnson, G.T. Nicol and N. Kraus, Brain Stem Response to Speech: A Biological Marker of Auditory Processing. Ear & Hearing, vol. 26, pp. 424-434, (2005).
– reference: G. C. Galbraith, P.W. Arbagey and R. Branski, Intelligible Speech Encoded in the Human Brain Stem Frequency Following Response, vol. 6, pp. 2363-2367, (2004).
– reference: , vol. 8, no. 9, pp. 87-92, (2008).
– reference: , pp. 229-259, (2005).
– reference: , vol. 2, pp. 1862-1864, (2008).
– reference: C. S. Herrmann, M. Grigutsch and N. A. Busch, EEG Oscillations and Wavelet Analysis. Event-related Potentials: A Methods Handbook,.
– reference: R. R. Coifman and D. L. Donoho, Translation Invariant Denoising,
– reference: R. H. Dajani, D. Purcell, W. Wong, H. Kunov and T. W. Picton, Recording Human Evoked Potentials that Follow the Pitch Contour of a Natural Vowel,
– reference: , pp. 1524-1529, (2007).
– reference: P. Senthil Kumar, R. Arumuganathan, K. Sivakumar and C. Vimal, A Wavelet based Statistical Method for De-noising of Ocular Artifacts in. EEG Signals,
– reference: , pp. 1614-1618, (2005).
– reference: , (2014).
– reference: , vol. 115, (2010).
– reference: Ranganadh Narayanam, Brain-Activity-Filters: Efficient Performance of Translation-Invariant (TI) Wavelets Approach for Speech-Auditory Brainstem Responses of Human Subjects,
– reference: Ranganadh Narayanam, An Efficient Peak Valley Detection based VAD Algorithm for Robust Detection of Speech Auditory Brainstem Responses,
– reference: Ranganadh Narayanam, Robust Detection of Speech Auditory Brainstem Responses using Voice Activity Detection (VAD) Algorithms,
– reference: , (2013).
– reference: G. Inuso, F. La Foresta, N. Mammone and F. C. Morabito, Wavelet-ICA Methodology for Efficient Artifact Removal from Electroencephalographic Recordings, In the
– reference: N. Russo, T. Nicol, G. Musacchia and N. Kraus, Brainstem Responses to Speech Syllables,
– ident: 10.1016/j.procs.2015.06.097_bib0035
  doi: 10.1097/00001756-199511270-00021
– ident: 10.1016/j.procs.2015.06.097_bib0015
  doi: 10.1109/TBME.2005.851499
– ident: 10.1016/j.procs.2015.06.097_bib0040
  doi: 10.1109/IEMBS.2001.1020587
– ident: 10.1016/j.procs.2015.06.097_bib0050
– ident: 10.1016/j.procs.2015.06.097_bib0045
– ident: 10.1016/j.procs.2015.06.097_bib0070
– ident: 10.1016/j.procs.2015.06.097_bib0010
  doi: 10.5121/csit.2013.3636
– ident: 10.1016/j.procs.2015.06.097_bib0030
  doi: 10.1016/j.clinph.2004.04.003
– ident: 10.1016/j.procs.2015.06.097_bib0055
  doi: 10.1109/IJCNN.2007.4371184
– ident: 10.1016/j.procs.2015.06.097_bib0025
  doi: 10.1097/01.aud.0000179687.71662.6e
– ident: 10.1016/j.procs.2015.06.097_bib0060
  doi: 10.1109/JPROC.2003.823141
– ident: 10.1016/j.procs.2015.06.097_bib0065
– ident: 10.1016/j.procs.2015.06.097_bib0020
– ident: 10.1016/j.procs.2015.06.097_bib0005
SSID ssj0000388917
Score 1.9923835
Snippet In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data collected in an audiology lab in University...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 829
SubjectTerms FASTICA
ICA
MSE
SNR
Translation invariance
Wavelets
Title Efficient De-noising Performance of a Combined Algorithm of Translation Invariant (TI) Wavelets and Independent Component Analysis over TI Wavelets for Speech-Auditory Brainstem Responses
URI https://dx.doi.org/10.1016/j.procs.2015.06.097
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTdz8KBgWJvUtB7XF66iiK64t9I0ibui7bJWwd_mn3MmbX2AePDWppk0ZNJ8k3TmG8Y2LWLebqgFl7GyPBQi4Fo5yZWWiBgyy0LPW3BxqU5vw7PeXm-MHTaxMORWWa_91ZruV-u6pFWPZms4GLRugjiKiL0koF9jwodZUVQpBfH1Dj7PWYjtZN8n3qX6nAQa8iHv5kU4QbTdwZ7n8STyp98A6hvonMywqdpahHbVoVk2ZvM5Nt1kYoD6w5xn78eeCQIBBI4sz4sBnQDA1VdQABQOUkBB3AhbA-3H-2I0KPtPVO7hqnKJg07-iptnHG3Y6na24S6lvBTlM6S5wWdNxtySWhoWOV01rCZAvqDQ7XzJ4LvhZmht1udtiv0oRm9wQBkpiDsarivnXPu8wG5PjruHp7xOy8AzoWTEM6uMMNZoZeMMDQYVBloL1KnTu2lKNghuQ9DMwp2Y1DZyRqcmQ6tMSBMqI4VcZOM5dnGJgTTOOUMM_JELUZlxlAZpgKq3DhuM42UmGl0kWc1ZTqkzHpPGOe0h8QpMSIEJuejtR8ts51NoWFF2_F1dNUpOfsy8BEHlL8GV_wquskm6qw5y1th4OXqx62jalHqDTbTPr-_ON_wc_gASJvu-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOilvIp4MwcOVKq1xA5OOC4vbXgJlUXdWxTHdtkKktUSkPht_DlmnISHhDj0FjkZx_I4_macmW8Y27KIeTuhFlzGyvJQiIBr5SRXWiJiyDwPPW_B-YXqXYcng93BBDtoc2EorLLZ--s93e_WTUunmc3OaDjsXAVxFBF7SUC_xgSlWU2hNaCIQD8Z7L8etBDdyZ6vvEsCnCRa9iEf50VAQbzdwa4n8iT2p88Q6h3qHM-y7425CN16RHNswhbzbKYtxQDNl7nAno88FQQiCBxaXpRDOgKAy7esACgdZICC6AlbA93bv-V4WN3cUbvHqzomDpLiEb1nnG7Y7ic_4U9GhSmqe8gKg_fakrkV9TQqC7pqaU2AgkGhn7zJ4LvhamRtfsO7lPxRjp9gn0pSEHk0_K6jc-39D3Z9fNQ_6PGmLgPPhZIRz60ywlijlY1ztBhUGGgtUKlO72QZGSHoh6Cdha6Y1DZyRmcmR7NMSBMqI4VcZJMFDnGJgTTOOUMU_JELUZtxlAVZgLq3DjuM42UmWl2keUNaTrUzbtM2Ou1f6hWYkgJTitHbi5bZr1ehUc3Z8fXjqlVy-mHppYgqXwmu_K_gJpvu9c_P0rPk4nSVfaM79anOGpusxg92He2cSm_4dfwC2pL9Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+De-noising+Performance+of+a+Combined+Algorithm+of+Translation+Invariant+%28TI%29+Wavelets+and+Independent+Component+Analysis+over+TI+Wavelets+for+Speech-Auditory+Brainstem+Responses&rft.jtitle=Procedia+computer+science&rft.au=Narayanam%2C+Ranganadh&rft.date=2015&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=54&rft.spage=829&rft.epage=837&rft_id=info:doi/10.1016%2Fj.procs.2015.06.097&rft.externalDocID=S1877050915014210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon