Heat Conduction Characteristics of Vertically Aligned Single-Walled Carbon Nanotubes Measured by Raman Spectroscopy

In this work, the film thermal conductivity and the film-substrate interfacial thermal contact resistance of vertically-aligned single-walled carbon nanotube (VA-SWNT) films were measured with a proposed method utilizing temperature dependence of Raman spectrum. The proposed method harnesses the exc...

Full description

Saved in:
Bibliographic Details
Published inNihon Kikai Gakkai rombunshuu. B hen Vol. 79; no. 798; pp. 185 - 198
Main Authors BADAR, Saifullah, ISHIKAWA, Kei, HORI, Takuma, XIANG, Rong, THURAKITSEREE, Theerapol, CHIASHI, Shohei, WATANABE, Makoto, SHIOMI, Junichiro, MARUYAMA, Shigeo
Format Journal Article
LanguageJapanese
Published The Japan Society of Mechanical Engineers 2013
Subjects
Online AccessGet full text
ISSN0387-5016
1884-8346
DOI10.1299/kikaib.79.185

Cover

Abstract In this work, the film thermal conductivity and the film-substrate interfacial thermal contact resistance of vertically-aligned single-walled carbon nanotube (VA-SWNT) films were measured with a proposed method utilizing temperature dependence of Raman spectrum. The proposed method harnesses the excitation laser power of the Raman spectroscopy to heat the VA-SWNT films synthesized on a silicon substrate by alcohol catalytic chemical vapor decomposition (ACCVD) method, and measures film temperature from the Raman spectrum. A relationship between the input laser heat and the measured temperature is modeled with a detailed heat conduction equation, and its numerical solutions were compared with the experimentally measured results to extract the film thermal conductivity and the film-substrate interfacial thermal contact resistance. The method found the thermal conductivity of the VA-SWNT film to be around 2 Wm-1K-1 and the film-substrate interfacial thermal contact resistance to be around 2×10-6 m2KW-1. The obtained film thermal conductivity corresponds to the thermal conductivity equivalent of an individual SWNT of several tens of Wm-1K-1. This value was more than an order of magnitude smaller than the values reported on individual SWNTs.
AbstractList In this work, the film thermal conductivity and the film-substrate interfacial thermal contact resistance of vertically-aligned single-walled carbon nanotube (VA-SWNT) films were measured with a proposed method utilizing temperature dependence of Raman spectrum. The proposed method harnesses the excitation laser power of the Raman spectroscopy to heat the VA-SWNT films synthesized on a silicon substrate by alcohol catalytic chemical vapor decomposition (ACCVD) method, and measures film temperature from the Raman spectrum. A relationship between the input laser heat and the measured temperature is modeled with a detailed heat conduction equation, and its numerical solutions were compared with the experimentally measured results to extract the film thermal conductivity and the film-substrate interfacial thermal contact resistance. The method found the thermal conductivity of the VA-SWNT film to be around 2 Wm-1K-1 and the film-substrate interfacial thermal contact resistance to be around 2×10-6 m2KW-1. The obtained film thermal conductivity corresponds to the thermal conductivity equivalent of an individual SWNT of several tens of Wm-1K-1. This value was more than an order of magnitude smaller than the values reported on individual SWNTs.
Author MARUYAMA, Shigeo
BADAR, Saifullah
THURAKITSEREE, Theerapol
HORI, Takuma
ISHIKAWA, Kei
XIANG, Rong
SHIOMI, Junichiro
WATANABE, Makoto
CHIASHI, Shohei
Author_xml – sequence: 1
  fullname: BADAR, Saifullah
– sequence: 1
  fullname: ISHIKAWA, Kei
– sequence: 1
  fullname: HORI, Takuma
– sequence: 1
  fullname: XIANG, Rong
– sequence: 1
  fullname: THURAKITSEREE, Theerapol
– sequence: 1
  fullname: CHIASHI, Shohei
– sequence: 1
  fullname: WATANABE, Makoto
– sequence: 1
  fullname: SHIOMI, Junichiro
– sequence: 1
  fullname: MARUYAMA, Shigeo
  organization: The Univ. of Tokyo, Dept. of Mechanical Engineering
BookMark eNpNUMtOwzAQtFCRKKVH7v6BFCdOnPhYIqBIBSTK4xhtnHUxTZ3KTg_5e1y1qjjtY2b2MddkZDuLhNzGbBYnUt5tzAZMPcvlLC6yCzKOiyKNCp6KERkzXuRRxmJxRabem5oxIXjK02xM_AKhp2Vnm73qTWdp-QMOVI_O-N4oTztNv9CFFNp2oPPWrC02dGXsusXoOzRDVYKrg_QVbNfva_T0BcHvXUDqgb7DFixd7VD1rvOq2w035FJD63F6ihPy-fjwUS6i5dvTczlfRioRPIsymTeJ0iyu01wWoLkA5FqJRGSiSVimNG8YV1LmOSDWiWygKRAK3TCl0zjlExId56qw2DvU1c6ZLbihill1MK06mlblsgqmBf79kf_re1jjmQ2H91v8xw73nERnUAXfKrT8D-RMfYk
Cites_doi 10.1109/95.679046
ContentType Journal Article
Copyright 2013 The Japan Society of Mechanical Engineers
Copyright_xml – notice: 2013 The Japan Society of Mechanical Engineers
DBID AAYXX
CITATION
DOI 10.1299/kikaib.79.185
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-8346
EndPage 198
ExternalDocumentID 10_1299_kikaib_79_185
article_kikaib_79_798_79_185_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c2635-597d2cf01b4798af36ae3fc62656d205cf3d03c9977aeeb29dad8ea8fd0cf4143
ISSN 0387-5016
IngestDate Tue Jul 01 03:34:16 EDT 2025
Wed Sep 03 06:30:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 798
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2635-597d2cf01b4798af36ae3fc62656d205cf3d03c9977aeeb29dad8ea8fd0cf4143
OpenAccessLink https://www.jstage.jst.go.jp/article/kikaib/79/798/79_185/_article/-char/en
PageCount 14
ParticipantIDs crossref_primary_10_1299_kikaib_79_185
jstage_primary_article_kikaib_79_798_79_185_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013
2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle Nihon Kikai Gakkai rombunshuu. B hen
PublicationTitleAlternate Trans.JSME, B
PublicationYear 2013
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References (22) Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H., “Thermal conductance of an individual single-wall carbon nanotube above room temperature”, Nano Letters, Vol. 6, No. 1 (2006), pp. 96-100.
(18) Hou, J., Wang, X., Vellelacheruvu, P., Guo, J., Liu, C., Cheng, H.-M., “Thermal characterization of single-wall carbon nanotube bundles using the self-heating 3ω technique”, Journal of Applied Physics, Vol. 100 (2006), pp. 124314-1-9.
(46) Lin, C.-T., Lee, C.-Y., Chin, T.-S., Ishikawa, K., Xiang, R., Shiomi, J., and Maruyama, S., “Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films”, Carbon, Vol. 49 (2011), pp. 1446-1452.
(12) Yi, W., Lu, L., Dian-Lin, Z., Pan, Z.W., and Xie, S.S., “Linear specific heat of carbon nanotubes”, Physical Review B, Vol. 59, No. 14 (1999), pp. R9015-9018.
(25) Yang, D.J., Zhang, Q., Chen, G., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., and Li, J.Q., “Thermal conductivity of multiwalled carbon nanotubes“, Physical Review B, Vol. 66 (2002), pp. 165440-1-6.
(23) Wang, Z.L., Tang, D.W., Li, X.B., Zheng, X.H., Zhang, W.G., Zheng, L.X., Zhu, Y.T., Jin, A.Z., Yang, H.F., and Gu, C.Z., “Length-dependent thermal conductivity of an individual SWCNT”, Applied Physics Letters, Vol. 91 (2007), pp. 123119-1-3.
(52) Chiashi, S., Murakami, Y., Miyauchi, Y., and Maruyama, S., “Temperature dependence of Raman scattering from single-walled carbon nanotubes: Undefined radial breathing mode peaks at high temperatures”, Japanese Journal of Applied Physics, Vol. 47, No. 4 (2008), pp. 2010-2015.
(21) Yu, C., Shi, L., Yao, Z., Li, D., and Majumdar, A., “Thermal conductance and thermopower of an individual single-wall carbon nanotube”, Nano Letters, Vol. 5, No. 9 (2005), pp. 1842-1846.
(11) Yamamoto, T., Konabe, S., Shiomi, J., and Maruyama, S., “Crossover from ballistic to diffusive thermal transport in carbon nanotubes”, Applied Physics Express, Vol. 2, No. 9 (2009), pp. 095003-1-3.
(33) Pal, S.K., Son, Y., Borca-Tasciuc, T., Borca-Tasciuc, D.-A., Kar, S., Vajtai, R., and Ajayan, P.M., “Thermal and electrical transport along MWCNT arrays grown on Inconel substrates”, Journal of Materials Research, Vol. 23, No. 8 (2008), pp. 2099-2105.
(38) Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenimelez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., and Dai, H., “Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen”, Proceedings of the National Academy of Science, Vol. 102, No. 45 (2005), pp. 16141-16145.
(30) Cola, B.A., Xu, J., Cheng, C., Xu, X., Fisher, T.S., and Hu, H., “Photoacoustic characterization of carbon nanotube array thermal interfaces”, Journal of Applied Physics, Vol. 101 (2007), pp. 054313-1-9.
(56) Liu, X., Wu, X., and Ren, T., “In situ and noncontact measurement of silicon membrane thermal conductivity”, Applied Physics Letters, Vol. 98 (2011), pp. 174104-1-3.
(27) Borca-Tasciuc, T., Vafaei, S., Borca-Tasciuc, D.-A., Wei, B.Q., Vajtai, R., and Ajayan, P.M., “Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays”, Journal of Applied Physics, Vol. 98 (2005), pp. 054309-1-6.
(43) Yovanovich, M.M., Culham, J.R., and Teertstra, P., “Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks”, IEEE Transactions on Components and Packaging Technologies Part A, Vol. 21, No. 1 (1998), pp. 168-176. The applied condition is same as the ‘Isoflux contact on layer on half-space’ with the k2 = k1 stated in this paper. See also URL http://mhtlab.uwaterloo.ca/intro_disk.html.
(7) Mingo, N. and Broido, D.A., “Carbon nanotube ballistic thermal conductance and its limits”, Physical Review Letters, Vol. 95 (2005), pp. 096105-1-4.
(28) Hu, X.J., Padilla, A.A., Xu, J., Fisher, T.S., and Goodson, K.E., “3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon”, Journal of Heat Transfer, Vol. 128 (2006), pp. 1109-1113.
(47) Pauly, H., “Effects of different polishing methods on the reflectance of silicon”, TMPM Tschermaks Mineralogische und Petrographische Mittteilungen, Vol. 35 (1986), pp. 261-273.
(1) Berber, S., Kwon, Y., and Tománek, D., “Unusually high thermal conductivity of carbon nanotubes”, Physical Review Letters, Vol. 84, No. 2 (2000), pp. 4613-4616.
(31) Shaikh, S., Li, L., Lafdi, K., Huie, J., “Thermal conductivity of an aligned carbon nanotube array”, Carbon, Vol. 45 (2007), pp. 2608-2643.
(48) Hone, J., Batlogg, B., Benes, Z., Johnson, A.T., and Fischer, J.E., “Quantized phonon spectrum of single-wall carbon nanotubes”, Science, Vol. 289 (2000) pp. 1730-1733.
(17) Shi, L., Li, D., Yu, C., Jang, W., Yao, Z., Kim, P., and Majumdar, A., “Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device”, Journal of Heat Transfer, Vol. 125 (2003), pp. 881-888.
(6) Maruyama, S., “A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube”, Microscale Thermophysical Engineering, Vol. 7 (2003), pp. 41-50.
(49) Xiang, R., Yang, Z., Zhang, Q., Luo, G., Qian, W., Wei, F., Kadowaki, M., Einarsson, E., and Maruyama, S., “Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled?”, Journal of Physical Chemistry C, Vol. 112 (2008), pp. 4892-4896.
(40) Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., and Maruyama, S., “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy”, Chemical Physics Letters, Vol. 385 (2004), pp. 298-303.
(60) Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R.R., and Geim, A.K., “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano, Vol. 4, No. 4 (2010), pp. 1889-1892.
(53) 千足昇平,東京大学博士論文,(2005),http://www.photon.t.u-tokyo.ac.jp/thesis/index-j.html (参照日2011年11月14日)
(54) Périchon, S., Lysenko, V., Roussel, Ph., Remaki, B., Champagnon, B., Barbier, D., and Pinard, P., “Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect microsystems”, Sensors and Actuators, Vol. 85 (2000), pp. 335-339.
(37) Akoshima, M., Hata, K., Futaba, D.N., Mizuno, K., Baba, T., and Yumura, M., “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method”, Japanese Journal of Applied Physics, Vol. 48 (2009), pp. 05EC07-1-6.
(4) Moreland, J.F., Freund, J.B., and Chen, G., ”The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation”, Microscale Thermophysical Engineering, Vol. 8 (2004), pp. 61-69.
(26) Wang, X., Zhong, Z., and Xu, J., “Noncontact thermal characterization of multiwall carbon nanotubes”, Journal of Applied Physics, Vol. 97 (2005), pp. 064302-1-5.
(29) Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A., “Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials“, IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 1 (2007), pp. 92-100.
(14) Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., and Shimizu, T., ”Measuring the Thermal Conductivity of a Single Carbon Nanotube”, Physical Review Letters, Vol. 95 (2005), pp. 065502-1-4.
(44) Lide, D.R., ed., CRC Handbook of Chemistry and Physics, 72nd ed. (1991-1992), Chap. 4, p. 148, CRC Press.
(5) Maruyama, S., “A molecular dynamics simulation of heat conduction in finite length SWNTs”, Physica B, Vol. 323 (2002), pp. 193-195.
(19) Hsu, I.-K., Kumar, R., Bushmaker, A., Cronin, S.B., Pettes, M.T., Shi, L., Brintlinger, T., Fuhrer, M.S., and Cumings, J., “Optical measurement of thermal transport in suspended carbon nanotubes”, Applied Physics Letters, Vol. 92 (2008), pp. 063119-1-3.
(57) Li, Q., Liu, C., Wang, X., and Huang, S., “Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method”, Nanotechnology, Vol. 20 (2009), pp. 145702-1-5.
(3) Che, J., Çağin, T., and Goddard III, W.A., “Thermal conductivity of carbon nanotubes”, Nanotechnology, Vol. 11 (2000), pp. 65-69.
(20) Hsu, I.-K., Pettes, M.T., Bushmaker, A., Aykol, M., Shi, L., and Cronin, S.B., “Optical absorption and thermal transport of individual suspended carbon nanotube bundles”, Nano Letters, Vol. 9, No. 2 (2009), pp. 590-594.
(16) Choi, T.Y., Poulikakos, D., Tharian, J., and Sennhauser, U., “Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the four-point three-ω method”, Nano Letters, Vol. 6, No. 8 (2006), pp. 1589-1593.
(55) Huang, S., Ruan, X., Zou, J., Fu, X., and Yang, H., “Thermal conductivity measurement of submicrometer-scale silicon dioxide films by an extended micro-Raman method”, Microsystem Technologies, Vol. 15 (2009), pp. 837-842.
(9) Maruyama, S., Igarashi, Y., Taniguchi, Y., and Shiomi, J., “Anisotropic heat transfer of single-walled carbon nanotubes”, Journal of Thermal Science and Technology, Vol. 1, No. 2 (2006), pp. 138-148.
(24) Duong, H.M., Einarsson, E., Okawa, J., Xiang, R., and Maruyama, S., “Thermal degradation of single-walled carbon nanotubes”, Japanese Journal of Applied Physics, Vol. 47, No. 4 (2008), pp. 1994-1999.
(2) Osman, M.A. and Srivastava, D., “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnology, Vol. 12 (2001), pp. 21-24.
(13) Kim, P., Shi, L., Majumdar, A., and McEuen, P.L., “Thermal Transport Measurements of Individual Multiwalled Nanotubes”, Physical Review Letters, Vol. 87, No. 21 (2001), pp. 215502-1-4.
(39) Panzer, M.A., Zhang, G., Mann, D., Hu, X., Pop, E., Dai, H., and Goodson, K.E., “Thermal properties of metal-coated vertically aligned single-wall nanotube arrays”, Journal of Heat Transfer, Vol. 130 (2008), pp. 052401-1-9.
(41) Panzer, M. A., Duong, H. M., Okawa, J., Shiomi, J., Wardle, B.L., Maruyama, S., and Goodson, K. E., “Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube fi
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: (34) Xie, H., Cai, A., and Wang, X., “Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays”, Physics Letters A, Vol. 369 (2007), pp. 120-123.
– reference: (38) Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenimelez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., and Dai, H., “Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen”, Proceedings of the National Academy of Science, Vol. 102, No. 45 (2005), pp. 16141-16145.
– reference: (2) Osman, M.A. and Srivastava, D., “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnology, Vol. 12 (2001), pp. 21-24.
– reference: (29) Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A., “Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials“, IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 1 (2007), pp. 92-100.
– reference: (4) Moreland, J.F., Freund, J.B., and Chen, G., ”The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation”, Microscale Thermophysical Engineering, Vol. 8 (2004), pp. 61-69.
– reference: (10) Shiomi, J. and Maruyama, S., “Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes”, Japanese Journal of Applied Physics, Vol. 47, No.4 (2008), pp. 2005-2009.
– reference: (46) Lin, C.-T., Lee, C.-Y., Chin, T.-S., Ishikawa, K., Xiang, R., Shiomi, J., and Maruyama, S., “Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films”, Carbon, Vol. 49 (2011), pp. 1446-1452.
– reference: (51) Balkanski, M., Wallis, R.F., and Haro, E., “Anharmonic effects in light scattering due to optical phonons in silicon”, Physical Review B, Vol. 28, No. 4 (1983), pp. 1928-1934.
– reference: (26) Wang, X., Zhong, Z., and Xu, J., “Noncontact thermal characterization of multiwall carbon nanotubes”, Journal of Applied Physics, Vol. 97 (2005), pp. 064302-1-5.
– reference: (50) Kondo, N., Yamamoto, T., and Watanabe, K., “Molecular-dynamics simulations of thermal transport in carbon nanotubes with structural defects”, e-Journal of Surface Science and Nanotechnology, Vol. 4 (2006), pp. 239-243.
– reference: (21) Yu, C., Shi, L., Yao, Z., Li, D., and Majumdar, A., “Thermal conductance and thermopower of an individual single-wall carbon nanotube”, Nano Letters, Vol. 5, No. 9 (2005), pp. 1842-1846.
– reference: (33) Pal, S.K., Son, Y., Borca-Tasciuc, T., Borca-Tasciuc, D.-A., Kar, S., Vajtai, R., and Ajayan, P.M., “Thermal and electrical transport along MWCNT arrays grown on Inconel substrates”, Journal of Materials Research, Vol. 23, No. 8 (2008), pp. 2099-2105.
– reference: (52) Chiashi, S., Murakami, Y., Miyauchi, Y., and Maruyama, S., “Temperature dependence of Raman scattering from single-walled carbon nanotubes: Undefined radial breathing mode peaks at high temperatures”, Japanese Journal of Applied Physics, Vol. 47, No. 4 (2008), pp. 2010-2015.
– reference: (57) Li, Q., Liu, C., Wang, X., and Huang, S., “Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method”, Nanotechnology, Vol. 20 (2009), pp. 145702-1-5.
– reference: (14) Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., and Shimizu, T., ”Measuring the Thermal Conductivity of a Single Carbon Nanotube”, Physical Review Letters, Vol. 95 (2005), pp. 065502-1-4.
– reference: (41) Panzer, M. A., Duong, H. M., Okawa, J., Shiomi, J., Wardle, B.L., Maruyama, S., and Goodson, K. E., “Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films”, Nano Letters, Vol. 10 (2010), pp. 2395-2400.
– reference: (31) Shaikh, S., Li, L., Lafdi, K., Huie, J., “Thermal conductivity of an aligned carbon nanotube array”, Carbon, Vol. 45 (2007), pp. 2608-2643.
– reference: (13) Kim, P., Shi, L., Majumdar, A., and McEuen, P.L., “Thermal Transport Measurements of Individual Multiwalled Nanotubes”, Physical Review Letters, Vol. 87, No. 21 (2001), pp. 215502-1-4.
– reference: (6) Maruyama, S., “A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube”, Microscale Thermophysical Engineering, Vol. 7 (2003), pp. 41-50.
– reference: (35) Xu, J., and Fisher, T.S., “Enhancement of thermal interface materials with carbon nanotube arrays”, International Journal of Heat and Mass Transfer, Vol. 49 (2006), pp. 1658-1666.
– reference: (36) Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., “Water-assited highly efficient synthesis of impurity-free single-walled carbon nanotubes”, Science, Vol. 306 (2004), pp. 1362-1364.
– reference: (40) Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., and Maruyama, S., “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy”, Chemical Physics Letters, Vol. 385 (2004), pp. 298-303.
– reference: (12) Yi, W., Lu, L., Dian-Lin, Z., Pan, Z.W., and Xie, S.S., “Linear specific heat of carbon nanotubes”, Physical Review B, Vol. 59, No. 14 (1999), pp. R9015-9018.
– reference: (30) Cola, B.A., Xu, J., Cheng, C., Xu, X., Fisher, T.S., and Hu, H., “Photoacoustic characterization of carbon nanotube array thermal interfaces”, Journal of Applied Physics, Vol. 101 (2007), pp. 054313-1-9.
– reference: (9) Maruyama, S., Igarashi, Y., Taniguchi, Y., and Shiomi, J., “Anisotropic heat transfer of single-walled carbon nanotubes”, Journal of Thermal Science and Technology, Vol. 1, No. 2 (2006), pp. 138-148.
– reference: (45) Einarsson, E., Murakami, Y., Kadowaki, M., and Maruyama, S., “Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements”, Carbon, Vol. 46 (2008), pp. 923-930.
– reference: (55) Huang, S., Ruan, X., Zou, J., Fu, X., and Yang, H., “Thermal conductivity measurement of submicrometer-scale silicon dioxide films by an extended micro-Raman method”, Microsystem Technologies, Vol. 15 (2009), pp. 837-842.
– reference: (7) Mingo, N. and Broido, D.A., “Carbon nanotube ballistic thermal conductance and its limits”, Physical Review Letters, Vol. 95 (2005), pp. 096105-1-4.
– reference: (37) Akoshima, M., Hata, K., Futaba, D.N., Mizuno, K., Baba, T., and Yumura, M., “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method”, Japanese Journal of Applied Physics, Vol. 48 (2009), pp. 05EC07-1-6.
– reference: (49) Xiang, R., Yang, Z., Zhang, Q., Luo, G., Qian, W., Wei, F., Kadowaki, M., Einarsson, E., and Maruyama, S., “Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled?”, Journal of Physical Chemistry C, Vol. 112 (2008), pp. 4892-4896.
– reference: (58) Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.,”Superior thermal conductivity of single-layer graphene”, Nano Letters, Vol. 8, No. 3 (2008), pp. 902-907.
– reference: (48) Hone, J., Batlogg, B., Benes, Z., Johnson, A.T., and Fischer, J.E., “Quantized phonon spectrum of single-wall carbon nanotubes”, Science, Vol. 289 (2000) pp. 1730-1733.
– reference: (16) Choi, T.Y., Poulikakos, D., Tharian, J., and Sennhauser, U., “Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the four-point three-ω method”, Nano Letters, Vol. 6, No. 8 (2006), pp. 1589-1593.
– reference: (19) Hsu, I.-K., Kumar, R., Bushmaker, A., Cronin, S.B., Pettes, M.T., Shi, L., Brintlinger, T., Fuhrer, M.S., and Cumings, J., “Optical measurement of thermal transport in suspended carbon nanotubes”, Applied Physics Letters, Vol. 92 (2008), pp. 063119-1-3.
– reference: (59) Cai, W., Moore, A.L., Zhu, Y. , Li, X., Chen, S., Shi, L., and Ruoff, R.S., “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition”, Nano Letters, Vol. 10, No. 5 (2010), pp. 1645-1651.
– reference: (47) Pauly, H., “Effects of different polishing methods on the reflectance of silicon”, TMPM Tschermaks Mineralogische und Petrographische Mittteilungen, Vol. 35 (1986), pp. 261-273.
– reference: (20) Hsu, I.-K., Pettes, M.T., Bushmaker, A., Aykol, M., Shi, L., and Cronin, S.B., “Optical absorption and thermal transport of individual suspended carbon nanotube bundles”, Nano Letters, Vol. 9, No. 2 (2009), pp. 590-594.
– reference: (8) Mingo, N. and Broido, D.A., “Length dependence of carbon nanotube thermal conductivity and the “Problem of Long Waves””, Nano Letters, Vol. 5, No. 7 (2005), pp. 1221-1225.
– reference: (32) Son, Y., Pal, S.K., Borca-Tasciuc, T., Ajayan, P.M., and Siegel, R.W., “Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate”, Journal of Applied Physics, Vol. 103 (2008), pp. 024911-1-7.
– reference: (25) Yang, D.J., Zhang, Q., Chen, G., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., and Li, J.Q., “Thermal conductivity of multiwalled carbon nanotubes“, Physical Review B, Vol. 66 (2002), pp. 165440-1-6.
– reference: (18) Hou, J., Wang, X., Vellelacheruvu, P., Guo, J., Liu, C., Cheng, H.-M., “Thermal characterization of single-wall carbon nanotube bundles using the self-heating 3ω technique”, Journal of Applied Physics, Vol. 100 (2006), pp. 124314-1-9.
– reference: (53) 千足昇平,東京大学博士論文,(2005),http://www.photon.t.u-tokyo.ac.jp/thesis/index-j.html (参照日2011年11月14日).
– reference: (43) Yovanovich, M.M., Culham, J.R., and Teertstra, P., “Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks”, IEEE Transactions on Components and Packaging Technologies Part A, Vol. 21, No. 1 (1998), pp. 168-176. The applied condition is same as the ‘Isoflux contact on layer on half-space’ with the k2 = k1 stated in this paper. See also URL http://mhtlab.uwaterloo.ca/intro_disk.html.
– reference: (1) Berber, S., Kwon, Y., and Tománek, D., “Unusually high thermal conductivity of carbon nanotubes”, Physical Review Letters, Vol. 84, No. 2 (2000), pp. 4613-4616.
– reference: (5) Maruyama, S., “A molecular dynamics simulation of heat conduction in finite length SWNTs”, Physica B, Vol. 323 (2002), pp. 193-195.
– reference: (42) Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D.N., Yumura, M., and Hata, K., “A black body absorber from vertically aligned single-walled carbon nanotubes”, Proceedings of the National Academy of Sciences, Vol. 106, No. 15 (2009), pp. 6044-6047.
– reference: (60) Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R.R., and Geim, A.K., “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano, Vol. 4, No. 4 (2010), pp. 1889-1892.
– reference: (17) Shi, L., Li, D., Yu, C., Jang, W., Yao, Z., Kim, P., and Majumdar, A., “Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device”, Journal of Heat Transfer, Vol. 125 (2003), pp. 881-888.
– reference: (44) Lide, D.R., ed., CRC Handbook of Chemistry and Physics, 72nd ed. (1991-1992), Chap. 4, p. 148, CRC Press.
– reference: (28) Hu, X.J., Padilla, A.A., Xu, J., Fisher, T.S., and Goodson, K.E., “3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon”, Journal of Heat Transfer, Vol. 128 (2006), pp. 1109-1113.
– reference: (54) Périchon, S., Lysenko, V., Roussel, Ph., Remaki, B., Champagnon, B., Barbier, D., and Pinard, P., “Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect microsystems”, Sensors and Actuators, Vol. 85 (2000), pp. 335-339.
– reference: (23) Wang, Z.L., Tang, D.W., Li, X.B., Zheng, X.H., Zhang, W.G., Zheng, L.X., Zhu, Y.T., Jin, A.Z., Yang, H.F., and Gu, C.Z., “Length-dependent thermal conductivity of an individual SWCNT”, Applied Physics Letters, Vol. 91 (2007), pp. 123119-1-3.
– reference: (15) Choi, T.-Y., Poulikakos, D., Tharian, J., and Sennhauser, U., “Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method”, Applied Physics Letters, Vol. 87 (2005), pp. 013108-1-3.
– reference: (11) Yamamoto, T., Konabe, S., Shiomi, J., and Maruyama, S., “Crossover from ballistic to diffusive thermal transport in carbon nanotubes”, Applied Physics Express, Vol. 2, No. 9 (2009), pp. 095003-1-3.
– reference: (3) Che, J., Çağin, T., and Goddard III, W.A., “Thermal conductivity of carbon nanotubes”, Nanotechnology, Vol. 11 (2000), pp. 65-69.
– reference: (24) Duong, H.M., Einarsson, E., Okawa, J., Xiang, R., and Maruyama, S., “Thermal degradation of single-walled carbon nanotubes”, Japanese Journal of Applied Physics, Vol. 47, No. 4 (2008), pp. 1994-1999.
– reference: (39) Panzer, M.A., Zhang, G., Mann, D., Hu, X., Pop, E., Dai, H., and Goodson, K.E., “Thermal properties of metal-coated vertically aligned single-wall nanotube arrays”, Journal of Heat Transfer, Vol. 130 (2008), pp. 052401-1-9.
– reference: (22) Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H., “Thermal conductance of an individual single-wall carbon nanotube above room temperature”, Nano Letters, Vol. 6, No. 1 (2006), pp. 96-100.
– reference: (56) Liu, X., Wu, X., and Ren, T., “In situ and noncontact measurement of silicon membrane thermal conductivity”, Applied Physics Letters, Vol. 98 (2011), pp. 174104-1-3.
– reference: (27) Borca-Tasciuc, T., Vafaei, S., Borca-Tasciuc, D.-A., Wei, B.Q., Vajtai, R., and Ajayan, P.M., “Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays”, Journal of Applied Physics, Vol. 98 (2005), pp. 054309-1-6.
– ident: 2
– ident: 39
– ident: 12
– ident: 35
– ident: 51
– ident: 16
– ident: 31
– ident: 55
– ident: 60
– ident: 9
– ident: 49
– ident: 45
– ident: 26
– ident: 41
– ident: 22
– ident: 17
– ident: 5
– ident: 1
– ident: 59
– ident: 38
– ident: 34
– ident: 13
– ident: 50
– ident: 30
– ident: 54
– ident: 58
– ident: 48
– ident: 8
– ident: 27
– ident: 44
– ident: 23
– ident: 40
– ident: 18
– ident: 4
– ident: 37
– ident: 33
– ident: 10
– ident: 14
– ident: 28
– ident: 53
– ident: 57
– ident: 24
– ident: 7
– ident: 47
– ident: 20
– ident: 42
– ident: 3
– ident: 36
– ident: 11
– ident: 19
– ident: 52
– ident: 15
– ident: 32
– ident: 29
– ident: 56
– ident: 43
  doi: 10.1109/95.679046
– ident: 6
– ident: 46
– ident: 21
– ident: 25
SSID ssib006634345
ssj0000608106
Score 1.8574593
Snippet In this work, the film thermal conductivity and the film-substrate interfacial thermal contact resistance of vertically-aligned single-walled carbon nanotube...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 185
SubjectTerms Carbon Material
Spectroscopic Measurement
Thermal Contact Resistance
Thermal Property
Title Heat Conduction Characteristics of Vertically Aligned Single-Walled Carbon Nanotubes Measured by Raman Spectroscopy
URI https://www.jstage.jst.go.jp/article/kikaib/79/798/79_185/_article/-char/en
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B, 2013, Vol.79(798), pp.185-198
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfK4MAOaHyJbQz5gLhUKc6Xk4hTmYCKaZOYVjROwU7sNbRLpjY5jL-e92I3S8cOg0taJbbr-v3yvvz8HiFvufaV0lHkcMmEE0SZ52AWbweln_a5QrmC0RYnfDINvp6H54PBz17UUlPLUfb7znMl_0NVuAd0xVOy_0DZblC4Ad-BvnAFCsP1XjSeoHl_WJW5SQHb7p33sy-DIvi9jZsWi8X1cLwoLkrUL0FaLZSDLnR074qlhK7AZau6kWo1PDZew1YxPRXo4sca9TVmvayuNjaBT4oZ9Dwq5qIYfhFz_FhWl7IpV7OmGQ0_ghbaQe94fDr9ge589LbOigtV9f0N5qDo-oQVMKSQuTZ1tWGYcRw4sW_diJajmvIwFjmRqTJtGaRrCvRYWeuaZ3-xcZCRsPZznL8cRcmo69VPl31LjHXBhWjWwACp6Z5GSQrdH5CHXhS5GPR59C3uvHCMg0rEzIa2_XM2ESuM8H5jAhuKy6NfoLuv4_5aVeRshzyxNgQdG0A8JQNVPiPbvcySz8kKoUFvoEFvQYNWmt5Ag1po0A1oUAMN2kGDrqFB5TVtoUH70HhBpp8_nR1OHFtfw8kwBZEDtmTuZZq5MgAiCXg1hfJ1BiZuyHOPhZn2c-ZnCZgIQinpJbnIYyVinbNMB6BovyRbZVWqV4TyxM-DGHMPcgEGv0xUHvlay5AHimnGd8m79eKlVyaNSnonnXbJB7O0XTP7dvWawWRt6-4hHlEEjrB335_ZJ4-9tq4J-tJek6162agD0C5r-aYFyB8oZoE6
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+Conduction+Characteristics+of+Vertically+Aligned+Single-Walled+Carbon+Nanotubes+Measured+by+Raman+Spectroscopy&rft.jtitle=Nihon+Kikai+Gakkai+rombunshuu.+B+hen&rft.au=MARUYAMA%2C+Shigeo&rft.date=2013&rft.issn=0387-5016&rft.eissn=1884-8346&rft.volume=79&rft.issue=798&rft.spage=185&rft.epage=198&rft_id=info:doi/10.1299%2Fkikaib.79.185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1299_kikaib_79_185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5016&client=summon