Semantic segmentation of palpebral conjunctiva using predefined deep neural architectures for anemia detection
Non-invasive detection of anemia is generally done by physical examination of regions like palpebral conjunctiva, fingernails, tongue and palmar creases. However, such examination is subject to large inter- and intra-observer bias. This problem can be alleviated by automating the anemia detection pr...
Saved in:
Published in | Procedia computer science Vol. 218; pp. 328 - 337 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-invasive detection of anemia is generally done by physical examination of regions like palpebral conjunctiva, fingernails, tongue and palmar creases. However, such examination is subject to large inter- and intra-observer bias. This problem can be alleviated by automating the anemia detection process through computerized analysis of images of these regions. The automated process includes sub-processes like preprocessing, segmentation of region-of-interest (ROI), ROI analysis or feature extraction, and classification. Of all these sub-processes, segmentation is the most crucial one as it helps in the precise extraction of ROI where the most crucial information for decision making lies. Recently, deep learning-based architectures have given exemplary performance in biomedical image segmentation. This paper is unique in a sense that it simulatneously analyzes performance of five deep learning-based architectures namely UNet, UNet++, FCN, PSPNet, and LinkNet. The experiments are performed on customly built dataset comprising of 2592 palpebral images of the pediatric population. The experimental results indicate that as compared to its counterparts, the LinkNet architecture performs the best. Its scores 94.17%, 90.14% and 93.78% for the accuracy, intersection-over-union (IoU), Dice score performance metrics, respectively. The study concludes that LinkNet architecture can be used for real-time segmentation of palpebral conjunctiva from images. |
---|---|
AbstractList | Non-invasive detection of anemia is generally done by physical examination of regions like palpebral conjunctiva, fingernails, tongue and palmar creases. However, such examination is subject to large inter- and intra-observer bias. This problem can be alleviated by automating the anemia detection process through computerized analysis of images of these regions. The automated process includes sub-processes like preprocessing, segmentation of region-of-interest (ROI), ROI analysis or feature extraction, and classification. Of all these sub-processes, segmentation is the most crucial one as it helps in the precise extraction of ROI where the most crucial information for decision making lies. Recently, deep learning-based architectures have given exemplary performance in biomedical image segmentation. This paper is unique in a sense that it simulatneously analyzes performance of five deep learning-based architectures namely UNet, UNet++, FCN, PSPNet, and LinkNet. The experiments are performed on customly built dataset comprising of 2592 palpebral images of the pediatric population. The experimental results indicate that as compared to its counterparts, the LinkNet architecture performs the best. Its scores 94.17%, 90.14% and 93.78% for the accuracy, intersection-over-union (IoU), Dice score performance metrics, respectively. The study concludes that LinkNet architecture can be used for real-time segmentation of palpebral conjunctiva from images. |
Author | Gupta, Aastha Dhalla, Sabrina Maqbool, Junaid Mann, Tanvir Singh Mittal, Ajay Saini, Shiv Sajan Kumar, Munish Saluja, Krishan Aggarwal, Preeti |
Author_xml | – sequence: 1 givenname: Sabrina surname: Dhalla fullname: Dhalla, Sabrina organization: UIET, Panjab University, Chandigarh-160014, INDIA – sequence: 2 givenname: Junaid surname: Maqbool fullname: Maqbool, Junaid organization: UIET, Panjab University, Chandigarh-160014, INDIA – sequence: 3 givenname: Tanvir Singh surname: Mann fullname: Mann, Tanvir Singh organization: UIET, Panjab University, Chandigarh-160014, INDIA – sequence: 4 givenname: Aastha surname: Gupta fullname: Gupta, Aastha organization: Department of Mathematics, Panjab University, Chandigarh-160014, INDIA – sequence: 5 givenname: Ajay surname: Mittal fullname: Mittal, Ajay email: ajaymittal@pu.ac.in organization: UIET, Panjab University, Chandigarh-160014, INDIA – sequence: 6 givenname: Preeti surname: Aggarwal fullname: Aggarwal, Preeti organization: UIET, Panjab University, Chandigarh-160014, INDIA – sequence: 7 givenname: Krishan surname: Saluja fullname: Saluja, Krishan organization: UIET, Panjab University, Chandigarh-160014, INDIA – sequence: 8 givenname: Munish surname: Kumar fullname: Kumar, Munish organization: Maharaja Ranjit Singh Punjab Technical University, Bhatinda-15001, INDIA – sequence: 9 givenname: Shiv Sajan surname: Saini fullname: Saini, Shiv Sajan organization: Post Graduate Institute of Medical Education and Research, Chandigarh-160012, INDIA |
BookMark | eNqFkM1KxDAQgIOs4Kr7BF7yAq1Js22agwdZ_IMFD-49pMlkTWnTknQXfHtT14N40GFghmG-gfku0cIPHhC6oSSnhFa3bT6GQce8IAXLCU1ZnqElrTnPSEnE4kd_gVYxtiQFq2tB-RL5N-iVn5zGEfY9-ElNbvB4sHhU3QhNUB3Wg28PXk_uqPAhOr_HYwAD1nkw2ACM2MNhXlRBv7sJ9HQIELEdAlYeeqfS0jxNh6_RuVVdhNV3vUK7x4fd5jnbvj69bO63mS4qVmac1yBM3RSUG6YVK0vBRWlYo3kFwlpLaWMKuzYg1ppqaomtLKHJAK1JLdgVYqezOgwxBrByDK5X4UNSImdpspVf0uQsTRKaskyU-EVpd_IxBeW6f9i7Ewvpq6ODIKN24DUYF9Lr0gzuT_4T0HuOZw |
CitedBy_id | crossref_primary_10_1007_s11042_023_17411_5 crossref_primary_10_1016_j_medntd_2023_100269 crossref_primary_10_17798_bitlisfen_1539250 crossref_primary_10_1007_s10278_024_01020_1 crossref_primary_10_1016_j_imu_2023_101283 crossref_primary_10_1080_00051144_2024_2352317 crossref_primary_10_1007_s11042_023_15871_3 crossref_primary_10_1016_j_imu_2024_101451 crossref_primary_10_2174_0118743315321139240627092707 |
Cites_doi | 10.1109/ACCESS.2020.2980025 10.3390/electronics9060997 10.1002/ima.22359 10.1111/trf.13546 10.1590/S1516-84842010000600007 10.1590/S1516-31802007000300008 10.1093/jn/135.2.267 10.3390/electronics9050780 10.1109/ACCESS.2018.2867110 10.1088/1757-899X/420/1/012101 10.1134/S1054661819030027 10.3390/electronics9081309 10.3390/diagnostics12010116 10.1007/s11263-015-0816-y 10.1007/s00521-021-06687-z 10.1007/978-1-4614-8557-5_36 10.1016/j.compbiomed.2022.105236 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2023.01.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 337 |
ExternalDocumentID | 10_1016_j_procs_2023_01_015 S1877050923000157 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c2635-778e9d8b217d3ca3559795d3bc76e9fff11bd2f4de94c1c1f0f6f01202180893 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 01:53:24 EDT 2025 Tue Jul 16 04:31:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anemia Detection Image Segmentation Image Processing Haemoglobin Palpebral Conjunctiva Medical Imaging Deep Learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2635-778e9d8b217d3ca3559795d3bc76e9fff11bd2f4de94c1c1f0f6f01202180893 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050923000157 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2023_01_015 crossref_citationtrail_10_1016_j_procs_2023_01_015 elsevier_sciencedirect_doi_10_1016_j_procs_2023_01_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jonmohamadi, Takeda, Liu, Sasazawa, Maicas, Crawford, Roberts, Pandey, Carneiro (bib0030) 2020; 8 Bauskar, Jain, Gyanchandani (bib0019) 2019; 29 Dimauro, Simone (bib0027) 2020; 9 Dimauro, Baldari, Caivano, Colucci, Girardi (bib0021) 2018 Kingma, Ba (bib0028) 2014 Silva, Machado (bib0006) 2010; 32 Rastogi, Khanna, Singh (bib0012) 2022; 34 Prakash Jha, Manisha Das, and Anupam Mishra. Image segmentation of eye for non-invasive detection of anemia. Available at SSRN 3282850, 2018. Zhao, Shi, Qi, Wang, Jia (bib0032) 2017 Ronneberger, Fischer, Brox (bib0025) 2015 Benseñor, Calich, Brunoni, Espírito-Santo, Mancini, Drager, Lotufo (bib0003) 2007; 125 Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0031) 2017 Saldivar-Espinoza, Núñez-Fernández, Porras-Barrientos, Alva-Mantari, Leslie, Zimic (bib0024) 2019 Chaurasia, Culurciello (bib0033) 2017 Kalter, Burnham, Kolstad, Hossain, Schillinger, Khan, Saha, De Wit, Kenya-Mugisha, Schwartz (bib0004) 1997; 75 Delgado-Rivera, Roman-Gonzalez, Alva-Mantari, Saldivar-Espinoza, Zimic, Barrientos-Porras, Salguedo-Bohorquez (bib0022) 2018 Iandola, Moskewicz, Karayev, Girshick, Darrell, Keutzer (bib0034) 2014 Viola, Jones (bib0023) 2001; 4 Jain, Bauskar, Gyanchandani (bib0014) 2020; 30 Kasiviswanathan, Thulasi Bai, Simone, Dimauro (bib0026) 2020; 9 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0029) 2015; 115 Singh, Asari, Rajasekaran (bib0010) 2022; 12 Beard, Hendricks, Perez, Murray-Kolb, Berg, Vernon-Feagans, Irlam, Isaacs, Sive, Tomlinson (bib0002) 2005; 135 Bevilacqua, Dimauro, Marino, Brunetti, Cassano, Maio, Nasca, Trotta, Girardi, Ostuni (bib0020) 2016 H Kenneth Walker, W Dallas Hall, and J Willis Hurst. Clinical methods: the history, physical, and laboratory examinations. 1990. Glass, Batres, Selle, Garcia-Ibanez, Solomons, Viteri (bib0013) 1980 Zhou, Mahfuzur Rahman Siddiquee, Tajbakhsh, Liang (bib0035) 2018 Sedki, Shaban, Elsheweikh (bib0018) 2020; 18 Dimauro, De Ruvo, Di Terlizzi, Ruggieri, Volpe, Colizzi, Girardi (bib0005) 2020; 9 Begnoche, O'Reilly (bib0008) 2014 Rastogi, Khanna, Singh (bib0011) 2022; 142 Mireille Baart, LAM de Kort, van den Hurk, Pasker-de Jong (bib0009) 2016; 56 Sevani, Persulessy (bib0015) 2018; 420 Levy, Méndez-Gómez-Humarán, del Carmen Morales Ruán, Tapia, Villal-pando Hernández, Ávila (bib0007) 2017; 12 Dimauro, Caivano, Girardi (bib0016) 2018; 6 Chaurasia (10.1016/j.procs.2023.01.015_bib0033) 2017 Delgado-Rivera (10.1016/j.procs.2023.01.015_bib0022) 2018 Levy (10.1016/j.procs.2023.01.015_bib0007) 2017; 12 Bauskar (10.1016/j.procs.2023.01.015_bib0019) 2019; 29 Sevani (10.1016/j.procs.2023.01.015_bib0015) 2018; 420 Silva (10.1016/j.procs.2023.01.015_bib0006) 2010; 32 10.1016/j.procs.2023.01.015_bib0017 Viola (10.1016/j.procs.2023.01.015_bib0023) 2001; 4 Benseñor (10.1016/j.procs.2023.01.015_bib0003) 2007; 125 Dimauro (10.1016/j.procs.2023.01.015_bib0005) 2020; 9 Glass (10.1016/j.procs.2023.01.015_bib0013) 1980 Kingma (10.1016/j.procs.2023.01.015_bib0028) 2014 Jonmohamadi (10.1016/j.procs.2023.01.015_bib0030) 2020; 8 Singh (10.1016/j.procs.2023.01.015_bib0010) 2022; 12 Bevilacqua (10.1016/j.procs.2023.01.015_bib0020) 2016 Dimauro (10.1016/j.procs.2023.01.015_bib0016) 2018; 6 Beard (10.1016/j.procs.2023.01.015_bib0002) 2005; 135 Mireille Baart (10.1016/j.procs.2023.01.015_bib0009) 2016; 56 Saldivar-Espinoza (10.1016/j.procs.2023.01.015_bib0024) 2019 Zhou (10.1016/j.procs.2023.01.015_bib0035) 2018 Russakovsky (10.1016/j.procs.2023.01.015_bib0029) 2015; 115 Zhao (10.1016/j.procs.2023.01.015_bib0032) 2017 10.1016/j.procs.2023.01.015_bib0001 Begnoche (10.1016/j.procs.2023.01.015_bib0008) 2014 Dimauro (10.1016/j.procs.2023.01.015_bib0021) 2018 Kalter (10.1016/j.procs.2023.01.015_bib0004) 1997; 75 Lin (10.1016/j.procs.2023.01.015_bib0031) 2017 Rastogi (10.1016/j.procs.2023.01.015_bib0012) 2022; 34 Sedki (10.1016/j.procs.2023.01.015_bib0018) 2020; 18 Kasiviswanathan (10.1016/j.procs.2023.01.015_bib0026) 2020; 9 Dimauro (10.1016/j.procs.2023.01.015_bib0027) 2020; 9 Ronneberger (10.1016/j.procs.2023.01.015_bib0025) 2015 Rastogi (10.1016/j.procs.2023.01.015_bib0011) 2022; 142 Iandola (10.1016/j.procs.2023.01.015_bib0034) 2014 Jain (10.1016/j.procs.2023.01.015_bib0014) 2020; 30 |
References_xml | – year: 2019 ident: bib0024 article-title: Portable system for the prediction of anemia based on the ocular conjunctiva using artificial intelligence publication-title: arXiv preprint – year: 1980 ident: bib0013 article-title: The value of simple conjunctival examination in field screening for anemia [guatemala] publication-title: Nutrition Reports International (USA) – volume: 34 start-page: 5383 year: 2022 end-page: 5395 ident: bib0012 article-title: Gland segmentation in colorectal cancer histopathological images using u-net inspired convolutional network publication-title: Neural Computing and Applications – volume: 32 start-page: 444 year: 2010 end-page: 448 ident: bib0006 article-title: Clinical evaluation of the paleness: Agreement between observers and comparison with hemoglobin levels publication-title: Revista Brasileira de Hematologia e Hemoterapia – volume: 12 year: 2017 ident: bib0007 article-title: Validation of masimo pronto 7 and hemocue 201 for hemoglobin determination in children from 1 to 5 years of age publication-title: PLoS One – start-page: 1 year: 2018 end-page: 5 ident: bib0021 article-title: Automatic segmentation of relevant sections of the conjunctiva for non-invasive anemia detection publication-title: 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech) – start-page: 3 year: 2018 end-page: 11 ident: bib0035 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep learning in medical image analysis and multimodal learning for clinical decision support – start-page: 1 year: 2016 end-page: 6 ident: bib0020 article-title: A novel approach to evaluate blood parameters using computer vision techniques publication-title: 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA) – reference: Prakash Jha, Manisha Das, and Anupam Mishra. Image segmentation of eye for non-invasive detection of anemia. Available at SSRN 3282850, 2018. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0029 article-title: Imagenet large scale visual recognition challenge publication-title: International journal of computer vision – start-page: 299 year: 2014 end-page: 304 ident: bib0008 article-title: Noninvasive hemoglobin monitoring publication-title: Monitoring Technologies in Acute Care Environments – volume: 56 start-page: 1984 year: 2016 end-page: 1993 ident: bib0009 article-title: Hemoglobin assessment: precision and practicability evaluated in the netherlands—the happen study publication-title: Transfusion – volume: 9 start-page: 780 year: 2020 ident: bib0005 article-title: Estimate of anemia with new non-invasive systems—a moment of refection publication-title: Electronics – volume: 30 start-page: 112 year: 2020 end-page: 125 ident: bib0014 article-title: Neural network based non-invasive method to detect anemia from images of eye conjunctiva publication-title: International Journal of Imaging Systems and Technology – volume: 6 start-page: 46968 year: 2018 end-page: 46975 ident: bib0016 article-title: A new method and a non-invasive device to estimate anemia based on digital images of the conjunctiva publication-title: IEEE Access – volume: 29 start-page: 438 year: 2019 end-page: 446 ident: bib0019 article-title: A noninvasive computerized technique to detect anemia using images of eye conjunctiva publication-title: Pattern Recognition and Image Analysis – year: 2014 ident: bib0034 article-title: Densenet: Implementing efficient convnet descriptor pyramids publication-title: arXiv preprint – volume: 4 start-page: 34 year: 2001 end-page: 47 ident: bib0023 article-title: Robust real-time object detection [j] publication-title: International journal of computer vision – volume: 9 start-page: 1309 year: 2020 ident: bib0026 article-title: Semantic segmentation of conjunctiva region for non-invasive anemia detection applications publication-title: Electronics – volume: 142 year: 2022 ident: bib0011 article-title: Leufeatx: Deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear publication-title: Computers in Biology and Medicine – volume: 75 start-page: 103 year: 1997 ident: bib0004 article-title: Evaluation of clinical signs to diagnose anaemia in uganda and bangladesh, in areas with and without malaria publication-title: Bulletin of the World Health Organization – volume: 125 start-page: 170 year: 2007 end-page: 173 ident: bib0003 article-title: Accuracy of anemia diagnosis by physical examination publication-title: Sao Paulo Medical Journal – volume: 12 start-page: 116 year: 2022 ident: bib0010 article-title: A deep neural network for early detection and prediction of chronic kidney disease publication-title: Diagnostics – start-page: 1 year: 2017 end-page: 4 ident: bib0033 article-title: Linknet: Exploiting encoder representations for efficient semantic segmentation publication-title: 2017 IEEE Visual Communications and Image Processing (VCIP) – volume: 9 start-page: 997 year: 2020 ident: bib0027 article-title: Novel biased normalized cuts approach for the automatic segmentation of the conjunctiva publication-title: Electronics – volume: 135 start-page: 267 year: 2005 end-page: 272 ident: bib0002 article-title: Maternal iron deficiency anemia affects postpartum emotions and cognition publication-title: The Journal of nutrition – reference: H Kenneth Walker, W Dallas Hall, and J Willis Hurst. Clinical methods: the history, physical, and laboratory examinations. 1990. – volume: 18 year: 2020 ident: bib0018 article-title: A proposed image processing framework for diagnosis of anemia with providing proper nutrition publication-title: International Journal of Computer Science and Information Security (IJCSIS) – volume: 8 start-page: 51853 year: 2020 end-page: 51861 ident: bib0030 article-title: Automatic segmentation of multiple structures in knee arthroscopy using deep learning publication-title: IEEE Access – start-page: 2117 year: 2017 end-page: 2125 ident: bib0031 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 234 year: 2015 end-page: 241 ident: bib0025 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – start-page: 2881 year: 2017 end-page: 2890 ident: bib0032 article-title: Pyramid scene parsing network publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – year: 2014 ident: bib0028 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint – volume: 420 year: 2018 ident: bib0015 article-title: Detection anemia based on conjunctiva pallor level using k-means algorithm publication-title: IOP Conference Series: Materials Science and Engineering – start-page: 1 year: 2018 end-page: 4 ident: bib0022 article-title: Method for the automatic segmentation of the palpebral conjunctiva using image processing publication-title: 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA) – start-page: 2881 year: 2017 ident: 10.1016/j.procs.2023.01.015_bib0032 article-title: Pyramid scene parsing network – start-page: 3 year: 2018 ident: 10.1016/j.procs.2023.01.015_bib0035 article-title: Unet++: A nested u-net architecture for medical image segmentation – volume: 8 start-page: 51853 year: 2020 ident: 10.1016/j.procs.2023.01.015_bib0030 article-title: Automatic segmentation of multiple structures in knee arthroscopy using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980025 – volume: 9 start-page: 997 issue: 6 year: 2020 ident: 10.1016/j.procs.2023.01.015_bib0027 article-title: Novel biased normalized cuts approach for the automatic segmentation of the conjunctiva publication-title: Electronics doi: 10.3390/electronics9060997 – volume: 30 start-page: 112 issue: 1 year: 2020 ident: 10.1016/j.procs.2023.01.015_bib0014 article-title: Neural network based non-invasive method to detect anemia from images of eye conjunctiva publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22359 – volume: 56 start-page: 1984 issue: 8 year: 2016 ident: 10.1016/j.procs.2023.01.015_bib0009 article-title: Hemoglobin assessment: precision and practicability evaluated in the netherlands—the happen study publication-title: Transfusion doi: 10.1111/trf.13546 – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.procs.2023.01.015_bib0007 article-title: Validation of masimo pronto 7 and hemocue 201 for hemoglobin determination in children from 1 to 5 years of age publication-title: PLoS One – start-page: 234 year: 2015 ident: 10.1016/j.procs.2023.01.015_bib0025 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – volume: 32 start-page: 444 year: 2010 ident: 10.1016/j.procs.2023.01.015_bib0006 article-title: Clinical evaluation of the paleness: Agreement between observers and comparison with hemoglobin levels publication-title: Revista Brasileira de Hematologia e Hemoterapia doi: 10.1590/S1516-84842010000600007 – ident: 10.1016/j.procs.2023.01.015_bib0001 – volume: 125 start-page: 170 year: 2007 ident: 10.1016/j.procs.2023.01.015_bib0003 article-title: Accuracy of anemia diagnosis by physical examination publication-title: Sao Paulo Medical Journal doi: 10.1590/S1516-31802007000300008 – ident: 10.1016/j.procs.2023.01.015_bib0017 – volume: 135 start-page: 267 issue: 2 year: 2005 ident: 10.1016/j.procs.2023.01.015_bib0002 article-title: Maternal iron deficiency anemia affects postpartum emotions and cognition publication-title: The Journal of nutrition doi: 10.1093/jn/135.2.267 – start-page: 1 year: 2018 ident: 10.1016/j.procs.2023.01.015_bib0021 article-title: Automatic segmentation of relevant sections of the conjunctiva for non-invasive anemia detection – year: 2019 ident: 10.1016/j.procs.2023.01.015_bib0024 article-title: Portable system for the prediction of anemia based on the ocular conjunctiva using artificial intelligence publication-title: arXiv preprint – year: 1980 ident: 10.1016/j.procs.2023.01.015_bib0013 article-title: The value of simple conjunctival examination in field screening for anemia [guatemala] publication-title: Nutrition Reports International (USA) – start-page: 1 year: 2018 ident: 10.1016/j.procs.2023.01.015_bib0022 article-title: Method for the automatic segmentation of the palpebral conjunctiva using image processing – volume: 9 start-page: 780 issue: 5 year: 2020 ident: 10.1016/j.procs.2023.01.015_bib0005 article-title: Estimate of anemia with new non-invasive systems—a moment of refection publication-title: Electronics doi: 10.3390/electronics9050780 – start-page: 2117 year: 2017 ident: 10.1016/j.procs.2023.01.015_bib0031 article-title: Feature pyramid networks for object detection – volume: 6 start-page: 46968 year: 2018 ident: 10.1016/j.procs.2023.01.015_bib0016 article-title: A new method and a non-invasive device to estimate anemia based on digital images of the conjunctiva publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867110 – volume: 75 start-page: 103 issue: 1 year: 1997 ident: 10.1016/j.procs.2023.01.015_bib0004 article-title: Evaluation of clinical signs to diagnose anaemia in uganda and bangladesh, in areas with and without malaria publication-title: Bulletin of the World Health Organization – volume: 420 year: 2018 ident: 10.1016/j.procs.2023.01.015_bib0015 article-title: Detection anemia based on conjunctiva pallor level using k-means algorithm publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/420/1/012101 – year: 2014 ident: 10.1016/j.procs.2023.01.015_bib0034 article-title: Densenet: Implementing efficient convnet descriptor pyramids publication-title: arXiv preprint – volume: 29 start-page: 438 issue: 3 year: 2019 ident: 10.1016/j.procs.2023.01.015_bib0019 article-title: A noninvasive computerized technique to detect anemia using images of eye conjunctiva publication-title: Pattern Recognition and Image Analysis doi: 10.1134/S1054661819030027 – start-page: 1 year: 2017 ident: 10.1016/j.procs.2023.01.015_bib0033 article-title: Linknet: Exploiting encoder representations for efficient semantic segmentation – volume: 9 start-page: 1309 issue: 8 year: 2020 ident: 10.1016/j.procs.2023.01.015_bib0026 article-title: Semantic segmentation of conjunctiva region for non-invasive anemia detection applications publication-title: Electronics doi: 10.3390/electronics9081309 – volume: 12 start-page: 116 issue: 1 year: 2022 ident: 10.1016/j.procs.2023.01.015_bib0010 article-title: A deep neural network for early detection and prediction of chronic kidney disease publication-title: Diagnostics doi: 10.3390/diagnostics12010116 – start-page: 1 year: 2016 ident: 10.1016/j.procs.2023.01.015_bib0020 article-title: A novel approach to evaluate blood parameters using computer vision techniques – volume: 18 issue: 7 year: 2020 ident: 10.1016/j.procs.2023.01.015_bib0018 article-title: A proposed image processing framework for diagnosis of anemia with providing proper nutrition publication-title: International Journal of Computer Science and Information Security (IJCSIS) – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.procs.2023.01.015_bib0029 article-title: Imagenet large scale visual recognition challenge publication-title: International journal of computer vision doi: 10.1007/s11263-015-0816-y – year: 2014 ident: 10.1016/j.procs.2023.01.015_bib0028 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint – volume: 34 start-page: 5383 issue: 7 year: 2022 ident: 10.1016/j.procs.2023.01.015_bib0012 article-title: Gland segmentation in colorectal cancer histopathological images using u-net inspired convolutional network publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06687-z – volume: 4 start-page: 34 year: 2001 ident: 10.1016/j.procs.2023.01.015_bib0023 article-title: Robust real-time object detection [j] publication-title: International journal of computer vision – start-page: 299 year: 2014 ident: 10.1016/j.procs.2023.01.015_bib0008 article-title: Noninvasive hemoglobin monitoring publication-title: Monitoring Technologies in Acute Care Environments doi: 10.1007/978-1-4614-8557-5_36 – volume: 142 year: 2022 ident: 10.1016/j.procs.2023.01.015_bib0011 article-title: Leufeatx: Deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105236 |
SSID | ssj0000388917 |
Score | 2.3616974 |
Snippet | Non-invasive detection of anemia is generally done by physical examination of regions like palpebral conjunctiva, fingernails, tongue and palmar creases.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 328 |
SubjectTerms | Anemia Detection Deep Learning Haemoglobin Image Processing Image Segmentation Medical Imaging Palpebral Conjunctiva |
Title | Semantic segmentation of palpebral conjunctiva using predefined deep neural architectures for anemia detection |
URI | https://dx.doi.org/10.1016/j.procs.2023.01.015 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4FuuLPXg0tGk2r6OKIooebMXewm52RlraNLT1_zuz3YiC9CDkkjADYbLZ-XZ3vm-EuDSYKNQxBjpWiik5NjA5pgFogxnYXgSGycnPL8nDm3ocxsOWuG24MFxW6ef-1ZzuZmv_pOOj2alHo04_zNKU1UsIRHPmZ0Z5pDJH4hvefO-zsNpJ7hrvsn3ADo34kCvz4jzBst29yMl3cnvcvxLUj6Rzvyu2PVqU16sX2hMtqPbFTtOJQfof80BUfZhSiEalXMDH1NOJKjlDWetJzWfDE0kL3zElMW5nJrna_UPWc7CABDOttAC1ZG1LMvx5trCQBGqlrmA60mS0dIVb1aEY3N8Nbh8C30khKFlshiB0BrnNDK0_bFTqiJcReWwjU6YJ5IgYhsb2UFnIVRmWIXYxQabVEgDoEqI5EhvVrIJjIbNcAUEONApipbNUa2WALG2MSZxG2Ba9JnpF6VXGudnFpGjKycaFC3nBIS-6IV1xW1x9O9UrkY315knzWYpfY6WgNLDO8eS_jqdii-9WWy9nYmM5_4RzAiNLcyE2r59e358u3Kj7Aj0D4hM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oHvTi24jPPXi0gdLt66hEAipcwIRbs9udIRiojeL_d6a0BBPDwaSndiZpptudb3dnvk-IO4OBQu2jo32luCXHOibG0AFtMALb8sBwc3J_EHTf1PPYH2-JdtULw2WV5dy_nNOL2bq80yij2cin08bQjcKQ2UsIRHPmD7fFDqGBkPUbeuPH1UYL053EhfIuOzjsUbEPFXVenCiYt7vlFfydrI_7V4ZayzqdQ7FfwkX5sHyjI7EF2bE4qKQYZPlnnohsCHOK0TSVXzCZl_1EmfxAmetZzofDM0kr33fKYqxnJrncfSLzT7CAhDOttAC5ZHJLMlw_XPiShGqlzmA-1WS0KCq3slMx6jyN2l2nlFJwUmabIQwdQWwjQwsQ66Xa43VE7FvPpGEAMSK6rrEtVBZilbqpi00MkPtqCQE0CdKciVr2kcG5kFGsgDAHGgW-0lGotTJAltbHwA89rItWFb0kLWnGWe1illT1ZO9JEfKEQ540Xbr8urhfOeVLlo3N5kH1WZJfgyWhPLDJ8eK_jrditzvqvyavvcHLpdjjJ8t9mCtRW3x-wzUhk4W5KUbeD4KR448 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+segmentation+of+palpebral+conjunctiva+using+predefined+deep+neural+architectures+for+anemia+detection&rft.jtitle=Procedia+computer+science&rft.au=Dhalla%2C+Sabrina&rft.au=Maqbool%2C+Junaid&rft.au=Mann%2C+Tanvir+Singh&rft.au=Gupta%2C+Aastha&rft.date=2023&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=218&rft.spage=328&rft.epage=337&rft_id=info:doi/10.1016%2Fj.procs.2023.01.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2023_01_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |